An Associative Memory Architecture for

Concurrent Production Systems

José Nelson Amaral* and Joydeep Ghosh
(nelson@pine.ece.utexas.edu, ghosh@pine.ece.utexas.edu)
Department of Electrical and Computer Engineering,
University of Texas at Austin,

Austin, Texas 78712

Abstract

This paper presents a novel parallel architecture
for production systems. It relies on modern asso-
ciative memory techniques to construct an envi-
ronment in which productions can be fired in par-
allel even before the actions of previously fired
productions are fully processed. This approach
is made possible by the use of the serializabil-
ity criterion for correctness. An approximate so-
lution for the rule partitioning problem is pre-
sented. Measurements of speedup obtained from
a detailed event-driven simulator indicate the po-
tential of this new architecture.

1. Motivation

The interest in new research towards acceleration
of knowledge systems is sustained by an exten-
sive and profitable market that is in need of han-
dling massive databases at ever increasing speeds
[15, 6]. Kuo and Moldovan [9] and Amaral and
Ghosh [2] survey various approaches to improve
Production Systems (PS) execution speed.

In spite of the increasing popularity of paral-
lel architectures, the architectures providing best
cost/performance are compiled Production Sys-

*Sponsored in part by Conselho Nacional de Desen-
volvimento Cientifico e Tecnolégico (CNPq) and Pon-
tificia Universidade Catdlica do Rio Grande do Sul (PU-
CRS) - Brazil.

tems (PS) running on general purpose unipro-
cessors [11]. The search for an effective parallel
PS machine follows two schools of thought. The
first believes that little improvement can be ob-
tained in the performance of parallel PS without
the introduction of significant changes to PS lan-
guage semantics [14]. The second tries to main-
tain the most attractive aspect of production
systems, that is, the simplicity of “OPSh-like”
semantics [3], while seeking better performance
through architectural improvements [10, 13].

The original OPS5 implements the commuta-
tivity criterion of correctness, which demands
that a parallel implementation produces the
same results as any sequential execution of pro-
ductions [7]. The selection strategy of OPS5 al-
lows only the most recent and specific production
to fire at any cycle. Programmers often rely on
this strategy to ensure correctness. The archi-
tecture presented in this paper maintains most of
the OPS5 semantics; it modifies, however, the se-
lection strategy and uses serializability as a cor-
rectness criterion [12, 13]. The serializability cri-
terion allows any matched production to fire at
any time as long as at least one sequential execu-
tion of the productions produces the same results
as the parallel one, Serializability is less restric-
tive and allows more parallelism in the execution
of a production system. The drawback is that

Broadcast Interconnection Network

e [T
I . |
. Snooping
I Production Instantiation Directory |
I Memory -t Firing I
I Engine Broadcasting |
I Network I
I i Buffer |
I |
| Rete I
I Network |
I I
I I
I I
I —* I
| = |
| ireable |
Instantiation — [-e— Fireabl
l Memory lreable l
| Instantiation |- |
I Antecedents of Control |
I Fireable Inst. [~a—m |
| Memory A |
| Pendi |
I ?n e . Backup |
Matching M
| Memory emory l
I I

Figure 1: Processing Element Model

the programmer has to ensure that, at any given
time, every possible execution sequence of the
enabled productions generates correct results.

2. Parallel Architecture

We propose a novel parallel architecture for com-
piled PS that allows concurrent firing of produc-
tions. This architecture is formed by a num-
ber of identical processors connected through
a Broadcast Interconnection Network (BIN)!.
Each of the processors has the internal organi-
zation shown in Figure 1. An I/O processor
attached to the BIN initially loads the produc-
tions and the initial database in the processors.
At compile time each production is uniquely as-
signed to a processor according to a partition-
ing algorithm that takes into consideration inter-
production dependencies and workload balance.

!This network might be implemented as a bus.

Each processor stores locally all Working Mem-
ory Elements (WME) that are tested by its pro-
duction antecedents.

