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Abstract

Published studies that use feedback-directed optimiza-
tion (FDO) techniques use either a single input for both
training and performance evaluation, or a single input for
training and a single input for evaluation. Thus an impor-
tant question is if the FDO results published in the literature
are sensitive to the training and testing input selection.

Aestimo is a new evaluation tool that uses a workload of
inputs to evaluate the sensitivity of specific code transfor-
mations to the choice of inputs in the training and testing
phases. Aestimo uses optimization logs to isolate the effects
of individual code transformations. It incorporates metrics
to determine the effect of training input selection on indi-
vidual compiler decisions.

Besides describing the structure of Aestimo, this paper
presents a case study that uses SPEC CINT2000 benchmark
programs with the Open Research Compiler (ORC) to in-
vestigate the effect of training/testing input selection on in-
lining and if-conversion. The experimental results indicate
that: (1) training input selection affects the compiler de-
cisions made for these code transformation; (2) the choice
of training/testing inputs can have a significant impact on
measured performance.

1. Introduction

Feedback-directed optimization (FDO), also known as
profile-guided optimization, may enhance the optimization
decisions in a compiler [6]. FDO can be viewed as a
spectrum of performance-enhancing techniques that rely on
measurements of run-time program behavior [22]. In this
paper a more traditional definition of FDO is considered.
When FDO is used, the program is first compiled with ad-
ditional instrumentation code to record statistics about run-
time program behavior into a profile or feedback file. Then,
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this instrumented binary is run on a training input to gen-
erate a profile. Finally, the program is recompiled, and the
compiler reads the profile and replaces its static estimates
of program behavior with the values recorded in the profile.

The training input used with FDO is an important com-
ponent of the FDO process. The success of FDO depends on
the selection of training inputs that are representative of the
majority of common uses of an application. It is therefore
important to determine the significance of training-input se-
lection on code transformations that use profile information,
both in terms of the decisions made at compile time, and in
terms of the performance of the resulting binaries. Aestimo
is a tool developed to facilitate these investigations.

Studies that use FDO techniques may use either a sin-
gle input for both training and performance evaluation, or
a single input for training and a single input for evalua-
tion [5, 23, 17, 14, 7, 20, 9, 25]. Few studies have inves-
tigated the impact of the training input used in FDO on the
performance of the resulting binary, or methods to effec-
tively select training inputs.

An important question remains open: How important is
the selection of training data for FDO? The answer to this
question is not constant across all transformations that use
profile information. Therefore, a more appropriate question
is: How sensitive are individual compiler transformations
to the selection of training data used with FDO?

This large question should be decomposed into more
manageable parts. First, does the selection of training data
change the decisions that are made during compilation?
For example, does the selection of a different training in-
put change which callsites are inlined in a program? If the
answer to this question is “no,” then the task is complete:
Input selection is irrelevant for feedback-directed optimiza-
tion. The reality is that optimizations have varied measures
of input selection sensitivity.

Even if different decisions are made by the compiler,
these differences might not be significant. Thus, an impor-
tant question is: Do the differences in transformation de-
cisions result in different levels of performance? If training
on different inputs results in different levels of performance,
then input selection for FDO is an important issue.
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This paper presents Aestimo, a new tool to investigate
FDO systems, and reports on an initial exploratory investi-
gation that provides the following contributions:

• Introduces an experimental methodology to investigate
the impact of input selection on individual code trans-
formations, both in terms of compiler decisions and
program performance.

• Uses a large selection of varied training input for the
SPEC CINT2000 benchmark programs to demonstrate
that training input selection does impact code trans-
formation decisions and the resulting program perfor-
mance. Additionally, the study shows that the selection
of evaluation inputs can significantly alter the results of
performance evaluation.

Material in this paper has been previously presented in
an extended form in a thesis with the same title [2]. Sec-
tion 2 provides an overview of the experimental methodol-
ogy used in this study, and details the operation and func-
tions of Aestimo. Section 3 follows with a summary of
the results from an extensive experimental study using Aes-
timo, and presents a case study of inlining for bzip2 to
demonstrate the information provided by Aestimo. Sec-
tion 4 presents some related work, and Section 5 concludes.

