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Abstract

This research studies the characteristics of field
usage patterns in the SpecJVM98 benchmarks. It
finds that multiple object instances of the same
class often exhibit different field-usage patterns.
Motivated by this observation, we designed a heap
compression mechanism that classifies object in-
stances at runtime based on their field-usage pat-
terns and eliminates unused fields to save space.
To achieve the maximum space savings while min-
imizing the space and time overhead, our design
combines three interrelated techniques in a novel
manner: runtime object instance classification, field
virtualization, and bidirectional object layout. An
experimental evaluation reveals that this mecha-
nism can reduce the maximum heap occupancy of
SpecJVM98 benchmarks by up to 18% and 14%
on average while keeping the application execution
overhead low.

1. Introduction

The growing adoption of Java as a software plat-
form for embedded and mobile systems requires
the memory footprint of embedded Java programs
to be small. The rising popularity of Java in the
mobile computing world is due to its many attrac-
tive features such as cross-platform portability, au-
tomatic memory management, and built-in secu-
rity. It is estimated that more than 708 million cell-
phones and hand-held devices were Java-enabled in
June 2005, and this number is expected to exceed
1.5 billion by 2008 [18].
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Restrictions on device size, weight, price, and
power consumption dictate that the memory ca-
pacity in mobile devices be more constrained than
in servers or desktop computers. Improvements
in technology have made more memory avail-
able to mobile devices, but memory demand in-
creases faster than capacity increases. The emer-
gence of feature-rich applications, such as mul-
timedia streams and video games, increases the
mobile devices’ memory requirements. The time
that it takes a cellphone to double its memory
requirements has reduced from two years to 15
months [11].

Several researchers have attempted to reduce
the data footprint of Java programs by eliminat-
ing unused fields [6, 19, 4, 20]. However, none
of them have fully exploited the opportunities for
space optimization that can be obtained by study-
ing field usage patterns to identify unused fields.
This paper presents the first extensive study of
the characteristics of field usage patterns for the
SpecJVMI8 benchmark [2]. Based on the insight
that we gained, a heap compression mechanism
was created. The central idea is to classify object
instances, at runtime, based on their field usage
patterns and then eliminate unused fields to save
space.

The main contributions of this paper are:

e An extensive study of the characteristics of
field usage patterns of Java programs using the
SpecJVM98 benchmark.

e New opportunities for space optimization asso-
ciated with field usage patterns. These oppor-
tunities reveal the shortcomings of existing ap-
proaches.



¢ The design of a heap compression mechanism
that reduces the heap space requirements of
Java programs. This mechanism combines three
techniques: runtime object instance classifica-
tion, field virtualization, and bidirectional ob-
ject layout. The resulting code improves space
savings while keeping time overhead low.

® An extensive experimental evaluation that indi-
cates that this new heap compression mecha-
nism can reduce the maximum heap space con-
sumption by an average of 14% for the seven
programs in the SpecJVM98 benchmark, while
keeping the application performance overhead
within 4.4%, on average.

Section 2 studies the characteristics of field us-
age patterns. Section 3 shows how this field usage
pattern characterization leads to the design of a
new compression mechanism for Java heap spaces.
Section 4 presents a performance evaluation of this
mechanism, and reveals a trade off between heap
compression ratio and execution time overhead.
Section 5 surveys the related work and Section 6
presents our conclusion.

2. Field Usage Patterns

In Java, a class is a language construct that abstracts
object instances. A class has a fixed data layout, in
that each instance stores the same set of instance
fields of the class. However, not all the fields are
necessarily used in each instance of a class. Object
instances of the same class may exhibit different
field usage patterns.

DEFINITION 2.1. The field usage pattern of an ob-
ject is the set of fields used by the object.

For example, in j €SS, a benchmark in the Spec-
JVMOS8 suite, the class Val ue has three fields:
i ntval ,fl oatval ,and Obj ect val . For each
instance of Val ue, the value in a field called
_type determines which one of the three fields
stores an integer, a float, or an object reference.
The other two fields remain unused. A field is un-
used if it stores the frequent (default) value: zero or
null. Information about field usage patterns can be
used to save heap space. The potential for space op-
timization depends on the prevalence of dominant
field usage patterns. To evaluate this potential, we
studied the characteristics of field usage patterns in
the SpecJVM98 benchmark [2].

An extension of the field usage definition cap-
tures fields that contain a non-zero frequent value.
For instance, the field _t ype of class Val ue in
j ess often contains a non-zero frequent value that
can be externalized to save space. Thus, the defini-
tion of field usage pattern can be refined as:

DEFINITION 2.2. The field usage pattern of an ob-
ject is the set of fields of the object that do not store
frequent field values.