All tokens propagated over the BIN consist of
deletion, addition or modification of a WME.
Such operations might enable or disable a lo-
cal production. Upon processing a token, the
Fireable Instantiation Control (FIC) has to do
the following: perform an associative search in
the Antecedents of Fireable Instantiation Mem-
ory (AFIM) to verify which previously enabled
productions are now disabled; remove such pro-
ductions from the Fireable Instantiation Mem-
ory (FIM), and remove all their antecedents from
AFIM; place the incoming token in the input
queue of the Rete Network. Notice that because
the productions that are no longer fireable were
removed from FIM, a partially informed selection
can proceed and select a new production to be

fired among the ones that remained in FIM.

This capability to fire a new production before
the changes generated in the previous production
firing are fully propagated through the Rete Net-
work results in low overhead for token removing?,
and allows the maintenance of the beta memories
of the original Rete algorithm [4]. This combi-
nation of the advantages of Rete and Treat is
made possible by the storage of negated condi-
tions in the representation of fireable instantia-
tions of productions stored in FIM.

The compiler classifies the productions as lo-
cal or remote: a local production modifies only
WMEs that are exclusively stored in local memo-
ries; a remote production changes pieces of mem-
ory that are stored in other processors. To select
a production to fire, the Instantiation Firing FEn-
gine (IFE) performs an associative search in FIM
to find the most recently enabled production. If
the selected production is remote, the IFE places
a request for ownership of the BIN. Upon receiv-
ing BIN ownership, the IFE waits until all out-
standing tokens from previous broadcastings are
processed by FIC. The IFE access FIM to verify
whether the selected production is still fireable.
If it is, IFE proceeds to execute its actions, prop-
agating tokens that change shared WMUEs in BIN
and sending tokens that modify only local WMEs
to FIC and Rete.

The Snooping Directory (SD) is an associative
memory that contains a list of all WME types
that are tested by antecedents of the productions
assigned to the local processor. SD “snoops”
BIN and capture only tokens that modify WMEs
relevant to the processor. If there is a local pro-
duction being executed, the token cannot be im-
mediately processed. It is stored in the Broad-
casting Network Buffer (BNB), and is processed
as soon as the local production processing fin-
ishes.

The Pending Matching Memory (PMM) is
necessary to store tokens that are in the Rete

?Low overhead in token removing is the most salient
advantage of the Treat algorithm [10].

Network. Whenever a change to the conflict set?
is generated in the Rete Network, FIC performs
an associative search in PMM to verify if a later
modification invalidates such change. This mech-
anism prevents races between [FE and Rete.

3. Partition of Rules

The partitioning of a production set into a num-
ber of processors can be modeled as the min-
imum cut problem, which has been proven to
be NP-Complete [5]. The polynomial time ap-
proximate solution presented in this section has
three goals: minimizing the duplication of work-
ing memory elements; reducing traffic in the bus;
and balancing the amount of processing in each
processor.

We are concerned with two kinds of relation-
ships among productions: productions that share
antecedents, and productions that have conflict-
ing actions?. Assigning productions with com-
mon antecedents to the same processor reduces
memory duplication, while assigning productions
with conflicting actions to the same processor
prevents traffic in the bus.

To account for these two kinds of relationships
we define an undirected, fully connected graph
PRG = (P, F) called Production Relationship
Graph. FEach vertex in P represents one of the
productions in the system, and each edge in F is
a combined measure of the production relation-
ships. PRG has a weight function w : £ — Z7T,
defined by equation 1.

3
—_
,_.

m—

w(Eij) =w(E;) = (1=06;5) Y > tug +
=0 k=0
p—1g—1
(1—é:) Vi kgs (1)
=0 k=0

where n is the number of antecedents in pro-
duction R;, m is the number of antecedents in

®“Conflict set” is the set of all productions enabled to
be fired at any given time.

*Two productions have a conflicting action if one cre-
ates and the other destroys the same WME.

production R;, p is the number of consequents
in production R; and ¢ is the number of conse-
quents in production R;, é;; is 1if ¢ = j and 0
otherwise, and

1 if antecedents A; of R; and

Viikj = Ay of R; are of the same type.

