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Abstract

The shortage of adequate benchmarking facilities is a major problem in the evaluation of
novel production system machine organizations. This paper presents a survey of benchmark
programs used in published research for improvement of production systems. We offer a new
benchmark problem that allows independent variation in the size of the database, the number of
productions, the ratio between local and global data, and the variance in the size of local data
clusters. This new benchmark, available via the Internet through anonymous ftp, is based on
the traditional Traveling Salesperson Problem and has the advantage of being both simple and
versatile. The advantages of our benchmark are explored through the evaluation of performance
of a new production system architecture. Our experiments indicated that the performance of
this new architecture scales with the size of the database, but is degraded by a database with

high variance in the size of the local data clusters.

1 Introduction

In spite of a high volume of production systems developed for commercial, industrial, military
defense, and educational applications in the past fifteen years, academic researchers experience a
serious shortage of appropriate benchmarks to test new architectures and system organizations.
Production System programs written in the corporate world usually contain the expertise of the
business for which they are developed and are seldom made available as benchmarking for academic

research. Furthermore, most of these systems have fixed number of productions and fixed database
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size, which make them inappropriate for researchers, who need the ability to independently change

the size of the production set and database.

Many promising architectures and innovative organizations are evaluated with a small number
of “toy” problems, or with non-versatile benchmarks that only allow the researcher to modify the
size of the database but not its locality properties, or to modify the number of productions without

modifying the ratio between productions that access global or locally clusterized data.

In section 2 we present a list of benchmarks commonly used to evaluate new organizations for
Production System machines. Section 3 presents a new versatile benchmark facility that allows the

researcher to generate benchmark programs with varied data set and production set characteristics.

2 Existing Benchmarks

The benchmarks presented in this sections were used for performance measurement of new orga-
nizations and architectures for Production Systems. These benchmarks can be classified as “toy
problems” and “real-life programs”. In some of the “toy problems”, it is possible to expand the size
of the database by increasing the number of participants in a tournament, the number of guests in
a dinner party or the number of rooms in a hotel. However, in general, these benchmarks have a
fixed number of productions and fixed amount of locality in the database. Most of these programs
are not sophisticated enough to actually evaluate characteristics of new organizations designed to
speed up Production Systems. In the category of “real-life programs” we find sizable production
systems that might be useful to evaluate new designs. The problem with these benchmarks is that
they are not versatile enough to allow change in the characteristics of the production set or the

database.

In tables 1 and 2, the number of productions and the average number of antecedents and
consequents per production indicates the size of the benchmark program. The number of WME
types indicates how decoupled the database might be. Some authors make available the initial
number of WMEs in the working memory, some report the average working memory size throughout
the program execution. Under “# WMEs” we report the number available in the publication. This

number gives an idea for the size of the database manipulated by each benchmark.

The benchmarks included in Tables 1 and 2 are found in the works of Acharya et al. [2, 1],
Amaral [3, 5], Bouaud [7], Brant et al. [9], Dixit an Moldovan [8], Gupta [10], Kuo et al. [11],
Kuo and Moldovan [12], Miranker and Lofaso [13, 14], Neiman [15], Oflazer [16], Schmolze [17].



Bench. | # Prod | Ant./prod | Cons./prod | # WME types | # WMEs | Pub.

life 40 6.1 1.3 ) 104 (3, 11]
hotel 80 41 2.0 62 484 3]
patents 86 5.2 1.2 4 136 (3]
waltz2 | 10 2.7 8.0 7 60 3]
R1 1932 5.6 2.9 31 - [10]
XSEL | 1443 3.8 2.4 36 62 [10]
PTRANS | 1016 3.1 3.6 81 — [10]
HAUNT | 834 2.4 2.5 23 60 [10]
DAA 131 3.9 2.9 20 708 [10]
SOAR 103 5.8 1.8 12 353 [10]
mab 26 7.3 26 67 [7]
alexia 15 8.4 35 3734 [7]
chart 95 4.1 78 97 [7]
amd 196 8.2 197 1610 7]
abacab 107 8.0 171 1028 [7]

Table 1: Static measures for benchmarks used.

Following we briefly state what each benchmark program does.