In the rest of this paper the analysis, design, and
experiments that only consider zero or null frequent
values are referred to as scheme-1, and those that
also consider non-zero frequent values are referred
to as scheme-2.

2.1 Characteristics of Field Usage Patterns

This study used the SpecJVM98 benchmark suite
because it covers a wide range of applications, in-
cluding expert shells, video decoders, graphic ren-
derers, and database querying systems. The bench-
mark nt rt is omitted, because it is a parallel im-
plementation of the r aytrace benchmark and
exhibits the same characteristics as r ayt r ace for
the purpose of this study. All the experiments were
conducted using the 100 input, because S100
more faithfully captures an application’s character-
istics than s1 or s10.!

Field usage patterns are discovered with a pro-
filing run of each benchmark program using an in-
strumented Kaffe Virtual Machine (VM) (version
1.1.5) [1]. The profiling run scans and outputs the
heap image of each object in the heap, whenever
50KB of memory allocations is accumulated. The
profiling output is used to gather the frequent value
distribution of each class field and study the field
usage patterns. A frequent-value field is a field that
has at least one value that appears in more than 10%
of the object instances. All the base class object
instances and derived class instances that contain
the class field are used to determine whether a field
has a frequent value. Therefore, if a field is consid-
ered a frequent-value field in a base class, it is also
a frequent-value field in derived classes, and vice
versa. After identifying frequent-value fields, ob-
jects in the heap are classified, based on their field
usage patterns. Let N? be the number of observed

I The JVM98 benchmark suite has three input sizes: s1, s10,
and S100. s1 should be used to check correctness; S10 needs
one tenth of the execution time of S100; SPEC requires that
performance be reported with 100 inputs.



object instances of class c that exhibit pattern p and
let Z. be the size, in bytes, of an uncompressed ob-
ject instance of class c. If the life time of an object
is longer than the heap scan interval, the object may
be counted multiple times. Consider class ¢ with n
patterns po,pi1,--- ,Pn—1, Where in pattern pg all
fields are used. Patterns p1, p2, -+, pnp_1 are com-
pressible and NP1 > NP2 > ... > NP"=' G, is
the total number of objects in a benchmark that ac-
count for the £*" most dominant field usage pattern
of each class, and T}, is the combined size of all the
objects that have the k*"* most dominant field usage
patterns of each class in the benchmark.

Sk = ZNEka
Ve

T = Y NP*-Z
Ve

Sp is the total number of observed objects that
are not compressible in each benchmark and 79
is the total storage, measured in bytes, of non-
compressible objects.

Figure 1(a) and 1(b) show the distribution of
field usage patterns for scheme-1 and scheme-2. In-
compressible refers to objects that cannot be com-
pressed based on field usage patterns, 1st and 2nd
correspond to the total number (77,7%) and size
(S1, S2) of objects that use the most dominant and
the second most dominant field usage patterns, re-
spectively. Others corresponds to the sums of the
remaining objects, Y | &>3 Ok, and the sum of their
sizes, > ~q Tk- B

Table 1 uses several metrics to characterize the
field usage patterns in each benchmark program.
Number of Classes is the number of classes whose
instances are observed during the heap scan pro-
cess; Number of Patterns records the number of
field usage patterns observed for each scheme. The
last two columns present the weighted average of
the number of field usage patterns and frequent
value fields per class using the following two for-
mulas:

S A Bl T AW Fle)
Y Al ORI

where A(c) is the number of objects, B(c) is the
number of field usage patterns, and F(c) is the
number of frequent value fields observed during
the heap scan process for class c. The weighted
average is reported because a prolific class, i.e. a

class that create a large number of instances at
runtime, is more important than a non-prolific one
for space optimization. Another interpretation for
the last two columns in Table 1 is as follows: if
an object is picked randomly from the heap, the
object is expected to have the number of field usage
patterns and the number of frequent value fields
that appear in these columns.

Figure 1 and Table 1 lead to the following ob-
servations:

1. In all the benchmarks, except r ayt r ace, in-
stances with compressible field usage patterns
account for about 80% of all the instances.

2. Each class is expected to have 2 to 3 frequent
value fields. Each object instance has 3 to 4
different field usage patterns.

3. The Ist and 2nd most frequent field usage pat-
terns account for a significant portion of field
usage pattern occurrences for most benchmarks
(except db).

