
Feedback-Directed Switch-Case Statement Optimization

Peng Zhao and José Nelson Amaral
Department of Computing Science, University of Alberta, Edmonton, Canada

E-mail: pengzhao@cs.ualberta.ca, amaral@cs.ualberta.ca

Abstract

This paper presents two new feedback-guided tech-
niques to generate code for switch-case statements: hot
default case promotion (DP) and switch-case statement
partitioning (SP). DP improves case dispatch while SP
simplifies case dispatch, improves instruction layout and
enables further inlining. An extensive experimental
study reveals up to 4.9% performance variations among
different strategies. The largest performance improve-
ment of DP and SP over existing O3 optimization in
the Open Research Compiler (ORC) is 1.7%. A micro-
architecture level performance study provides insights
on the basis for this performance improvement.

1 Introduction

Switch-case statements are frequently used to express
multi-way branch semantics in script interpreters, com-
pilers and virtual machines. A switch-case statement
contains a key expression, a set of (case value, case ac-
tion code) pairs and a default action code. The execution
of a switch-case statement has two phases: case selec-
tion and case action [10]. If the key does not match any
enumerated case value during case selection, the default
action code is executed.

Known techniques for the generation of code for
switch-cases that do not rely on feedback information
include: search strategy (BR) that implements a series
of branch-if-equal operations; jump table strategy (JT)
used for large number of case values; and a combined
strategy (COMB) that is used when case values are dis-
tributed into several dense clusters.

The main contributions of this paper are: (1) Two
new techniques (DP and SP described in Section 2) that
use feedback information to improve switch-cases; (2)
An implementation of DP and SP in the ORC 2.1 com-
piler (Section 3); and (3) An experimental study (Sec-

tion 4) that includes not only the new techniques but also
known techniques such as BR and JT.

2 Feedback-Guided Optimization

This section describes three techniques that make use
of execution frequency information to improve the run-
time performance of switch-cases.
Hot case hoisting (HH): If a few cases are known to
dominate the execution, they should be tested first re-
gardless of the case selection strategy used. HH tests
frequent cases first. Even when the JT strategy is used,
testing very frequent cases prior to indexing the table
avoids the indirect load into the jump-table.
Hot Default Case Promotion (DP): The default action
may be frequently selected by a few key values. DP cre-
ates new case values for the frequent (hot) values that
originally fell in the default category. Hot values are
identified by runtime profiling. After promotion, stan-
dard HH moves these new values to an earlier place in
the branch search or hoist them before a jump table ac-
cording to their frequency. For instance, in Figure 1(a),
the key value 9 occurs very often. With DP, the value 9
is promoted to a separate case value (Figure 1(b)).

Existing techniques are inefficient for hot defaults.
With BR all the cases must be tested before the default
action is taken. With JT if the key value is off-table the
selection is fast. However if the hot key value is in a
hole, an indirect load is required to find the default ac-
tion. HH cannot hoist a default value before it is pro-
moted to a enumerated case.

Switch-Case Partitioning (SP): SP is the second
new technique presented in this paper. SP applies to
large switch-cases. Large switch-cases may limit per-
formance improvements because their host functions are
often too large to be inlined [3, 4, 13]. The actions of
infrequent (cold) cases often account for a significant
portion of the size of a switch-case. For instance, Fig-
ure 2 shows the breakdown of the cases in a switch-

1

switch (key)
{

case 5:
... //action 5
break;

case 6:
... //action 6
break;

case 7:
... //action 7
break;

default: // 9 is very hot
... //default action

}
... // next statement

switch (key)
{

case 5:
... //action 5
break;

case 6:
... //action 6
break;

case 7:
... //action 7
break;

case 9: // case 9 is promoted
default:

... //default action
}
... // next statement

(a) (b)

Figure 1. Hot Default Case Promotion

EXACT BOL EOL STAR PLUS... ... DEFAULT

 ...
switch (OP(scan))

ENTRY

EXIT

45 cases (35 cases never touched)
total freq: 1805920 (1.6%)

Total freq: 1.12438*10^8 (98.4%)

freq=1.14266*10^8
884 lines C code

12 cases

Figure 2. Annotated CFG of function regmatch in perlbmk

case, S, in the function regmatch in the SPEC2000’s
perlbmk program. This function matches regular ex-
pressions with strings in a file. S requires about 884
lines of C code evenly distributed through 57 cases. But
only 12 cases are hot.