In tables 1 and 2, MAB, M&B, mab are different implementations of the classic “monkey and ba-
nanas” problem, chart is a syntax chart parser, amd is a semantic analyzer for natural language,
abacab is a blackboard controller. R1 configures VAX computer systems, XSEL acts as a sales
assistant for VAX computer systems, PTRANS is a program for factory management, HAUNT is an
adventure game program, DAA is a program for VLSI design, and SOAR is an experimental problem
solving architecture implemented as a production system. Tournament schedule bridge tourna-
ments, waltz, waltz2, and Toru-Waltz are different implementations of the line labeling problem,
Cafeteria sets up a cafeteria, hotel models a hotel operation, patents is a solution for the “Con-
fusion of Patents Problem”, and life is Conway’s game of life. Mud analizes the casting from oil
wells, Mapper assists a tourist navigate Manhattan’s public transportation system, Mesgen takes
Dow Jones figures and converts them into text describing the course of a trading day. Robot plans
the movements for a robot arm, Jig25 is a simple jigsaw puzzle solver, Tourney schedules players

for a bridge tournament, Weaver is a VLSI box router, and Rubik solves Rubik’s cube.

Because of the limitation of the benchmarks encountered in the literature, the research commu-
nity would greatly benefit from the development of versatile benchmarking facilities that allow not
only for the expansion of the knowledge base by replication of data, but that also allows for change

in the number of productions, and in the locality proprieties of the knowledge base. It is desirable



Bench. # Prod | Ant./prod | # WMEs Pub.
MAB 13 2.6 11 13, 14]
Mud 884 2.4 241 [13]

Waltz 33 3.9 42 [13]

Mesgen 155 2.9 34 (13, 14]

Mapper 237 3.3 1153 (13, 14]

Jig25 6 — 50 [14]

Tourney 17 — 123 [14]

Robot 75 - 410 [14]

Rubik 70 - 287 [14]

weaver 637 — 152 | [2,9, 14]

waltz 33 — 42 (9, 14]

manners 8 — — 9]
ARP 118 — — [9]
Cafeteria 94 — — [12]
Tournam. 26 — — [12]
Toru-Waltz 48 — — [12, 11]

Hotel 723 — — [12]

Snap 574 — — [12]

Table 2: Static measures for benchmarks used.

that such benchmark facilities use a standard production system language to facilitate its use by

many different research institutions.

In section 3 we present a new benchmarking facilities that is a modification of the well-known
Traveling Salesperson Problem (TSP) that we call the Contemporaneous TSP (CTSP). This bench-
marking allows the researcher to modify the size of the database, the number of productions, the
database size, the amount of locality in the database, and the ratio between productions that access
local and global data. All this modifications are implemented by simply modifying a “map” that

specifies the location of the cities.

3 A Contemporaneous TSP

In this modified version of the TSP, cities are grouped into “countries”. The tour has to be con-
structed such that the salesperson enters each country only once. The location and borders of the
countries must allow the construction of a tour observing this restriction. The problem is formally

stated as follows:



An instance of CTSP is represented by (K, C,c, ¢, 0.,0,d). K = {C1,Cy,...,Cp} is
a “continent” formed by “countries”. Each country C; = {¢;1,¢i2, -, Cim(;)} contains
m(i) “cities”. The number of cities per country m(i) is normally distributed with average
e and standard deviation o.. The ordering O =< Cp (1), Cr(2), -, Cr(n) > specifies the
order in which the countries shall be visited. The function d(c;,cj) € Z*1 specifies the
distance between any two cities in the continent. The problem consists of finding an
ordering of cities < ¢; r(1), Cj r(2)s -+ Cir(m(i)) > Within each country C; that minimizes

the cost of the global tour:

n m(z)—l n—1
Yo D dleirgycinGry) D dlCirmys Civrr) +
i=1 j=1 i=1

d(Cp,r(m(n))> C1,r(1))- (1)

This formulation of T'SP is called “contemporaneous” because it reflects some aspects of modern
day life. In the current global economy, travelpersons are likely to have greater needs than the tra-
ditional salesperson driving from town to town. Consider a music star in a worldwide tour carrying
along a huge crew and sophisticated equipment: the singer will visit many different locations in
each continent; the cost of flying back and forth between continents is much higher than move-
ments within a continent and depends on the locations of departure and arrival. Other situations
involving sophisticated traveling requirements include the planning of airline routes and national
political campaigns in large countries such as USA, Brazil and India. Applications in which data
locality allows the creation of clusters include: insurance database management, banking industry,

a national health care information network, and a national criminal offense information network!.