2. Experimental Methodology

In order to investigate the sensitivity of individual
feedback-directed code optimizations, we created Aestimo1.
Aestimo is a performance evaluation tool that automates the
process of compiling, executing, and evaluating programs
on workloads composed of several program inputs. Figure 1
provides an overview of Aestimo.

2.1. Compilation Process

The experiments performed by Aestimo required the cre-
ation of a large number of binaries. Aestimo distinguishes a
program, which is the algorithm encoded in the source code,
from a binary, which is one compiled instance of the pro-
gram. In particular, changing the training input used with
FDO results in a different binary. A flow diagram for Aes-
timo’s compilation process is presented in Figure 2. The
bold boxes indicate “final products” that are subsequently
used by Aestimo. Each benchmark program is compiled
statically once for each optimization being studied to cre-
ate the “static” binary, and to create the static optimization
logs. The compiler flags used for the static compilation are
the same as for the profiled case, except for the omission

1Aestimo is a Latin verb whose meaning is similar to that of the English
verb evaluate.
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Figure 1. Overview of Aestimo

of flags that refer to the profile file. In this study, the flags
used are -O3 and -ipa for inlining, along with any flags for
defines required by the particular SPEC benchmark. Only
one instrumented binary is created for each program. How-
ever, the remaining steps in the flow diagram are performed
for each optimization/input pair for each program.

When Aestimo is investigating an optimization P , it pro-
duces binaries that only use profile-guided decisions for P .
For each benchmark B, a training run executes the instru-
mented binary on a training input. Then, B is compiled
using the generated profile data, and an optimization log L

is emitted for P . The binary produced at this point is dis-
carded. Aestimo recompiles B statically using L to instruct
the compiler to make the same decisions for P as it did
during the full profile-guided compilation. In this way, opti-
mization decisions based on profile information (rather than
static estimates) are used only for P . The binaries produced
by this final compilation are referred to as FDO binaries.

During the final compilation, the compiler may not be
able to perform every optimization listed in L. For exam-
ple, if P is if conversion, there may be a function that is not
inlined without profile guidance. In that case, any if con-
version listed in L for the inlined code in ignored. On the
other hand, any additional optimizations that become prof-
itable due to a forced decision will still be available to the
compiler. For example, if L forces a callsite to be inlined,
any static optimizations applicable to the inlined code will
still be applied. Thus, Aestimo ensures that any opportunity
to apply P will result in the same decision as in the full
feedback-directed case, while not ignoring cascading ef-
fects due to the interrelatedness of optimizations. Nonethe-
less, the interactions between optimization are complex and
generally unpredicatble. Therefore, the impact of training
data selection on program performance discovered by this
technique is only an estimate. Similarly, the combined im-
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pact of several optimizations is unlikely to be equal to the
accumulated impact of the optimizations measured individ-
ually.

2.2. Performance Evaluation

After the compilation process, Aestimo executes each of
the FDO binaries on each of the inputs in the program work-
load five times. Aestimo then analyzes the program run
times and the optimization logs — calculating difference
and alignment metrics — and reports the results.

Aestimo uses two methodologies to report results: an
arithmetic mean and a geometric sum of run times. The
arithmetic mean aggregates the raw run times for each of
the inputs in the workload for a given binary and reports
this sum as a percent faster than the same measure for the
statically optimized binary. The geometric sum is similar,
but, for each input, it normalizes the run times against the
static time before aggregating. Precisely, the geometric sum
is defined as:

GI =
∑

j∈W

timeI(j)

timestatic(j)

where W is the workload, I ∈ W is the training input used
to create the binary, and timeI(j), j ∈ W, is the time for
the binary trained in input I to run on the input j.

Aestimo also compares the performance of the statically
optimized binary with the performance of the fastest FDO
binary for each input in the program workload. This mea-
sure represents the best case performance of FDO recorded
by Aestimo, and as such provide an upper bound on FDO
performance for the inputs in W .

