Associative Memories Provide an Efficient Control Mechanism for
a Parallel Production System Architecture

José Nelson Amaral® Joydeep Ghosh'
(amaral@madona.pucrs.br) (ghosh@pine.ece.utexas. edu)
Departamento de Eletronica Dept. of Electr. and Comp. Engineering
Pontificia Universidade Catodlica do RGS The University of Texas at Austin
90619-900 - Porto Alegre, RS Austin, Texas 78712
Abstract

Recently we proposed a parallel architecture for production systems [2; 3, 5]. This
novel architecture allows parallel production firing, concurrent matching, and overlap among
matching, selection, and firing of productions. The elimination of global synchronization in
production systems was made possible by the use of serializability as a correctness criterion
and by the construction of an efficient control mechanism for the operation of the machine.
This control mechanism relies heavily in the use of associative memory devices as lookaside
tables. In this paper we study the impact of these memories in the overall performance of
the architecture. We also estimate the amount of associative memory needed for a typical
production system. These results, obtained from a comprehensive system level event-driven
simulator, indicate that substantial improvements in speed can be achieved with a very

modest increase in hardware cost.

1 Introduction

Considerable efforts have been made towards speeding up production system machines in the
past twenty years [4, 10]. Originally, production systems were realized as interpreted language
programs for sequential machines. The high cost of matching motivated the development of
concurrent matching systems and, subsequently, systems that also allowed multiple productions
to be fired at the same time [12]. In a separate line of research, modern compile optimiza-
tion techniques were developed to run production system programs more efficiently on general

purpose sequential machines [9].

These efforts have led to great advances in the understanding of the issues involved in the

construction of faster production system machines, but only limited improvement in actual

*Supported by a fellowship from Conselho Nacional de Desenvolvimento Cient “ifico e Tecnoldgico (CNPq) and
by Pontif "icia Universidade Catdélica do Rio Grande do Sul (PUCRS) - Brazil.

TSupported in part by NSF under grant ECS-9307632 and by Faculty Development Awards from TRW Foun-
dation and Schlumberger.

performance. Also, there have been few attempts to integrate progress made in different ar-
eas: (1) the use of the restrictive commutativity criterion for correctness and the notion of a
match-select-act “cycle” forced even advanced architectures to perform synchronization before
each production firing; (2) compile optimization techniques were usually restricted to sequential
machines; (3) many of the concurrent matching engines were constructed with a large number
of small processors and were not combined with parallel firing techniques. Moreover, parallel
processing researchers failed to take advantage of the fact that, in typical production systems,

reading operations are performed much more often than writing ones.

We propose a novel parallel production system architecture that uses the less restrictive
serializability criterion for correctness. This architecture eliminates the concept of a production
system “cycle”, thus eliminating the need to construct a global “conflict set” and to perform
global synchronization before each production firing. Productions are partitioned among pro-
cessors based on information about the workload of each production and on production depen-
dencies identified through compiling techniques. A production can be selected to fire before all
the matches resulting from previous production actions are complete. This papers discusses the
use of associative memories as supporting devices for the control mechanism of the architecture.
A key structure in the design of this new architecture, content addressable memories allows for

a quick verification of which actions can be performed in parallel.

2 Parallel Architecture

The proposed architecture is formed by a number of identical processors connected through a
Broadcast Interconnection Network (BIN)!. Each of the processors has the internal organization
shown in Figure 1. An I/O processor attached to the BIN initially loads the productions and
the initial database in the processors. At compile time each production is uniquely assigned to
a processor according to a partitioning algorithm that takes into consideration inter-production
dependencies and workload balance. Fach processor stores locally all Working Memory Elements

(WME) that are tested by its production antecedents.

All tokens propagated over the BIN consist of deletion, addition or modification of a WME.
Such operations might enable or disable a local production. Upon processing a token, the
Fireable Instantiation Control (FIC) has to do the following: perform an associative search in
the Antecedents of Fireable Instantiation Memory (AFIM) to verify which previously enabled
productions are now disabled; remove such productions from the Fireable Instantiation Memory
(FIM), and remove all their antecedents from AFIM; place the incoming token in the input

queue of the Rete Network. Notice that because the productions that are no longer fireable

!This network might be implemented as a bus.

were removed from FIM, a partially informed selection can proceed and select a new production

to be fired among the ones that remained in FIM.