4. The number of field usage patterns increases
dramatically for some benchmark programs in-
cluding j ess and j avac. This implies that
these benchmark programs should benefit the
most from compressing non-zero frequent field
values using scheme-2.

Thus, field usage patterns should reduce the re-
quirements of heap allocation in most benchmark
programs, except r ayt r ace. Two thirds of ob-
jects observed during the heap scaninr aytrace
are instances of class Poi nt, which has no fre-
quent value field. Although a large number of other
classes exhibit multiple field usage patterns — Ta-
ble 1 shows that there are 262 different field usage
patterns out of 123 classes — the significance of
their existence is overwhelmingly shadowed by the
prolific class Poi nt .

2.2 Previous Use of Field Usage Patterns

Field usage patterns have been previously used for
Java heap space optimization. JAX [20], an appli-
cation extractor for Java, developed by Tip et al.,
uses static analysis to remove unused fields that
are either unreachable or unread. Their optimiza-
tion only exploits inter-application field usage pat-
terns. It does not make use of the observation that
object instances of the same class may exhibit mul-
tiple field usage patterns within one application.
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Figu re 1. Distribution of Field usage patterns (a) for scheme 1 (b) for scheme 2. The left part of each figure shows the
distribution of the number of objects; the right part shows the distribution of object size.

Aver age Number of Aver age Number of
Number of Number of Patterns Patterns per Class Freq. Value Fields per Class
Benchmark Classes Scheme-1 | Scheme-2 | Scheme-l | Scheme2 | Schemel |  Scheme2
conpr ess 107 181 213 3.8 3.9 2.9 3.0
j ess 238 330 411 33 5.8 2.1 39
db 104 158 214 4.4 4.4 2.4 2.7
raytrace 123 204 262 1.5 1.5 0.3 0.4
javac 219 585 754 4.0 4.7 2.1 33
npegaudi 0 129 204 252 3.7 3.8 2.7 2.9
j ack 138 247 315 4.1 4.5 3.1 3.5

Table 1. Characteristics of field usage patterns of the SpecJVM98 benchmark

To the best of our knowledge, Ananian and Ri-
nard were the first to use frequent value fields for
space optimization [4]. Their technique removes
these fields from a class and uses hash tables to
store values of the field that differ from the fre-
quently stored value. A hash table lookup is needed
to access a frequent value field. Also, a hash ta-
ble used in this context requires significant storage
space because object ids must be stored to handle
potential conflicts.

Chen, et al. [6] present a detailed characteri-
zation of frequent field values in the SpecJVM98
benchmark and propose two heap compression
schemes. They used a heuristic formula to classify
the fields of a class into three levels: At Level-0 the
field does not have a dominant frequent field value;
at Level-1 the field has a non-zero frequent field
value; and at Level-2 the field has a frequent field
value that is zero or null. In their first scheme, an
object is divided into two parts: a primary part con-
taining level-0 and level-1 fields, and a secondary

part containing level-2 fields. Figure 2 shows an
object in the uncompressed format. During object
creation only the primary part is allocated. The sec-
ondary part is allocated lazily when the first non-
zero value is written into a level-2 field. The sec-
ondary part can also be compressed at run time if
it only contain zeros. Their second scheme builds
upon the first one by allowing level-1 fields to be
shared among objects if all level-2 fields are zero.
Chen’s scheme incurs a two-word space overhead
for objects in uncompressed format.

Live Flag Live Flag

1)X| SPtr—|—[0[X|GCHeader1

ClassInfo GCHeader?2
Level-0, 1 Level-2
Fields Fields

Figure 2. Chen’s first compression scheme



Ananian and Rinard’s and Chen et al.’s ap-
proaches may work well when all instances of a
class use the same compressible field usage pattern.
However, they will miss compression opportunities
for classes that exhibit more than one compress-
ible field usage pattern. In fact, in the SpecJVM98
benchmark around two thirds of the classes that
create more than 100 instances at runtime exhibit
more than one compressible field usage pattern.
Furthermore, their compression mechanism incurs
space overhead for objects in uncompressed for-
mat, which negates the space savings resulting
from compressing objects.

In general, none of these techniques fully ex-
ploits the space optimization opportunities associ-
ated with field usage patterns. Of these techniques,
Chen’s approach is most comprehensive, so we
compare our approach with his in Section 4.