0 otherwise

1 if consequent W; of R;
Vikj = conflicts with W}, of R;
0 otherwise

Simulation results show that the main factor
limiting further speedup is the time spent in the
matching phase in the Rete network. Conse-
quently, the load balancing must concentrate in
the processing performed in the Rete network.
Furthermore, most of the time in the Rete net-
work is spent in (G-node activities. Thus, the
number of §-tests performed in the antecedents
of a production is used as a measure of the work
load associated with this production. To address
the constraint of balancing the amount of pro-
cessing among processors, we define the func-
tion B : Py,...,PNv_1 — Z7T, which computes
the number of beta tests that are expected to be
performed by processor FP;.

k
B(P) = Zﬁ(RJ’)@ijv (2)

where k is the number of productions assigned to
processor P;, B(R;) is the number of beta tests
performed for production R;, and ¢;; is 1 if R;
is assigned to P;, and 0 otherwise®.

The strategy used in this partitioning algo-
rithm consists of selecting the processor with the

least number of estimated beta tests, and then

°B(R;) is an estimate of the number of beta tests per-
formed because of the presence of production R;. It is
measured in previous running of the same production
system.

choosing the production best fitted to this pro-
cessor. The fitness of a given production R; to

a processor P, is measured by the value of the
function F'(R;, Pr).

N-1
F(Ri, P) = > w(Eij)nj, (3)
7=0
2 if RJ‘ =
mE =94 1 it R; e P

-1 if R; € P, # P
With the functions B(F;) and F(R;, Py) de-

fined, we can present the algorithm. In the
beginning all productions Ry are in the set P,
and all subsets P; are empty. The productions
strongly related to other productions in PRG are
the first ones to be assigned to processors. At
each pass, the processor with the least load is
assigned the production best fitted to it.

PARTITION(P, E,w, N, B, ')
1 while P # 0
2 do Py — P, U{R;/R;€ P and
B(Py) = ming B(Py) and
F(R;, Py) = max; F(R;, Py)}
3 P—P-—{P}

4. Performance Evaluation

To evaluate the performance of the architecture
presented in this paper, we have developed a de-
tailed event driven simulator. The unavailabil-
ity of a representative set of benchmarks is a
well known weakness in the evaluation of perfor-
mance of novel production systems. An added
difficulty with this architecture is the use of the
serializability criterion. The few OPS5 bench-
marks available in the research community rely
on the selection strategy to guarantee correct-
ness. We have developed a new benchmark that
is a modified version of the well known Traveling
Salesperson Problem (TSP). In our version, the

cities are grouped by country, and the salesper-
son can enter each country only once. By varying
the number of countries and the number of cities
per country, the researcher can vary the amount
of local and shared data®.

Bench. | # Prod | Ant./prod | Cons./prod
life 41 6.1 1.3
hotel 80 4.1 2.0

patents 86 5.2 1.2
south2 121 4.7 2.7 L
moun2 301 4.7 2.7

=

Table 1: Benchmarks and Speedup.

Table 1 shows static measures — number of
productions, average number of antecedents per
production, average number of consequents per
productions — for the benchmarks used. south?2
has four countries and ten cities per country;
moun? has ten countries and 15 cities per country.
life is the game of life implemented by Anurag
Acharya at CMU. hotel is a production systems
that simulates the management and running of a
hotel. It was implemented by Steve Kuo at USC,
and modified by Anurag Acharya and by José
Amaral. patents is our solution to the “confu-
sion of patents problem” [8].

The speedup curves in Figure 2 show that the
speedup varies with the benchmark. Certain ap-
plications have more intrinsic parallelism than
others. For example, the modified TSP problem
with ten countries (moun2) produces significantly
more speedup than the one with four countries
(south2). It is remarkable that for most of
the benchmarks, the efficiency drops significantly
when more than ten processors are used, indicat-
ing that if resources are to be used efficiently, we
should use about ten processors in this architec-
ture.

We are currently evaluating the use of multiple
matching units within the Rete network to re-

%This benchmark is available to the research commu-
nity. We intend to present it in greater detail in a future

publication.