Broadcast Interconnection Network

Snooping
Directory

Production
Memory

Instantiation
- Firing * *
Engine

Broadcasting
Network
Buffer

A

Rete
Network

Fireable
Instantiation — [e—

Memory Fireable

Instantiation |-t
Antecedents of Control
Fireable Inst. |-t

Memory

)
Y

Pending
Matching e
Memory

Figure 1: Processing Element Model

This capability to fire a new production before the changes generated in the previous pro-
duction firing are fully propagated through the Rete Network results in low overhead for token
removing?, and allows the maintenance of the beta memories of the original Rete algorithm [7].
This combination of the advantages of Rete and Treat is made possible by the storage of negated

conditions in the representation of fireable instantiations of productions stored in FIM.

The compiler classifies the productions as local or remote: a local production modifies only
WMEs that are exclusively stored in local memories; a remote production changes pieces of
memory that are stored in other processors. To select a production to fire, the Instantiation
Firing Engine (IFE) performs an associative search in FIM to find the most recently enabled
production. If the selected production is remote, the IFE places a request for ownership of the
BIN. Upon receiving BIN ownership, the IFE waits until all outstanding tokens from previous
broadcastings are processed by FIC. The IFE access FIM to verify whether the selected produc-
tion is still fireable. If it is, IFE proceeds to execute its actions, propagating tokens that change

shared WMEs in BIN and sending tokens that modify only local WMEs to FIC and Rete.

The Snooping Directory (SD) is an associative memory that contains a list of all WME

2Low overhead in token removing is the most salient advantage of the Treat algorithm [11].

types that are tested by antecedents of the productions assigned to the local processor. SD
“snoops” BIN and capture only tokens that modify WMEs relevant to the processor. If there
is a local production being executed, the token cannot be immediately processed. It is stored
in the Broadcasting Network Buffer (BNB), and is processed as soon as the local production

processing finishes.

The Pending Matching Memory (PMM) is necessary to store tokens that are in the Rete
Network. Whenever a change to the conflict set® is generated in the Rete Network, FIC performs
an associative search in PMM to verify if a later modification invalidates such change. This

mechanism prevents races between IFE and Rete.

A key feature of this architecture is the use of modern associative memory technology. For
example, the Snooping Directory is an associative memory used by each processor to verify
whether broadcast changes need to be captured for local processing. The use of the associative
Antecedents of Fireable Instantiation Memory (AFIM) allows the quick elimination from the
Fireable Instantiation Memory (FIM) of instantiations that are no longer fireable. Consequently
the Instantiation Firing Engine (IFE) can select and fire an instantiation before the actions of the
preceding production are fully processed through the Rete Network. Another piece of associative
Memory, the Pending Matching Memory (PMM) is necessary to prevent racing between the IFE
and the Rete Network. Section 3 presents a brief report on the performance evaluation of

4

the architecture®. We dedicate the rest of the paper to the study of the impact of the use of

associative memories in the performance of the architecture.

3 Performance Evaluation

To evaluate the performance of the architecture presented in this paper, we have developed
a detailed event driven simulator. The unavailability of a representative set of benchmarks
is a well known weakness in the evaluation of performance of novel production systems. An
added difficulty with this architecture is the use of the serializability criterion. The few OPS5
benchmarks available in the research community rely on the selection strategy to guarantee
correctness. We have developed a new benchmark that is a modified version of the well known
Traveling Salesperson Problem (TSP). In our version, the cities are grouped by country, and
the salesperson can enter each country only once. By varying the number of countries and the

number of cities per country, the researcher can vary the amount of local and shared data [2].

Table 1 shows static measures — number of productions, number of distinct WME types,

average number of antecedents per production, average number of consequents per productions

F«Conflict set” is the set of all productions enabled to be fired at any given time.

*An extensive description of the architecture and of is performance measurements can be found in [2, 4, 5].

— for the benchmarks used to estimate performance in the multiple functional unit Rete network.
south and south2 are CTSPs with four countries and ten cities per country; moun and moun2

are CTSPs with ten countries and 15 cities per country.