Cold cases introduce several problems: (1) they in-
crease the size of the function that hosts the switch-case,
which prevents inlining; (2) the code for cold case ac-
tions, which is intertwined with the hot case actions,
pollutes the instruction cache; (3) cold cases may slow
case selection by increasing the depth of the comparison
tree or cause inefficient usage of memory by the slots for
cold cases in the jump-table. Separating the cold cases
and their actions from the hot cases ameliorates all these
problems.

SP first partitions a large switch-case S into two: a
hot switch-case Sh and a cold switch-case Sc. After this

re-organization, a new, simple and fast, tree-based split-
ting technique can split Sc out of the host function. The
combination of switch-code partitioning and splitting el-
egantly solves the problems caused by cold cases: (a)
the host function becomes smaller and is more amenable
to inlining; (b) the hot cases are placed together with-
out perturbation from cold cases at runtime; and (c) the
execution path for the selection of hot cases becomes
shorter.

Figure 3 shows the partition of S into Sh and Sc in
regmatch. The cold cases are placed into the default
action of Sh. Then Sc forms a natural cold region and
can be easily split out of the host function.

2

...

ENTRY

EXIT
12 cases

Total freq: 98.4%

freq=1.14266*10^8
884 lines C code

DEFAULT

DEFAULT...

45 cases (35 cases never touched, 1.6%)

Cold Region (split)

EXACT BOL EOL STAR PLUS

 ...
switch (OP(scan))

switch (OP(scan))

Figure 3. Partitioning regmatch in perlbmk

CASEPROFILING(S,key value)
1. index← SEARCH(key value, S.Case V alues);
2. if (index ≤ S.num)
3. S.Freq[index]← S.Freq[index] + 1;
4. else // Modification to the profiling library of ORC 2.0
5. dflt id← SEARCH(key value, S.Dflt V alues);
6. if (dflt id > 0)
7. S.Dflt Freq[dflt id]← S.Dflt Freq[dflt id] + 1;
8. else
9. dflt id← INSERT(key value, S.Dflt V alues);
10. S.Dflt Freq[dflt id]← 1;

Figure 4. Add Profiling for Default Cases.

3 Implementation

This section introduces an extension to the existent
profiling library in ORC 2.1 (Section 3.1), and the im-
plementation of hot default case promotion and switch-
case splitting (Section 3.2).

3.1 Profiling for Default Cases

To enable hot default case promotion, the compiler
needs precise information about the default case value
distribution. A straightforward extension to the run-
time instrumentation library of ORC 2.1, shown in Fig-
ure 4, records the frequency of the most frequent val-
ues that trigger the default action. Whenever a switch-
case S is executed, the original instrumentation in ORC
2.1 invokes a function called CASEPROFILING to up-
date a frequency array, S.Freq, according to the current
key value. This extension inserts instrumentation in the
action code of the default case. Each element of a new
array, S.Dflt V alues, contains a key value and its cor-
responding frequency. Whenever the default action is
selected, either the frequency counter of an existing de-

fault value is incremented, or a new element is added to
S.Dflt V alues. The number of distinct default values
seldom exceeds 50. Thus, at the end of the instrumented
execution, the extension writes only the 100 most fre-
quently values into the feedback file.

3.2 Hot Default Case Promotion

A prepass summarizes the feedback information, pro-
motes hot default cases, and clusters cases based on con-
trol flow information. The total frequency of a switch-
case S is:

S.total freq =
S.num+1∑

i=1

S.Freq[i] (1)

where S.num is the number of cases in S and
S.Freq[S.num+1] is the frequency of the default case.

To promote hot default cases, the default case values
are sorted by frequency from high to low. Some default
cases of S are promoted, as shown in Figure 1, when
they together dominate the execution of the switch-case
(currently the promotion threshold, PT , is 99% and
MaxPromotionNum is 5):

∑MaxPromotionNum

j=1
DefaultF req[j]

S.total freq
> PT (2)

Inter-case control flow is often found in application
programs. Therefore, the feedback information alone is
not sufficient to identify hot actions. Consider a program
where the hot action of a case A falls through to the ac-
tion of another case B. The action of case B is also hot,
even though its frequency in the feedback information
may be low. In this circumstance, A and B must be an
atomic unit for the splitting analysis.

3

Given a switch-case S, a goto g is in S, g ∈ S,
if both the source and destination locations are within
S. If g ∈ S, there is a g.source case and to a
g.destination case. The algorithm PREPASS, shown in
Figure 5, computes case groups based on control flow.
First, each case is assigned to a distinct group ranging
from 1 to S.num+1, where S.num is the number of the
enumerated cases in the switch-case S (steps 2-3). Two
situations are of interest: “fall-through” between subse-
quent cases (steps 4-7) and gotos that are in S and whose
source and destination cases are distinct (steps 8-10).