3. A New Compression mechanism

The results presented in the previous section in-
dicate that there are unexplored opportunities for
field-usage-pattern-based space optimization. Even
though the study presented in Section 2 is based
on the SpecJVMO98 benchmark, the results should
apply to object-oriented systems. In the world of
object-oriented programs, the design of a class
is often general and oriented towards reusability.
Thus, a class may exhibit different field usage pat-
terns under different use contexts. We designed a
heap compression mechanism to exploit the op-
portunities for space optimization associated with
field usage patterns. This section first discusses the
reason why heap compression is a favorable tech-
nique for space optimization, and then describes
the design of our heap compression mechanism.

3.1 Why Heap Compression

There are a number of ways to exploit field usage
patterns for space optimization. Feedback may be
provided to guide programmers on the manual spe-
cialization of an application’s class hierarchy. For
instance, the class Val ue in Jess can be special-
ized into three subclasses, each corresponding to an
i ntval ,afl oatval ,oranObj ect val . Man-
ually rewriting an application can be tedious and
impractical to application libraries whose source
code is unavailable. Another approach is to spe-
cialize an application’s class hierarchy automat-
ically through compilers. This approach requires
extensive static analysis such as whole-program

point-to analysis and type inference [19]. Further-
more, static analysis cannot fully exploit space-
optimization opportunities that can only be iden-
tified dynamically. A third approach, adopted in
this paper, is to achieve space optimization through
run-time heap compression. This approach works
by compressing the heap objects if free space is
still insufficient to satisfy an allocation request af-
ter garbage collection has occurred — it is used as
a last resort.

3.2 Implementation Details

The general idea of our heap compression mecha-
nism is to eliminate unused fields from object in-
stances to save space. This mechanism is very ag-
gressive in that it tries to eliminate all unused fields
from object instances in order to achieve the maxi-
mum space savings. After compression, all object
instances with a given field usage pattern corre-
spond to one object layout format. The experimen-
tal study in Section 2 revealed that the object in-
stances of a class often exhibit a few different field
usage patterns. This aggressive heap compression
mechanism must deal with the following:

¢ A frequent-value field that is used must remain
in a field while unused ones must be eliminated.

¢ The frequent value of an eliminated field whose
frequent value is neither zero nor null must be
recorded.

e Because of field elimination, the offset of the
same field in different objects may be different.

e The space overhead for recording information
about object layouts must be low since it offsets
the compression gains.

e We must minimize the impact of the compres-
sion mechanism on run-time performance.

The design proposed in this paper adopts three
closely related techniques to address these chal-
lenges: object instance classification, field virtual-
ization, and bidirectional object layout.

The first technique is object instance classifica-
tion. After compression, an object assumes a mem-
ory layout that differs from the layout of an uncom-
pressed object. How should this layout information
be stored? One possible way is to store this infor-
mation within an object. However, such a solution
incurs space overhead for each compressed object.
Because object instances with an identical field-
usage pattern share a common object layout for-
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Figure 3. Object Layout (Class C inherits B, and
B inherits A. In 3(b), any shaded field can be elim-
inated to save space.)
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Figure 4. Field offset lookup mechanism

mat, they can share the layout information. In Java,
each object has a two-word object header. The sec-
ond word of this header points to the class informa-
tion as illustrated in Figure 3(a). In our technique,
this second word stores a pointer, Ft abl e, to ref-
erence a common data structure which is a meta-
class shared by object instances with the same field
usage pattern as illustrated in Figure 4.

After compression, the state of a field, elimi-
nated or not, and its offset are the same for all ob-
ject instances that share the same field usage pat-
tern. The meta-class stores the related information
— field offset and frequent field value — necessary
to access each field. Since this technique resem-
bles method virtualization, we name it field virtu-
alization. Also, an object’s meta-class can be de-
termined quite efficiently. When scanning an ob-
ject for compression, a bit vector with one bit cor-
responding to each field is calculated by scanning
the object once. A bit in the vector is set O to in-
dicate that the corresponding field is used, and 1,
otherwise. A meta-class has a similar bit vector. If a
meta-class’s bit vector matches the object’s bit vec-
tor, then the object belongs to the meta-class. Since
most objects have only a few fields, one word (32
bits) is sufficient for storing the bit vector in the
meta-class data structure.

Like Chen et al. [6], our field compression
mechanism also classifies fields into three levels:
level-0 fields have no frequent field values, level-
1 fields have non-zero frequent field values and
level-2 fields have zero (or null) frequent field val-
ues. However, instead of using an heuristic formula
to predict the level of a field, we use profiling in-
formation. A field is considered to have a frequent
value if its most frequent field occurs in more than
T percent of the total field value occurrences. The
choice of the threshold 7" has an impact on the com-
pression performance and the application execution
time. This discussion is deferred to Section 4.