Bench. | # Prod | Ant./prod | Cons./prod | # WME types
life 40 6.1 1.3 5
hotel 80 4.1 2.0 62
patents 86 5.2 1.2 4
south 91 4.7 2.8 40
south2 121 4.7 2.7 61
moun 211 4.7 2.8 88
moun2 301 4.7 2.7 151
waltz2 10 2.7 8.0 7

Table 1: Static Measures for Benchmarks Used.

patents is our solution to the constraint Confusion of Patents Problem presented in [6]. Be-
cause this solution has only four different types of WMEs, most of the productions either change
or test the same kinds of WME. As a consequence, productions have strong interdependency,
resulting in a production system poorly suited for clustering. The main source of parallelism is
the concurrent execution of different portions of the Rete network. Originally written by Steve
Kuo at the University of Southern California, hotel is a production system that models the op-
eration of a hotel. It is a relatively large and varied production system (80 productions, 65 WME
types) with 17 non-exclusive contexts. 1ife is an implementation for Conway’s game of life, as
constructed by Anurag Acharya. After our modifications, 1ife has forty productions. Twenty
five of these productions are in the context that computes the value of each cell for the next
generation and potentially can be fired in parallel. The other fifteen productions are used for
sequencing and printing and can be only slightly accelerated by Rete network parallelism. Our
version of the line labeling problem, waltz2, was originally written by Toru Ishida (Columbia
Univ.), and successively modified by Dan Neiman (Univ. of Massachusetts), Anurag Acharya
(Carnegie-Mellon Univ.) and José Amaral (Univ. of Texas). It has two non-overlapping stages

of execution, each one with four productions.

The benchmarks described in table 1 were used to evaluate the performance of the proposed
architecture. First we measured the amount of speedup over an architecture with global syn-
chronization and without overlapping between matching and selecting-acting within a processor.
Then we investigate the effectiveness of the use of associative memories. Finally we obtain es-
timates for the size of associative memories needed for each one of the benchmarks and for the

level of activity in the bus.

3.1 Parallel Firing Speedup

To measure the advantages of parallel production firing and of the internal parallelism within
each processor, we define a globally synchronized architecture that is very similar to the one
proposed in this paper, except that it performs global conflict set resolution to implement the
OPS5 recency strategy. This synchronized architecture is also very similar to the one suggested
by Gupta, Forgy, and Newell [8]. In this architecture, each processor reports the best local
instantiation to be fired to the bus controller. The bus controller selects the instantiation whose
time tag indicates it to be the latest one to become fireable. This added decision capability in the
bus controller implements the recency strategy to solve the conflict set. The processor selected
to fire a production broadcasts all changes in the bus. A processor only selects a new candidate
to fire when the matching in the Rete network is complete. The bus controller waits until all
processors report a new candidate to fire. This mechanism reproduces the global synchronization
and conflict set generation/resolution present in many of the previously proposed architectures.
In order to have a fair comparison, we considered that the synchronized architecture uses an
associative memory to store and solve the local conflict sets, and that the bus controller chooses

the “winner” in one time step.

40 I I I I
amoun?2 ——
| asouth —-- _
35 asouth2 ----
smoun2 -
= 30 - ssouth —-— . 1
g ssouth2 —---
g 25 F -
>
2
= 20 .
E
= et
¢ 15 F P .
g e —
o
m 10 A SR —
5+ P -
s
T
0 | | | |
0 5 10 15 20

of Processors

Figure 2: Speedup Curves

Figure 2 shows the comparative performance for the CTSP benchmarks®. Since the syn-
chronized architecture also uses associative memory to store and search the local conflict sets,
the comparisons of Figure 2 do not reflect the advantages of using such memories in our archi-

tecture. Significant speedup is observed over the synchronized architecture even for the single

®Due to limitation in space in this article, we will not present speed measures for the other benchmarks, see

[2].

processor configuration. This measures the amount of speed that is gained due to the paral-
lelism between matching and selecting/firing. The apparent superlinear speedup in the curves
of Figure 2 reflects the fact that these curves are showing the combined speedup due to two
different factors: intra and interprocessor parallelism. To obtain the speedup due exclusively to
parallel production firing, the reader should divide the values in the “a” curves by the values in
the same curve for a single processor machine. These results confirm our initial conjecture that
the elimination of the global synchronization in a production system allows the construction of

machines with significant speedup.