3.1 A Production System Solution for CTSP

The formulation presented above for the CTSP is generic enough to allow its application in many
fields: there is no restriction in what the words continent, country, city, and distance might represent.
To facilitate the construction of a Production System solution that is useful for testing new PS

architectures, we used a simpler version of CTSP with the following restrictions:

e The problem is symmetric, i.e., d(cy;,c1j) = d(c 4, cki) for any i, j, k, and .

'Tn the 1994 “Brady Bill”, Congress mandated the construction of such a network for background verification for

the purchase of fire weapons.



A continent is a two-dimensional Euclidian space.

A country is a contiguous, rectangular shape within this space.

The number of cities in each country follows a normal distribution with average u. and stan-

dard deviation o,.

The city locations are uniformly distributed within each country.

There is a common boundary between two countries that are consecutive in the ordering O.

Our PS solution for CTSP has a set of productions for each country and a set of productions
for each country boundary. The data set is constructed in such a way that the distances among
cities located within each country are stored in WMEs with different types. Given a country Cj, the
country that precedes C; in the order O is denominated P(C}); the country that succeeds C; in the
order O is denominated S(Cj;). It is not necessary to store in the data base the distance between
every two cities in the continent. For a city ¢; j in a country Cj, the only relevant distances are the
distance to the cities within C;, to the cities in P(C;), and to the cities in S(C;). The following list
illustrates WMEs typically used in our solution to CTSP:

(GERMANY_city “name GERMANY_01 “status not_in_trip)
(FRANCE_city “name FRANCE_10 ~“status in_trip)

(GERMANY_dist “from GERMANY_04 ~“to GERMANY_O07 ~value 135)
(FRANCE_GERMANY_dist “from FRANCE_14 ~“to GERMANY_03 “value 357)
(GERMANY_POLAND_dist ~“from GERMANY_O1 “to POLAND_05 “value 55)

Our solution has seventeen local productions per country and twelve productions per country
boundary. This organization allows the researcher to vary the number of productions by creating
continents with different number of countries. The size of the data base is determined by the number
of countries and the average number of cities per country. The variance between the amount of

data processed by each cluster of production is given by o.

The heuristic used in the PS solution of the problem involves the computation of two extra
locations for each country Cj: the geometric center of the borders with P(C;) and with S(C;).
Because we impose the restriction that countries have rectangular shapes in a two-dimensional
Euclidian space, the border between two subsequent countries in the tour is always a segment of

a straight line. The border center b(C;, Cj) between countries C; and Cj is the center of the line



segment that forms the boundary. The heuristic used to construct the internal tour in a country C;

is described below:

e The first city ¢;; in the internal tour of a country C; is the city with minimum distance

d(b(C;, P(C3)), ci)-

e While the internal tour of country C; is not complete, select a city c;;/ € C; such that

d(cik,ciy) —d(cig, b(Ci, S(Cy))) is minimum, where ¢; ;, is the latest city inserted in the tour.

e Whenever the internal tours of two adjacent countries C; and C; are completed, the last city

visited in Cj is connected to the first city visited in Cj.

e Whenever there is a segment of tour formed by four cities (¢;, ¢, ¢k, ¢;) such that d(c;,¢;) +

d(ck, ¢1) > d(ciy cr) + d(cj, ¢;), change this segment of tour to (c;, ¢k, cj, ¢1)?.

This rationale of the heuristic is to add to the internal tour the cities that are close to the
latest city included in the tour and far from the border in which the internal tour shall end. There
is a limited local optimization of the constructed tour. We developed a C program that allows
researchers to specify continent maps and to experiment with different numbers of countries, u.,

and o,.

Two production system solutions were constructed for CTSP. In the first one, identified as tsp in
Table 3, a single set of productions performs the optimization in all country borders. In the second
solution, identified as tsp2 in Table 3, an specialized set of productions is used in the optimization
of each country border. Table 3 presents static measures for instantiations of CTSP considering

problems with C' countries, with each country having an average of u. cities.

Measure tsp tsp2
# of productions 20C+1 30C +1
# WME types 8C +38 5C+1
# WMEs in initial database | C (2u2 +2pe+3) | C(2u2 +2p. +3)

Table 3: Static measures for the CTSP benchmark according to C' and p.