PREPASS(S)
1. merged group id← S.num + 2;
2. foreach i from 1 to S.num + 1;
3. case[i].group← i;
4. foreach i from 1 to S.num
5. if (case[i] falls through to case[i + 1])
6. then MERGEGROUPS(S,i, i + 1,merged group id);
7. merged group id← merged group id + 1;
8. foreach g ∈ S such that g.source case 6= g.dest case
9. MERGEGROUPS(S, g.source case, g.dest case,

merged group id);
10. merged group id← merged group id + 1;

MERGEGROUPS(S,i, j, new id)
1. S.Freq[new id]← 0;
2. foreach k such that case[k].group = case[i].group

or case[k].group = case[j].group
3. case[k].group← new id;
4. S.Freq[new id]← S.Freq[new id] + S.Freq[k];

Figure 5. Case Clustering.

MERGEGROUPS, called by PREPASS, merges two
case groups into one. Whenever two groups are
merged, their members are assigned the same new
merged group id (step 3). The execution frequency of
the merged group is the sum of the invocation frequency
of its member cases (step 4).

3.2.1 Switch-Case Partitioning Benefit Estimation

PARTITIONANALYSIS, shown in Figure 6, sorts the case
groups according to their frequencies from high to low.
Then the algorithm scans the case groups and accumu-
lates their execution frequency. When the accumulated
frequency reaches Freq Threshold (99% in our work),
the scanning stops. If ColdSize is larger than a thresh-
old, the switch-case is split into Sh and Sc, as illustrated
in Figure 3, and Sc is moved out of the host function.

3.2.2 Partitioning Switch-Cases With Hot Default

When the default case is seldom executed, as is the
case in Figure 3, the original default is simply placed
into the cold switch-case. However if the original

PARTITIONANALYSIS(S)
1. AccuFreq← 0;
2. HotSize← 0;
3. HotGroups← ∅;
4. foreach non-empty group i from most to least frequent
5. AccuFreq← AccuFreq + S.Freq[i];
6. HotSize← HotSize + S.Size[i];
7. if

“

AccuFreq
total freq

6 Freq Threshold
”

8. then HotGroups← HotGroups
S

i;
9. else break; // terminate the loop
10. ColdSize← S.total size−HotSize;
11. if (ColdSize > Size Threshold)
12. then ColdSwitch← PARTITIONSTMT(S,HotGroups);

Figure 6. Partition Benefit Analysis.

PARTITIONSTMT(S)
1. if (Cd is hot)
2. ColdSwitch← CREATE(S.ColdCases, NULL);
3. NewFunc← SPLITANDPATCH(ColdSwitch);
4. foreach (Ci, Ai) in S.ColdCases
5. REPLACE(Ai,NewFunc);
6. else
7. OrigDflt← (Cd, Ad);
8. NewColdCases← S.ColdCases−OrigDflt;
9. ColdSwitch← CREATE(NewColdCases,OrigDflt);
10. NewFunc← SPLITANDPATCH (ColdSwitch);
11. foreach (Ci, Ai) in S.ColdCases
12. DELETE(Ci, Ai);
13. REPLACE(Ad, NewFunc);
14. REPAIRFEEDBACKINFORMATION(S);
15. return ColdSwitch;

Figure 7. Partition and Split Switch-case.

default case is hot, moving it into the cold switch-case
is troublesome for two reasons: (1) a hot case is still
mixed with the cold cases; and (2) if splitting is applied,
many additional function calls will occur at runtime.
The re-organization shown in Figure 8 is used for hot
default switch-cases. Now the default action remains in
the hot switch-case and the case selection of cold cases
is kept intact. The actions of cold cases are replaced
with gotos to the new cold switch-case. The original
cold actions are moved into the cold switch-case. After
this transformation, the selection of a cold case requires:
(1) the original case selection; (2) a function call; and
(3) a second case selection in the cold switch-case. If
the cold cases are indeed cold, this additional function
call will happen infrequently.