Resubstitution is the practice of using the same input for
both the training and evaluation runs [18]. Ideally, a com-

piler that makes good use of profile information will pro-
duce the fastest binary for a given input when resubstitution
is used. Aestimo calculates the rank of each FDO binary
on each input. A rank of 1 indicates that a binary is the
fastest on a particular input. Thus, if more accurate profile
information is used effectively during FDO, resubstitution
should produce binaries with low ranks.

2.3. Workload Selection

This study uses benchmarks, and datasets, from the
SPEC CINT2000 suite2 [10]. SPEC provides three sets of
inputs for each benchmark: test is a very small input that
allow easy verification; train is a set of small or medium-
sized inputs for training with FDO; ref (reference) is the
input set used for performance evaluation. This study uses
all the SPEC inputs plus additional inputs chosen to be rep-
resentative of the benchmark’s typical workload.

Benchmark authors have been consulted, for their expert
knowledge of the program, to inform the selection of inputs.
For GAP and crafty, the benchmark authors provided ad-
ditional inputs for use in this study. Inputs for bzip2 and
gzip are selected as a collection of files in common for-
mats. Inputs for parser are taken from the Project Guten-
berg ebooks collection [4, 13, 24], web-pages [16], and the
Reuters-21578 text categorization test collection [19]. A
synthetic generator is used to create problem instances for
MCF with parameters similar to the SPEC ref input. The
placement and routing tasks of VPR are considered indi-
vidually, and use the FPGA Place-and-Route Challenge [3]
problems in the program workload. In total, 116 inputs are

2The following benchmarks are omitted because they could not be com-
piled with the appropriate flags in the ORC: perlbmk, vortex, twolf,
GCC and eon



void foo() {}

void bar() {
foo();

}

int main(int argc, char* argv[]) {
foo();
bar();

}

Figure 3. Callsites in a simple program

callsite log 1 log 2 log 3 log 4
bar.foo yes no yes no
main.foo no no no yes
main.bar no yes yes yes
main.bar.foo yes yes yes

Figure 4. Some possible inlining logs

used, of which only 32 are provided by SPEC3.

2.4. Metrics

Does profiling on different training inputs result in dif-
ferent optimization decisions in the compiler? To address
this question, we propose methods to quantitatively mea-
sure the differences between sets of optimization decisions.
These metrics provide a concrete measure of the extent to
which the selection of training data influences the way that
a program is optimized by a compiler.

During the compilation process, selected compiler deci-
sions are written to a log file. A particular instance where
a decision is made is a choice. The selected outcome of
the choice is a decision. For example, at a callsite foo in
a program, the compiler has a choice about inlining foo,
which results in a yes or no decision. For instance, Fig-
ure 3 shows the callsites of a simple program. Three pos-
sible inlining logs are presented in Figure 4. The notation
caller.callee is used to name callsites.

Log files record the compiler’s choices and decisions for
an optimization during a single compilation. All the logs for
a given program and optimization are processed together.
Each log is converted into a vector. Each vector is the same
length, with one entry for every unique choice recorded in
the set of logs. By convention, a positive non-zero value is
recorded for an affirmative decision (choosing to perform
the optimization), while a 0 is recorded in the vector for
a non-affirmative decision (choosing not to perform an op-
timization). In the case where a choice is not present in
one or more logs, a default value of 0 is recorded. This

3The additional inputs used in this study can be found at
http://www.cs.ualberta.ca/∼berube/compiler/fdo/

callsite ~v1 ~v2 ~v3 ~v4

bar.foo 1 0 1 0
main.foo 0 0 0 1
main.bar 0 1 1 1
main.bar.foo 0 1 1 1

Figure 5. Log files converted to vectors

~v1 ~v2 ~v3 ~v4

~v1 0 3 2 4
~v2 0 1 1
~v3 0 2
~v4 0

Table 1. Values for the difference metric

situation may arise when the existence of one decision de-
pends on a previous affirmative decision. For example, the
main.bar.foo callsite does not exist in log 1 in Figure 4, so it
is assigned the default value of 0 in the vectors in Figure 5.