Our method replaces the traditional Java ob-
ject layout with a bidirectional object layout where
level-0 fields are placed below the object header
and level-1 and level-2 fields are placed above. Fig-
ure 3(b) shows the heap image of an object of class
C in the bidirectional layout, where C inherits from
class B, and B inherits from class A. When an ob-
ject is compressed, some level-1 and level-2 fields
are eliminated. With the bidirectional object lay-
out, compacting an object by eliminating level-1 or
level-2 fields may shift the position of other level-1



and level-2 fields, while the offset of level-0 fields
remain the same. Also, since a level-O field will
never be eliminated in our compression scheme, its
value can be loaded by simply using its offset and
the object reference. Thus, there is no additional
performance overhead to access level-0 fields. A
JVM can mark each getfield or putfield
bytecode based on the level of the field being ac-
cessed (denoted as getfield-n and putfield-n). Such
a marking can be performed at the bytecode prepa-
ration phase, or the first time the bytecode is exe-
cuted — similar to the _qui ck instruction [21].

The content of each meta-class is as follows. It
has a reference to the class information structure
and a bit vector as explained above. For each level-
1 or level-2 field, there is an associated table entry
to store the field offset. When executing an instruc-
tion, a level-2 field is loaded by a get fi el d- 2
i ndex instruction. The parameter i ndex corre-
sponds to the table entry of the level-2 field in the
meta-class. This instruction first fetches the field
offset by dereferencing the Ft abl e pointer. If the
offset has a negative value, the field has not been
compressed and the object reference and this neg-
ative offset are used to load the field value and put
it onto the stack. With the bidirectional layout, a
level-2 field is before the object reference address.
If the offset is not negative, then this field was com-
pressed and zero (or null) is pushed onto the stack.
The handling of the get fi el d- 1 instruction is
similar to that of get f i el d- 2, except that a pos-
itive offset indicates that object instances of this
meta-class take the frequent value, which is stored
at the offset field in the meta-class data structure.
The field offset table grows upwards with nega-
tive offsets and the non-zero frequent field value
is stored at the positive offset. This aggressive heap
compression mechanism is very space efficient be-
cause its space overhead is linear on the number of
field usage patterns.

Instructions put fi el d-n and getfi el d-n
have a similar implementation, except that a com-
pressed object is fully expanded when a non-
frequent value is written into a frequent-value field.
Figure 4 shows an example of an expanded object.
Because level-0 fields are not affected by this ex-
pansion, the expansion only reallocates a secondary
portion of memory to store the level-1 fields, level-
2 fields, and the old and new Ft abl e references.
The second word in the object header is overwritten
to store a pointer Pt r that references the secondary

portion. If checking whether an object is expanded
every time a level-1 or level-2 field is accessed be-
comes costly, an alternative design is to rely on
the memory-protection mechanism already imple-
mented in hardware. A designated address range
can be set in the memory-protection table to cause
a trap when it is accessed. An address within the
designated range can be stored in the second word
of the object header of expanded objects. When this
word is dereferenced — in order to access a level-1
or level-2 field — an exception handler takes con-
trol and handles the field access transparently. This
trap is expensive but it only occurs for objects that
have been expanded and object expansion happens
very rarely.

4. Experimental Study

This section presents an extensive simulation-
based evaluation of the new compression mech-
anism described in Section 3. This performance
evaluation reveals that:

e Compressing only unused fields reduces the
heap space requirement, on average, by 12%.
When frequent-value fields are also compressed
the reduction increases to 14%. This reduction
is 4% greater than that obtained by Chen et al..

When the benefit of running the application
with a smaller memory footprint is not taken
into consideration, the field compression mech-
anism has a small performance penalty (4.4%
for scheme-2 on average).

The selection of the threshold used to determine
if a value in a field is frequent does not have
a significant effect on the effectiveness of the
compression. However, increasing this thresh-
old may significantly lower the performance
overhead of the mechanism.