This simplified CTSP offers many advantages for production system benchmarking: the number

of productions in the program can be varied by changing the number of countries; the ratio of

2The first subscript in the notation ¢; ; is omited here because these local optimization might occur either within

a country or across country’s borders.



global to local data is controlled by the average number of cities in each country; the balance
in the size of local data clusters is specified by o.; and the specification of the continent “map”
is very simple making it easy for a researcher to generate new instantiations of the benchmark.
The CTSP benchmarking facility is available through anonymous ftp to: pine.ece.utexas.eduin

/a/pine/home/pine/ftp/pub/parprosys.

CTSP was used to measure the performance of a new parallel architecture described in [3, 4, 6].
This architecture is formed by a number of identical processors connected through a bus. At compile
time each production is uniquely assigned to a processor according to a partitioning algorithm that
takes into consideration inter-production dependencies and workload balance. Each processor stores
locally all Working Memory Elements (WME) that are tested by its production antecedents. This
architecture uses a partially informed selection to choose the next production to be fired, allowing the
superposition of the mathing and acting phases of a production system. The results produced were
proven to be correct under the serializability criterion. The architecture relies on the use of associtive
memories as lookaside tables to guarantee correct operation without global synchronization. In the

next section the benchmark presented in this section is used to study this novel architecture.

North Dakota Minn
Montana
esota
South Dakota
Wyoming Towa

Nebraska

Figure 1: Country map.



4 Performance Evaluation Using CTSP

Benchmarks generated with CTSP are used to evaluate the performance of the architecture described
in [4]3. All experiments presented in this section use an instantiation of CTSP with seven “states”®.
The mean and the variance for the number of cities per state is set based in the needs of each
experiment. The seven-state map is shown in Figure 1. We performed two set of experiments.
First, we maintain the standard deviation o, constant and change the average number of cities
in each state in order to study the effect of problem size on performance. Then we maintain the

average number of cities in each state constant and change the standard deviation. This allows us

to study the effect of load unbalance among processors.

Speedup
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Figure 2: Speedup Curves for 10 S-unit architecture (o. = 3).

Figure 2 plots results for the first experiment in which the mean of the number of cities per state
is changed while its variance remains constant. It shows the speed improvement as the number of
processors is increased in a machine with a 10 S-unit Rete Network. The base of comparison for

these curves is a machine with a single processor and 10 S-units in the Rete Network.

Figure 3 illustrates the effect of the standard deviation in the size of local data clusters. In this

graph, the mean for the number of city per state remains constant while the standard deviation

3The page limitation for this paper prevent the exposition of the architecture, please refer to [3, 4].

" and a group of countries form a

*In the description of CTSP in section 3 a group of cities form a “country’
“continent”. In the implementation used for the experiments presented in this appendix, cities form states and states

form countries.
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Figure 3: Speedup Curves for 10 S-unit architecture (u. = 15).

is varied. Figure 3 plots the curves for a 10 S-unit architecture. The base of comparison for the

curves in Figure 3 is a single processor architecture with 10 S-units.

Figure 4 plots the amount of speedup obtained for an instantiation of CTSP with seven states
and g, = 15 when the standard deviation for the number of cities o, is changed. The amount of
speedup obtained decreases when there is a higher variance in the number of cities in each state.
This is an expected effect because higher variance in the size of local clusters causes more unbalance

in processor workload.

5 Conclusion

This paper addresses the problem of shortage of adequate benchmarks to evaluate production sys-
tem architectures in the research community. We presented a new benchmark facility that allows
independent modification in the size of the datlabase, number of productions, ratio between the

amount of local and global data, and size of local data clusters.

Benchmarks generated by this facility have the versatility of “toy” problems yet can be expanded
to the data and production set size of “real world” problem. These benchmarks also produce correct

results when using serializability as a criterion of correctness.

We illustrated the use of the new benchmark facility studying the performance of a novel archi-
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Figure 4: Speedup for single S-unit architecture versus the standard deviation in the number of

cities o, (e = 15).

tecture for concurrent production systems. The results indicate that for a given standard deviation
of the size of local data clusters, the amount of speedup obtained by the architecture scales with the
size of the database. Also the architecture performs better in databases with low standard deviation

among local data clusters.
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