The difference metric is defined as the squared length
of the difference vector between two log vectors ~vi and ~vj :
δ(~vi, ~vj) = |~vi − ~vj |

2. Where decisions are recorded in
the vectors as 0s and 1s, δ(~vi, ~vj) is simply the Hamming
distance between the vectors4. δ grows with the number
of choices that result in different decisions in the two logs.
Thus, δ indicates when a different selection of training input
results in different optimization decisions during compila-
tion. Difference values for the example are given in Table 1.

FDO is based on the premise that a representative in-
put used for profiling reflects the runtime behavior of other
common inputs. Thus, optimization logs based on profiles
from different representative training inputs should not vary
significantly. The difference metric does not indicate how
much logs agree with each other across the entire set of logs.
The alignment metric quantifies the level of agreement be-
tween one optimization log and the collective choices made
across the logs from all the inputs for a program.

Aestimo first calculates the combined total vector for a
set of logs: ~T =

∑
i ~vi. ~T is a measure the of agreement

between all the logs. A choice that frequently results in an
affirmative decision will have a high value recorded at its
index in ~T , while a decision that is usually decided non-
affirmatively will have a low value in ~T . In the example,
~T = [2 1 3 3]T .

The alignment of a log ~vi is defined as: αi =
~T ·~vi∑
j

~T [j]

α is most usefully reported as a percentage, where the
sum of the elements of ~T is used as the denominator. Recall
that the dot product of two vectors, ~x · ~y = |~x||~y|cos(θ),
where θ is the angle between the vectors. Therefore, α is
related to the angle between a log and ~T . Since αi is the

4The Hamming distance is the number of bits that are different between
two equal-length binary vectors



accumulation of the element-wise products of ~T and ~vi, α

is large only if ~vi has positive values (i.e., affirmative de-
cisions) at the same indexes as many other logs. If a log
has no affirmative decisions, α will be 0. On the other
hand, if a log has an affirmative decision for every choice
for which any log records a affirmative decisions, α will be
100%. A high alignment score does not necessarily indicate
more effecive optimization. Some decisions may be harm-
ful, while many logs may miss an important optimization.
A low alignment may indicate that a log contains better de-
cisions that do not agree with most logs. In the example,
α1 = 2

9 = 22%, α2 = 6
9 = 67%, α3 = 8

9 = 89%, and
α4 = 7

9 = 78%.
It is important to note that the difference and alignment

metrics do not consider the performance of the binaries cor-
responding to the optimization logs. Consequently, these
metric scores do not reflect the quality of a training input.
Furthermore, the metrics only measure the similarity be-
tween optimization logs. If the decisions recorded in most
logs are poor, then a log with high difference scores and a
low alignment may in fact record many different decision
that lead to improved performance. A high alignment score
may indicate that a log contains a “representative” set of
decisions, but this does not suggest that these decisions cor-
respond to a faster program.

2.5. Compiler Infrastructure

This study uses version 2.1 of the Open Research Com-
piler (ORC), an open-source compiler based on the code
base of SGI’s Pro64 compiler [1]. The ORC focuses on
producing high-performance code, and is frequently used
for compiler research. ORC has a rich profiler to support its
FDO infrastructure. The IPF processor family is the only
target for the ORC. ORC combines a mature code base with
state-of-the-art compiler technology.

3. Evaluating FDO

This section summarizes the results of a case study that
uses Aestimo to study the if conversion and inlining trans-
formations in the ORC compiler, targeting the Itanium and
Itanium 2 processors [2].

Figure 3 presents the arithmetic-mean performance of
the Itanium FDO binaries for each benchmark program.
The results are mixed, but on average FDO if conversion
has little effect on performance.