All the experiments are based on trace-driven
simulations. Trace files are generated using an in-
strumented Kaffe VM (version 1.1.5) [1]. To sim-
ulate the memory behavior of a JVM, the trace
file contains a record for each of the following
events: object creation, object use (via bytecodes
getfield, putfield,invokevirtual,in
- st anceof, and checkcast ), garbage collec-
tion, and object finalization. A garbage collection
followed by the finalization of all the dead ob-
jects is forced for every SOKB of object allocation.
By reclaiming storage allocation for objects soon



Benchmark conpress | jess db raytrace | javac mpegaudi o | jack
Max Heap Occupancy without Array (KB) 91 529 3749 2509 6111 108 343
Max Heap Occupancy with Array (KB) 264 1228 7222 3824 9441 198 633
Execution Cycles (10°) 22621 9715 23663 8258 13547 11289 7290

Table 2. Characteristics of SpecJVM98 benchmark programs

after their death, an application’s maximum heap
space occupancy (without applying compression)
can be measured. However, unless garbage collec-
tion is triggered with a very small granularity, it
is impossible to know the precise time of an ob-
ject’s death. Very frequent garbage collection is ex-
tremely expensive [9]. To avoid this imprecision,
the maximum heap space occupancy is measured
by sampling the heap size immediately after each
garbage collection (shown in Table 2).? Similarly,
by reclaiming storage allocation for unused fields
through the application of heap compression im-
mediately after each garbage collection, the maxi-
mum heap space occupancy with heap compression
is measured.
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Filed Number of Space Savings Instance Instance + Array
Usage Pattern Instances Multiple Single

Pattern Pattern
intval 376 4512 3008 (a) Scheme-1
_type, Objectval 415 3320 -3320
_type, intval 581 4648 4648
_type, intval, floatval 123 492 -984

40% M HSingle Pattern
Table 3. Field usage patterns of class Val ue in a6% . Elultiple Pattern

Jess.

30%
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Figure 5 shows the reduction in maximum

heap occupancy due to compression, in compar-
ison with the baseline that does not do field-
level compression. The Single Pattern bars are
the results for Chen et al.’s compression scheme
while the Multiple-Pattern bars are the results for
our compression mechanism. These labels reflect
the fact that our mechanism compresses objects
based on multiple field-usage pattern while Chen Instance Instance + Array
et al.’s mechanism only works with a single pat-
tern. Compression using our scheme-1 only com-
presses fields that are not used, while scheme-2
also compresses fields that store a frequent value.
Both compression schemes significantly reduce the
maximum heap space requirements for all bench-
marks except r ayt r ace. This result is consistent

Haxz Heap Occupancy Reduction

compress
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Average
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Jjavac
mpegaudio
jack
Average

(b) Scheme-2

Figure 5. Reduction in maximum heap occupancy
in comparison with no compression

2The heap occupancies reported in Table 2 account only for
live objects. They do not account for other space costs such as
fragmentation and object field alignment.



with the field usage patterns shown in Figure 1.
Our scheme-1 and scheme-2 mechanisms reduce
the storage allocation for objects by 25% and 29%
on average. Table 2 shows that arrays consume a
large portion of the heap space in the SpecJVM98
benchmarks. Although our two schemes only com-
press object instances, they still reduce the heap
space requirement by 12% and 14% on average.
Compressing benchmarks j €ss and j avac using
scheme-2 is more efficient than compression using
scheme-1, a result that is consistent with the bench-
mark characteristics in Figure 1 and Table 1. The
17% improvement of scheme-2 over scheme-1 for
j ess is explained by the fact that the number of
frequent value fields in j €SS almost doubles when
level-1 fields are considered.

Chen et al.’s first scheme fails to reduce the
maximum heap occupancy for raytrace and
j avac. Their compression even slightly increases
the heap space requirements of these two programs.
This result indicates that space savings achieved
by Chen et al.’s schemes may not always be suf-
ficient to amortize the two-word overhead paid
for each incompressible object. For instance, the
class | dent i fi er in benchmarkj avac has two
fields: name and val ue. Ata point of program ex-
ecution, there are 811 instances of | denti fi er
that use only the field name, and 422 instances that
use both fields. Four bytes are saved for each of the
811 instances, but an 8-byte space overhead is paid
for each of the 422 instances. The result is a space
penalty of 92 bytes. There are many cases similar
to this example in the SpecJVM98 benchmarks.

In addition, Chen et al.’s schemes only con-
sider a single compressible field-usage pattern.
This restriction may either turn other compress-
ible field-usage patterns incompressible or it may
miss space optimization opportunities. For class
Val ueinj ess, Chen et al.’s second scheme only
recognizes one compressible field-usage pattern:
(Ltype, i ntval ). However, this class exhibits
four different field-usage patterns at one point of
the program execution. Table 3 shows the number
of instances that exhibit each of the four patterns.
By recognizing all four patterns, our scheme-2 out-
performs Chen et al.’s by 9620 bytes.