100 — ,

hotel —
patents -

|
|

|

I moun?2 --
_l life
! south?2 -
l

|

|

l

|

Figure 2: Speedup Curves

duce the amount of time spent in matching. Our
preliminary results indicate that such improve-
ment could obtain a four-fold speedup. This
speedup is a multiplicative factor to the speedup
shown in Figure 2.

5. Conclusion

This architecture combines the gains of recent
developments in compiling techniques, depen-
dency analysis, associative memories, snooping
caches and bus arbitration strategies. It also can
be used as a basic building block for a larger,
hierarchical, and possibly scalable architecture.
We have developed a comprehensive software en-
vironment along with a detailed event driven
simulator for the architecture outlined above.
Several comparative performance results were

presented showing the potentials and limitations
of this novel approach to improving PS speed.

6. Acknowledgements

We are very thankful to Anurag Acharya for let-
ting us use the front-end of his parallel compiler
[1], for being so helpful with many questions, and
for providing some of the benchmarks that we
used. We also would like to acknowledge the help
of Howard Owens on tracking a difficult bug in
the implementation of the simulator, and thank
Dan Miranker for fruitful discussions.

References

[1] A. Acharya, M. Tambe, and A. Gupta.
Implementation of production systems on
message-passing computers. In IEFE Trans.
on Parallel and Distributed Systems, vol-
ume 3, pages 477-487, July 1992.

[2] J. N. Amaral and J. Ghosh. Speeding
up production systems: From concurrent
matching to parallel rule firing. In L. N.
Kanal, V. Kumar, H. Kitani, and C. Sut-
tner, editors, Parallel Processing for Al El-
sevier Science Publishers B.V., 1994.

[3] L. Brownston, R. Farrell, E. Kant, and
N. Martin. Programming Ezxpert Systems in
OPS5: An Introduction to Rule-Based Pro-

gramming. Addison-Wesley, Massachusetts,
1985.

[4] C. L. Forgy. On the Efficient Implemen-
tations of Production Systems. PhD the-

sis, Carnegie Mellon University, Pittsburgh,
PA, 1979.

[65] M. R. Garey, D. S. Johnson, and L. Stock-
meyer. Some simplified NP-complete graph
problems. Theor. Comput. Sci., 1:237-267,
1976.

[6] F. Hayes-Roth and N. Jacobstein. The state
of knowledge-based systems. Communica-
tions of the ACM, 37(3):26-39, March 1994.

[7] T.Ishida and S. Stolfo. Towards the parallel
execution of rules in production system pro-
grams. In Proceedings of International Con-
ference on Parallel Processing, pages H68—
575, 1985.

[8] P. C. Jackson Jr. Introduction to Artificial
Intelligence. Dover Pub., New York, 1985.

[9] S. Kuo and D. Moldovan. The state of the
art in parallel production systems. Jour-
nal of Parallel and Distributed Computing,
15:1-26, June 1992.

[10] D. P. Miranker. TREAT: A New and Ef-
ficient Match Algorithm for AI Production
Systems. Pittman/Morgan-Kaufman, 1990.

[11] D.P. Miranker and B. J. Lofaso. The Or-
ganization and Performance of a TREAT
Based Production System Compiler. [FEFE
Trans. on Knowledge and Data Engineering,
pages 3—10, March 1991.

[12] D. E. Neiman. Control issues in parallel
rule-firing production systems. In Proceed-
ings of National Conference on Artificial In-
telligence, pages 310-316, July 1991.

[13] J. G. Schmolze. Guaranteeing serializable
results in synchronous parallel production
systems. Journal of Parallel and Distributed
Computing, 13:348-365, December 1991.

[14] S. Stolfo, H. Dewan, and O. Wolfson. The
PARULEL parallel rule language. In Proc.
1991 International Conference on Parallel
Processing, pages 36—45, 1991.

[15] A. C. Stylianou, G. R. Madey, and R. D.
Smith. Selection criteria for expert system
shells: A socio-tecnical framework. Commu-
nications of the ACM, 35(10):30-48, Octo-
ber 1992.