On the other hand, the experimental results show that
there are performance benefits from feedback-directed in-
lining. Furthermore, there are several cases where the se-
lection of training input has a significant impact on perfor-
mance. Figure 3 shows the arithmetic-mean performance
of FDO inlining on each program. FDO inlining improves
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Figure 6. Average FDO if conversion perfor-
mance on Itanium
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Figure 7. Average FDO inlining performance
on Itanium

performance by 6% on average on the Itanium. The best-
case FDO inlining performance is slower than static in only
6 out of 116 cases. Furthermore, the fastest FDO inlining
binaries are more than 10% faster than static in 41 cases.

The results for the Itanium 2 are disappointing: if con-
version almost always result in performance degradation
and inlining produces mixed results. Extensive results for
the experiments with Itanium 2 are presented in [2].

3.1. Case Study: Inlining for bzip2

Tables 2 through 4 present difference and alignment
scores for the FDO inlining logs of bzip2. Each pairing
of logs results in a difference score. The second and third
columns of the table report the mean and standard devia-
tion of the difference scores for the FDO log listed in the
first column paired with all the other FDO logs. The Max



Input Mean Std Dev Max Static Alignment (%)
combined 82.21 82.79 162 69 53.22
compressed 81.00 80.91 159 74 51.51
docs 155.50 43.23 158 203 5.89
gap 81.93 83.05 162 71 52.81
graphic 80.93 81.97 160 75 52.53
jpeg 159.21 44.25 162 207 6.23
log 80.21 78.64 156 77 50.14
mp3 157.36 43.74 160 205 6.10
mpeg 159.21 44.25 162 207 6.23
pdf 156.43 43.48 159 204 6.03
program 82.36 82.66 162 73 53.01
random 80.00 79.83 157 76 51.30
reuters 156.43 43.48 159 204 6.03
source 81.00 82.90 161 72 53.15
xml 149.93 41.63 152 197 5.48
Callsites (Vector Length) 1464
Choices with Yes Consensus 0 Full, 0 FDO
Choices with No Consensus 779 Full, 835 FDO
Choices without Consensus 685 Full, 629 FDO

Table 2. Inlining metric scores for bzip2 on the Itanium

Input Mean Std Dev Max Static Alignment
docs 155.00 69.42 158 203 11.45
jpeg 158.33 70.89 162 207 12.12
mp3 156.67 70.16 160 205 11.85
mpeg 158.33 70.89 162 207 12.12
pdf 155.83 69.79 159 204 11.72
reuters 155.83 69.79 159 204 11.72
xml 150.00 67.10 152 197 10.65
Callsites (Vector Length) 1464
Choices with Yes Consensus 0 Full, 0 FDO
Choices with No Consensus 793 Full, 919 FDO
Choices without Consensus 671 Full, 545 FDO

Table 3. Inlining metric scores for bzip2 low cut group on the Itanium

Input Mean Std Dev Max Static Alignment
combined 5.57 3.48 10 69 91.74
compressed 6.14 3.12 9 74 88.78
gap 5.00 3.08 8 71 91.03
graphic 5.00 2.74 7 75 90.55
log 7.57 3.34 10 77 86.42
program 5.86 3.49 9 73 91.38
random 6.14 2.79 7 76 88.43
source 4.14 2.38 7 72 91.62
Callsites (Vector Length) 183
Choices with Yes Consensus 58 Full, 69 FDO
Choices with No Consensus 43 Full, 99 FDO
Choices without Consensus 82 Full, 15 FDO

Table 4. Inlining metric scores for bzip2 high cut group on the Itanium



column reports the maximum difference between a log and
any other FDO log. The Static column reports the differ-
ence metric when a log is compared to the static log. The
final column of the table reports the alignment score for the
log. The static log is included in the combined total vector
when calculating alignment scores. Additional relevant in-
formation is recorded in the last four rows of each table. The
number of callsites listed in the inlining logs indicates the
length of the vectors used to calculate the metrics. Choices
with Yes or No consensus are those where the same deci-
sion is made in every log. Full consensus is achieved when
every log, including the static log, is in agreement about the
decision. FDO consensus ignores the static log, and checks
for consensus among the FDO logs only. The number of
choices without consensus indicates the maximum possible
number of choices where two logs could disagree.