The results in Figure 5 show that for these seven
SpecJVM98 benchmarks, our techniques show im-
provements over Chen et al.’s by a significant mar-
gin for all benchmarks except db where we only
obtain a slight improvement. In db the majority

(around 96%) of compressible object instances in
each class have a single field usage pattern (ob-
served from Figure 1).

Through careful design, our mechanism is able
to consider all field usage patterns of a class to
save space by only paying a small space over-
head for each field usage pattern. On average,
our scheme-1 and scheme-2 outperform Chen et
al.’s two schemes by 4% respectively, for applica-
tion heap space reduction. Figure 6 shows that our
schemes are also more effective than Chen et al.’s
two techniques for reducing the average heap space
size. Our scheme-2 achieves an average heap space
reduction of 16%, which outperforms Chen et al.’s
by 5%.

4.2 Performance Overhead

This subsection studies the performance overhead
of our heap compression mechanism. Performance
overheads caused by either object compression or
by the extra operations used to access compressed
fields. The performance overhead due to object
compression varies with the heap size. When less
memory is available, more time is spent in com-
pressing objects to save space. However, after the
compression, the frequency of garbage collection
should be reduced [7]. The time saved by perform-
ing fewer garbage collection may be sufficient to
offset the performance overhead reported in this
section. In some systems, the performance gains
due to less frequent garbage collection may even
completely offset the performance overhead re-
ported here.

What is the impact of our compression mecha-
nism on performance when no compression takes
place? To obtain the answer we set the heap size
high enough to prevent the compression from be-
ing invoked by the runtime system. In this case the
run-time overhead is only caused by the extra oper-
ations used to access compressible fields:

® When accessing a level-1 field or a level-2 field,
the compression mechanism executes three ex-
tra operations: a load of pointer Ft abl e, a
fetch of the field offset, and a branch based on
the value of the offset.

e One extra level of indirection is needed
for executing bytecodes i nvokevi rtual,
i nst anceof and checkcast .

The run-time overhead to access compressed ob-
jects is estimated by counting the number of ex-



1.4.05 with the default settings * on a 1.3 GHZ In-
tel Itanium-2 machine (shown in the fourth row of

- I Table 2). Figure 7 shows that the performance im-

-o; ao% EHultiple Pattern . . .

- - pact of our compression mechanism is small. Most

‘ﬁ 20 of the overhead is due to frequent-value-field ac-

E 20% cesses, rather than to the execution of three byte-

g code instructions. The performance overhead of scheme-
; 10% 2 is slightly higher than that of scheme-1, because

é’. : of the increase of frequent value fields access, due

B to non-zero frequent value fields. The average per-

W w oo ® oo ° oy W W w g ® 8 & m @ .
g 8% 2 g 2% ¥ ¢ 843 3 § 2 ¢ 2 formance overhead for scheme-2 is 4.4%.
e H & 2 -+~ M Hom Hod 2 . W
= + = od o B L o
H g 3 4 g ¥ H &
= H =' = H ﬁ' O getfield Eputfield Oinvokevirtual
O ins tanceof B checkcast
Instance Instance + array % 10%
£ o
h
L o8z
< ™
(a) Scheme-1 g
- 6%
-
3 5%
L1}
M
) —
'B 3%
5 [
§ ESingle Pattern o 2% L
d 1 s o M— |
E [dHultiple Pattern E ;: |—| ] ﬂ . H |_I |
= = TR TR
B v 9 % 3§ F 2 8 & e 4 % 3 B2 8§ 8
P H oo, H & B & M H oo+ H o® 8 & M
2 ) TR 3 ) 578 5
5 g ) @ = 2 ) o ]
£ H H H )
8 Scheme—1 Scheme-2
S
3
= .|-_-| Figure 7. Performance overhead
)
< = n » o © u © o ©
o 0 9 m u o o ° m
PEfEiEry PicEiind
- - - -
B i o g # o o® o 1
H A 5 R " ¢ & 4.3 Threshold Selection
o H & e H )
" o
Instance Instance + Array
110%
106%
(b) Scheme-2
100% o 20%
| 3%
o5% 0O 40%

Figure 6. Reduction on average heap occupancy
compared with no compression

raytrace
javac
mpEE

7]
w
o
E
]
Q
1]

tra instructions and memory accesses. Like Chen
et al., we assume that each instruction is executed
in one machine cycle and that each memory access
requires an extra cycle [6]. They argue that this as-
sumption is reasonable for embedded microproces-
sors with low clock frequencies and short pipeline
architectures. Moreover, the number of cache misses
caused by loading a field offset is small because the
meta-class data structures are used frequently and
therefore often reside in the cache. The number of
machine cycles needed to execute each benchmark
in the ideal situation is measured using Sun JDK 3 The JIT compiler is enabled in the default settings.