3.2 Effectiveness of Associative Memories

In section 2 we stated that the design of the architecture is based on the premise that the
use of Content Addressable Memories (CAMs) significantly improves the processing speed. To
further investigate this premise, we implemented options in the simulator that allow us to specify
whether each one of the individual memory components — AFIM, FIM, and PMM — is a CAM
or a traditional Reference Addressable Memory (RAM) [13]. The effectiveness of a CAM in the
architecture depends on the amount of data stored in the memory, the frequency of access, and
whether its accesses are in the critical path of execution. Thus, the amount of speedup obtained
by a given combination of CAM/RAM memories depends on the production system program

that the machine is executing.

To set up experiments to measure these speedups, we defined two quantities: S,(M, B) and
Si(M,B). S,(M,B) is the amount of speedup (of the overall system) that results when the
memory component M is replaced for a CAM in a machine that was originally formed only by
RAMs. M designates one of the memory components — PMM, AFIM, or FIM — and B is a
benchmark program. Similarly, when the reference machine uses only CAMs, S;(M, B) measures
the reduction in speed (Slowdown) that would occur if the memory component M were to be

replaced by a RAM.

Table 2 presents the average speedup for machines with one up to twenty processors. In
practical designs, CAMs might be slower than RAMs for the same technology and silicon area,
because of the extra logic required. Thus we introduce a technology factor T that indicates
how much slower a basic operation such as the reading or writing of a single data element was
considered in this comparison. Table 2 shows measures for a machine with CAMs with the
same speed as the RAMs (7' = 1) and for a machine with CAMs that are four times slower
(7' = 4) than RAMs. Observe that there is no significant difference in speedup between the two

measures, indicating the advantage of the use of CAMs, even if they are slower than RAMs.

SEach number is an average of 20 values, obtained for systems with 1 through 20 processors.

Bench |7 | PMM FIM AFIM | All
ST S S Ts s s |68,

hotel 1130293101616 13.5 | 45.5
hotel 413011301 10]|16|1.5]13.6 | 45.3
life 1 (28] 21 [|13]|1016]| 1.2 3.4
life 41281 21 (131016] 1.2 3.4
moun2 1 (3249 [1.0]1.0|18]| 2.5 8.5
moun2 4133149 (1.0]1.0|1.7] 2.5 8.5
patents | 1 | 1.9 1.6 1.0 1.0 14| 1.2 2.3
patents | 4 | 1.9 | 1.6 1.0 1.0 14| 1.2 2.3
south?2 1 (34100101114 4.3 | 14.9
south2 | 4 | 3.3 102|110]1.1 |15 4.4 | 14.8
waltz?2 1 (18] 14 [1.0]1.019]| 1.6 3.0
waltz2 | 4 18| 1.5 [1.0]1.0(1.9] 1.6 3.0

Table 2: Speedup due to use of CAMsS.

The last column of Table 2 shows the speedup that compares a configuration with all three
memories associative against one in which all three memories are RAM. Table 2 shows that
replacement of just one memory for a CAM results in quite low speedup, but when all three
memories are made CAMs, the processing speed shows considerable improvement. Overall, these
results confirm our initial conjecture that the use of CAMs can provide considerable speedup in

production system architectures.

3.3 Associative Memory Size

The next question that the inquisitive computer architect must ask is: how large do these
associative memories need to be? The simulator has an option to report the “crest”” of each
memory component in any given run. Table 3 shows the maximum and the average crest over
machines with up to twenty processors. The average crest is the average of the largest memory
needed for each machine configuration. The maximum crest indicates the minimum memory size
needed to run that specific benchmark. Observe that for some memory/benchmark the average
crest is several times smaller than the maximum crest (see AFIM in moun2 and PMM in waltz2).
If memory size becames a concern in the construction of the machine, a RAM can be used to
contain overflow. The absence of a direct correlation between the size of the memory crest in
table 3 and the speedup and slowdown shown in table 2 reflects the fact that the processing
speed is not solely dependent on the amount of data stored in each memory: it also depends on

the frequency and time of access of these memories.

"The crest of a memory component is the maximum amount of data stored in that memory component in any

processor of the machine for a given benchmark and a specified number of processors.