The consensus values for bzip2 indicate that the FDO
inlining logs are not very similar. While there are a large
number of callsites where there is consensus to not perform
inlining, there are no callsites that are universally inlined.

Aestimo can perform a cut operation, where the inputs
in a workload are split into two groups according to their
alignment score. If an input has an alignment score greater
than the cut value, it is assigned to the high cut group, but
if it has an alignment score lower than the cut value, it is
assigned to the low cut group. The static log is included
in both groups. After the cut is made, the metric scores are
recalculated for each group separately. Tables 3 and 4 show
the results of cutting the logs into two groups.

The inputs in the high cut group (which originally had
alignment scores greater than 45%) are quite similar. Inputs
in this group have low difference scores and high alignment
values when they are cut from the rest of the inputs. In fact,
there are only 15 callsites where training on different inputs
from this group results in different inlining decisions.

On the other hand, the inputs in the low cut group are
significantly different from each other. Difference values
are still very high, and alignment scores are only slightly
larger than when calculated using the entire workload. Fur-
thermore, there is very little consensus between the logs in
this group, and there is still no callsite that all logs agree
should be inlined. The low cut group logs contain an order
of magnitude more callsites than the logs of the high cut
group. Nonetheless, all FDO logs only contain between 82
and 93 affirmative inlining decisions. Therefore, training on
inputs in the low cut group must result in the repeated inlin-
ing of callsites in inlined code. Each callsite in an inlined
callee creates a new callsite in the logs. In order to increase
the number of callsites in the logs from 183 to 1464, this sit-
uation must have occurred very frequently. Since the logs
in the low cut group do not agree on which callsites should
be inlined, they must represent decisions to inline differ-
ent call chains. Consequently, training on different inputs

in this group must result in different hot sections of code.
Thus, training on different inputs from the low cut group
results in significantly different inlining decisions, and are
thus well suited to our study.
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Figure 8. FDO Inlining performance: bzip2
on Itanium

Figure 8 shows the performance impact, using the arith-
metic mean, of different training inputs on bzip2. Each
input in the workload is used as a training input for one bi-
nary. The training input used is listed below each bar in the
graph. The bars represent the average run times of 5 trials
on the entire workload, while the error bars correspond to
the minimum and maximum times from those 5 trials.

Despite the large ranges of run times between trials, Fig-
ure 8 shows that, for the Itanium, training on the combined
input results in performance gains of about 8%, while train-
ing on xml improves performance by only 2%.
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Figure 9. Static vs. FDO Inlining perfor-
mance: bzip2 on Itanium

Comparing best-case FDO performance to static opti-
mization is an optimistic measure that can identify poten-



tial for FDO to improve performance. Figure 9 presents
best-case FDO inlining for bzip2. Below the graph, in
parenthesis beside the names of the evaluation inputs, we
record the training input used to create the fastest FDO bi-
nary for each evaluation input. Performance on the Itanium
is very good, with a minimum improvement of about 4%
and a maximum gain of about 13%. These results highlight
the potential for FDO to improve performance.

The binary trained on combined is often the fastest bi-
nary in Figure 9. However, the performance of this binary is
not consistent across the inputs where it achieves best per-
formance. This result indicates that the common practice of
using a single input for the performance evaluation of code
transformations is liable to produce unreliable results.

In an effective FDO system, more accurate feedback in-
formation should result in a faster-running binary. The most
accurate information can be obtained by resubstitution, that
is, using the same input for both training and evaluation.
Therefore, the rank calculated by Aestimo for resubstitution
binaries from an effective FDO system should be low.

Unfortunately, the ORC does not appear to use feedback
information effectively for the programs and inputs used in
this study. Table 5 lists each input in the bzip2 workload.
For each input, and for each processor, the rank of the inlin-
ing resubstitution binary for the input is listed, along with
the performance difference between the resubstitution bi-
nary and the rank-1 FDO binary. For instance, the first row
of Table 5 show that among the FDO binaries for bzip2 on
the Itanium 2, the binary trained on combined is the 14th

fastest (of 15) when evaluated using the combined input.
Furthermore, the binary trained on combined was 6.44%
slower than the fastest FDO binary.