Figure 8. Maximum heap occupancy normalized
with the 10% threshold (scheme-2)

For all the experiments described so far, a 10%
threshold is used to determine frequent-value fields.
Is the performance of the heap compression mech-
anism sensitive to the selection of this threshold
value? To answer this question, Figure 8 shows the
maximum heap occupancies of the eight SpecJVM98
benchmarks, measured using thresholds of 20%, 30%,
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Figure 9. Number of frequent value field accesses
normalized with the 10% threshold (scheme-2)

and 40%. Little impact on heap compression ef-
fectiveness is observed. However, for two bench-
marks (shown in Figure 9), the number of frequent-
value-field accesses drops significantly. For j ess,
with the 20% threshold, the maximum heap occu-
pancy increases by only 3%; however, the number
of frequent-value-field accesses drops by half. This
result indicates that most space reductions are due
to fields whose frequent values appear with a rela-
tively high frequency. In j €ss, the most frequent
values of two fields _t ype and i nt val in class
Val ue account for 15.9% and 17.5% of the total
value occurrences of the two fields. By increasing
the threshold from 10% to 20%, neither _t ype nor
i ntval is considered as a frequent value field.
This increases the the space consumption by the
Val ue objects at the point of program execution
shown in Table 3 by 12.6%. However, with the 20%
threshold, the number of frequent-value field read
and field write reduces by 76% and 20% respec-
tively. In general, this experiment shows that users
can choose a relatively large threshold to reduce the
performance overhead of the compression mecha-
nism without worrying about an increase in the ap-
plication heap space requirements.

5. Redated Work

Various research prototypes and commercial prod-
ucts have been developed to allow Java programs to
execute in memory-constrained environments. Mc-
Dowell et al. designed an embedded Java environ-
ment that supports the complete Java programming
language and all class libraries except AWT with
as little as 1 MB of RAM [13]. Sun Microsystems
provides KVM, a reference implementation of the
Connected-Limited-Device Configuration (CLDC)
for embedded Java [17]. KVM can operate with as

little as 128 KB of memory. The MicroChaiVM
supplied by HP has a minimum ROM requirements
of 37 KB [10]. TinyVM, a Java-Runtime Environ-
ment (JRE) for RCX microcontrollers has a foot-
print of only 10 KB in RCX [3].

Besides reducing the memory footprint of the
JRE, it is also important to reduce the code/data
size of Java programs. JAX [20] uses a combination
of extraction techniques — such as dead method
elimination, dead field elimination, and class hier-
archy transformation — to reduce the code size of
Java class libraries. Pugh [14] presents a wire-code
format to compress Java class files. Class files com-
pressed in his format are typically % to % the size
of the corresponding compressed Jar files. Clausen
et al. develop a technique that replaces redundant
bytecode sequences with new instructions to reduce
the memory footprint [8].

To reduce the data size of Java programs, Sha-
ham et al. propose a technique called object drag-
time analysis that enables the reclamation of ob-
jects after their last-use to save space [16]. They
demonstrate, through manual rewriting of the code,
an 18% space reduction of the SpecJVMO98 bench-
mark programs. Rizzo discovers that there are large
number of redundant zeros in the RAM [15]. Based
on this observation, an efficient RAM compression
algorithm is developed. This algorithm was later
adopted by Chen [7] to compress Java objects.

Object equality profiling is a technique that re-
places identical objects with a single copy to save
space [12]. This technique requires two objects to
be immutable in order to be merged into an identi-
cal one. Eliminating unused fields in objects to save
space has been studied by Ananian and Rinard and
Chen et al. [4, 6]. Our mechanism improves upon
theirs by better exploiting the space-saving oppor-
tunities associated with unused fields. Most JVM
implementations use a two-word object header for-
mat. Bacon et al. propose a heuristic compression
technique that allows most object to be instanti-
ated with a single-word object header [5]. This op-
timization yields a space saving of 7% on average.

6. Conclusion

The extensive study of the field-usage-pattern char-
acteristics in the SpecJVM98 benchmark suite re-
veals that classes often exhibit multiple field us-
age patterns. Thus we proposed a heap compres-
sion mechanism that allows the compression of ob-
jectinstances of such classes. A comprehensive per-



formance evaluation indicates that our mechanism
can reduce the maximum Heap memory occupancy
of Java programs by 14% while paying a small per-
formance overhead.
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