Benchmark PMM FIM AFIM FIM(synchronized)

Max Ave | Max | Ave | Max | Ave Max Ave

hotel 3200 | 1436 | 395 | 216 | 1030 | 699 3580 1178
life 2877 | 2643 | 690 | 584 | 3313 | 1472 || 23030 8787

moun? 27899 | 23303 | 2580 | 727 | 15634 | 3042 || 313400 46747
patents 776 739 605 | 179 | 1549 | 449 1410 426
south?2 4788 | 2822 350 95 1159 611 47205 8414
waltz2 3573 | 1109 | 1250 | 870 | 2797 | 1688 5785 3299

Table 3: Maximum and average “crest” for memory size (bytes).

The speed comparison with the synchronized architecture presented in section 3.1 consid-
ered that both architectures used associative memory to store and search the conflict set. The
average and the maximum crests of the associative memories for the synchronized architecture
are presented in the rightmost columns of Table 3. Observe that for most of the significant
benchmarks, the synchronized architecture needs a much larger memory. For the CSTPs bench-
marks (moun2 and south2) the maximum crest in the synchronized architecture was ten times
larger than in the architecture proposed in this paper. This evidences that the “eager firing”

mechanism also reduces the demand for memory.

4 Concluding Remarks

We proposed a new architecture for production systems that eliminates global synchronization
and the generation of a global conflict set. The increased importance of associative search for
maintaining fireable instantiation tables in this setting is evidenced by the big performance gains
obtained by using modest amounts of associative memory. Note that a single physical CAM can
be logically partitioned into PMM, FIM and AFIM, and the “crests” in each partition are not
expected to occur in the same processor and at the same time. Thus, only a few kilobytes of

associative memory is sufficient for most of the benchmarks considered.
Acknowledgements.

We are thankful to Anurag Acharya for letting us use the front-end of his parallel compiler
[1] and for providing some of the benchmarks that we used, and to Dan Miranker for fruitful

discussions.

References

[1] A. Acharya, M. Tambe, and A. Gupta. Implementation of production systems on message-

passing computers. In IEFEFFE Trans. on Parallel and Distributed Systems, volume 3, pages

[10]

[11]

[12]

[13]

A77-487, July 1992.

J. N. Amaral. A Parallel Architecture for Serializable Production Systems. PhD thesis,
The University of Texas at Austin, Austin, TX, December 1994. Electrical and Computer

Engineering.

J. N. Amaral and J. Ghosh. An associative memory architecture for concurrent production
systems. In Proc. 1994 IFEFE International Conference on Systems, Man and Cybernetics,
pages 2219-2224, San Antonio, TX, October 1994.

J. N. Amaral and J. Ghosh. Speeding up production systems: From concurrent matching to
parallel rule firing. In L. N. Kanal, V. Kumar, H. Kitani, and C. Suttner, editors, Parallel
Processing for Al chapter 7, pages 139-160. Elsevier Science Publishers B.V., 1994.

J. N. Amaral and J. Ghosh. Performance measurements of a concurrent production system
architecture without global synchronization. In Proc. 9th International Parallel Processing

Symposium, pages 790-797, Santa Barbara, CA, April 1995.

R. E. Fikes. REF-ARF: A system for solving problems stated as procedures. Artificial
Intelligence, 1(1):27-120, 1970.

C. L. Forgy. On the Efficient Implementations of Production Systems. PhD thesis, Carnegie
Mellon University, Pittsburgh, PA, 1979.

A. Gupta, C. Forgy, and A. Newell. High-speed implementations of rule-based systems.
ACM Transactions on Computer Systems, 7:119-146, May 1989.

C.-M. Kuo, D. P. Miranker, and J. C. Browne. On the performance of the CREL system.
Journal of Parallel and Distributed Computing, 13:424-441, December 1991.

S. Kuo and D. Moldovan. The state of the art in parallel production systems. Journal of
Parallel and Distributed Computing, 15:1-26, June 1992.

D. P. Miranker. TRFEAT: A New and Efficient Match Algorithm for AI Production Systems.
Pittman/Morgan-Kaufman, 1990.

J. G. Schmolze. Guaranteeing serializable results in synchronous parallel production sys-

tems. Journal of Parallel and Distributed Computing, 13:348-365, December 1991.

J. P. Wade. An integrated content addressable memory system. PhD thesis, Massachusetts
Institute of Technology, May 1988.