A lower rank is usually associated with a smaller per-
formance difference compared to the rank-1 binary for
bzip2. Cases where resubstitution achieves good perfor-
mance compared to the rank-1 binary are more likely to cor-
respond to situations where better feedback information re-
sults in better inlining decision. However, the scarcity of
such highly-ranked resubstitution binaries suggests that the
FDO system seldom makes effective use of more accurate
feedback information for either processor. In fact, the ranks
of resubstitution binaries are fairly evenly distributed across
the range of possible ranks. This result suggests that there is
no relationship between the quality of feedback information
and the performance of the resulting binary.

4. Related Work

4.1. Input Selection and Benchmarking

Eeckhout et al. attempt to find a minimal set of represen-
tative programs and inputs for architecture research [12].
They cluster program-input combinations using principal-

Input
Itanium Itanium 2

Rank Slower Rank Slower
(%) (%)

combined 1 0.00 14 6.44
compressed 10 3.40 12 4.87
docs 8 2.12 1 0.00
gap 4 0.53 1 0.00
graphic 9 2.73 6 1.81
jpeg 7 3.63 9 1.63
log 11 3.54 5 1.05
mp3 12 5.28 10 2.64
mpeg 3 2.04 10 3.15
pdf 2 1.40 8 2.14
program 5 0.59 4 1.59
random 8 3.32 13 7.23
reuters 11 4.80 5 0.82
source 8 3.01 4 0.81
xml 12 3.30 1 0.00

Table 5. Rank of resubstitution binaries for in-
lining on bzip2

component analysis (PCA) of low-level program behavior
such as cache misses and branch mispredictions. They find
that while different inputs to the same program were often
clustered together, in several cases different inputs to the
same program result in data points in separate clusters. This
finding supports our conclusion that the input to a program
does have an impact on program behavior.

Phansalkar et al. survey the four generations of the
SPEC benchmark suite and investigate how the suite
has evolved [21] using PCA on low-level, architecture-
independent program behaviors such as instruction mix,
basic-block size, branch statistics, and locality. Their
clustering suggests that several benchmarks in the SPEC
suites are redundant. Based on their overall characteristics,
bzip2 and gzip form the entirety of one cluster. How-
ever, in our study, Aestimo finds significantly different re-
sults for bzip2 and gzip. Therefore, while clustering
based on low-level program behaviors may identify redun-
dancy for architectural studies, we caution compiler design-
ers against omitting programs from a benchmark suite based
on this technique.

MinneSPEC proposes reduced inputs to the SPEC
CPU2000 benchmarks based on function-level execution
profiles and instruction mix profiles to reduce simulation
time for architecture research [15]. Eeckhout et al. ana-
lyze program behavior on the reduced inputs suggested by
MinneSPEC [11]. They use a larger mix of behavior mea-
sures that are more closely related to program performance
than those used to create the MinneSPEC inputs. PCA and
clustering shows that while the MinneSPEC set of large
(lgred) inputs remain similar to the original SPEC inputs
from which they are derived, the medium (mdred) and small



(smred) input sets generally lead to dissimilar program be-
havior. The MinneSPEC inputs, derived from SPEC in-
puts with the intent of maintaining program behavior, have
limitted success at achieving this goal. Therefore, it is not
surprising that Aestimo finds that alternate training inputs,
which are intended to be different from the SPEC inputs,
also result in different program behavior, and consequently
different compile-time decisions and different levels of per-
formance in the resulting FDO binaries.

Citron investigatea the use of the SPEC benchmarks by
research reported in computer architecture conferences [8]
and finds that while commonly used, the suite is seldom
used as intended. The use of only selected programs from
the benchmark suite is common, and can dramatically in-
flate reported results. Our results compound this problem.
We have shown that the training input used with FDO as
well as the testing input used to evaluate performance can
significantly vary the observed performance impact of a
code transformation. The common practice of using only
the inputs supplied with the SPEC benchmarks is likely to
further obscure the true impact of a technique when used
outside the lab.

4.2. Feedback-Directed Optimization

Cohn and Lowney investigate FDO in Compaq’s com-
piler tools for the Alpha processor using the SPEC CINT95
benchmarks [9]. They report the performance impacts when
several FDO optimizations are applied individually. In par-
ticular, they find that FDO inlining improves performance
by up to 45%, and by 10% on average over static inlin-
ing. Aestimo finds much smaller gains for FDO inlining
from the ORC. Furthermore, unlike the Compaq compiler,
FDO inlining with the ORC degraded performance in some
cases. However, the differences in compiler, architecture,
and benchmark programs makes meaningful comparisons
between the performance results difficult.

Langdale also investigates the sensitivity of FDO to the
training data used [18]. The programs and inputs from the
SPEC95 and SPEC2000 benchmark suites are used in con-
junction with Digital’s GEM compiler and the Alto link-
time optimizer for the Alpha architecture. The study con-
cludes that there is a statistically significant difference in
performance when different training inputs are used. Our
study expands on this work in two ways. First, we have
used a large number of additional non-SPEC inputs for both
training and evaluation. Second, we have investigated indi-
vidual optimizations that benefit from FDO rather than con-
sidering the entire FDO system as a whole. In our study,
we have also observed variations in performance when dif-
ferent training inputs are used. However, the differences
in performance in our study are much larger, and can be
observed without resorting to statistical techniques. Lang-

dale also investigates resubstitution, and concludes that pro-
file accuracy is not tightly coupled to performance gains.
We have also observed a general failure of resubstitution
to achieve the best performance. However, given the fre-
quently poor performance of FDO compared to static opti-
mization, we believe that further improvements to the FDO
system must be made before we can provide a final verdict
on the usefulness of perfect information.

4.3 Iterative Optimization

Iterative compilation can be used to giude a search
through the space of possible program transformations. A
metric computed on the binary produced at one iteration
guides the compilation of subsequent iterations.

Pan and Eigenmann break a program into regions, called
Tuning Sections (TS), and attempt to find an optimal opti-
mization strategy for each TS [20]. Their GCC-based sys-
tem is able to improve performance on four SPEC 2000
benchmarks by an average of 26%. Tuning is giuded by
the performance of binaries run on the SPEC train inputs,
while evaluation uses the SPEC ref inputs. In contrast to our
results, if the ref input is resubstituted instead, much larger
performance gains are observed on two of the benchmarks.
The performance improvement obtained by this approach
is often small compared to the performance variations we
have seen between inputs, or compared to the benefits of
the usual FDO inlining used in our study. In 5 of their 8
cases, the largest performance gain for a benchmark is less
than 4%, and is less than 10% in another two cases. Av-
erage performance is inflated by the remaining case, where
the technique improves performance by more than 170%.
Therefore, we suspect that non-iterative FDO may provide
a more consistent benefit when applied across a larger col-
lection of programs and inputs.

5. Conclusion

Aestimo is a tool to investigate and evaluate individ-
ual optimizations in FDO systems. Aestimo introduces a
methodology to investigate compiler decisions for individ-
ual transformations and measures their performance conse-
quences. Furthermore, the difference and alignment met-
rics quantitatively measure the differences in compile-time
decisions made based on different training inputs. Addi-
tionally, we select a large number of additional inputs for
SPEC CINT2000 benchmark programs to create represen-
tative workloads with a substantially larger degree of varia-
tion than the small evaluation workloads provided by SPEC.

The results of an extensive experimental study using
Aestimo are illustrated by a case study of inlining for the
bzip2 benchmark program. Selecting different training in-
puts results in substantially different inlining decisions for



many of the inputs in the workload. Furthermore, there are
significant performance variations on the workload depend-
ing which training input is used. Using the fastest FDO bi-
naries for each input reveals the potential for FDO inlining
to substantially improve performance on the Itanium.
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