PARTITIONSTMT, shown in Figure 7, partitions a
switch-case into two and then splits the new cold switch-
case out of the host function. The algorithm actions are
different for cold and hot default situations. In the algo-
rithm, Ci represents case i and Cd is the default case; Ai

is the action code for case i and Ad is the default action
code. CREATE generates a new switch-case. When the
default case is hot (steps 1-5), the default action of the
cold switch-case is empty. REPLACE replaces the ac-
tions of the cold cases in the original switch-case with

4

NULL...

switch (key)

DEFAULT

Cold Region (splitted)

ENTRY

EXIT

Case 1

 ...
switch (key)

...Case 2

Cold cases

DEFAULT

Figure 8. Partitioning a Switch-case with Hot Default Cases

gotos to a call site which calls NewFunc. When the
default case is cold (steps 7-13), the cold switch-case
is created with the cold cases, including the cold de-
fault. This cold switch-case is moved into NewFunc

by SPLITANDPATCH [14]. Then the cold cases and their
action codes are deleted from the original switch-case.
The default action of the original default case is replaced
with a call to NewFunc.

4 Experimental Study

The results of an experimental investigation using
standard benchmarks may be summarized as follows:

• Switch-case optimizations yield up to 4.9% perfor-
mance improvement over a straightforward jump
table (JT) approach.

• In benchmarks with frequent switch-cases a linear
search using branches (BR) executes many more
instructions when compared with the JT strategy.

• Partitioning large switch-cases reduces the size of
functions and significantly reduces the number of
branch miss-prediction stalls (up to 16%).

The experimental platform is the Open Research
Compiler 2.1 (ORC). ORC evolved from the SGI’s MIP-
SPro compiler, which implements a rich set of optimiza-
tions including Inter-Procedural Optimizations (IPO).
ORC generates binaries for Intel’s 64-bit Itanium pro-
cessors. ORC 2.1 uses BR, JT and COMB strategies
for switch-cases and implements hot case hoisting (HH).
We added hot default case promotion (DP) and switch-
case partition (SP).

Experimental results were obtained on an HP
ZX6000 workstation with a 1.3GHz Itanium-2 proces-
sor, 1 GB of main memory, 32KB of L1 cache, 256KB
of L2 Cache, and 1.5MB of on-die L3 cache. The oper-
ating system is Red Hat Linux 7.2 with a 2.4.18 ker-
nel. This experimental study is based on SPEC2000
integer benchmarks that contain switch-cases: bzip2,
crafty, gcc, perlbmk, vortex and vpr. Though
twolf also contains switch statements, we don’t in-
clude it because the switch statements are not executed
at runtime. Micro-architectural benchmarking is ob-
tained with pfmon. Run times are averaged over 5 con-
secutive identical runs.

4.1 Statistics for Switch-Cases

The first row of Table 1 contains a static count of
the number of switch-cases in the source code of each
benchmark. The Case Number Distribution rows show
a wide variation in the number of cases in each state-
ment. Script parsers (perlbmk) and compilers (gcc)
tend to contain statements with many cases. The Maxi-
mum Cases row reports the maximum number of cases
in a single statement. In the last row of Table 1 is the
number of switch-cases that have a hot default action
that is executed more than 90% of the time.

The execution frequency distribution of switch-cases
using the SPEC2000 standard training input set is pre-
sented in Table 1. Only a small subset of the switch-
cases are frequently executed and thus relevant for the
application’s performance. For instance, gcc executes
an extensive series of optimizations and transformations
over the input. Although gcc contains 374 switch-
cases, none of them are executed more than 106 times.

5

Benchmarks bzip2 crafty vpr vortex perlbmk gcc
Number of Switches 3 42 12 37 127 374

<6 3 17 12 11 68 199
Case 7 ∼ 15 0 25 0 22 30 117

Number 16 ∼ 30 0 0 0 24 15 32
Distribution 31 ∼ 100 0 0 0 0 11 21

>100 0 0 0 0 3 5
Maximum Cases 4 13 6 30 243 398

Frequency 106
∼ 107 1 2 0 6 13 0

Distribution > 107 1 3 0 0 7 0
Hot default 0 1 0 3 25 45

Table 1. Statistics of Switch-cases

Short Explanation
JT Always use Jump Table Strategy, no profiling.
BR Always use linear search (BR) strategy (linear search), no profiling.

BR+P Always BR with profiling used to reorder cases.
BR+JT Use BR strategy if less than 7 cases, otherwise use JT, no profiling.

BR+JT+P BR+JT with profiling used to reorder cases.
O3 BR+JT+P with hot case hoisting (HH).

O3+DP O3 with default case promotion (DP).
O3+DP+SP O3 with DP and switch-case partition (SP).

Table 2. Optimization Techniques

0 10 20 30 40 50 60
0

1

2

3

4

5

6

7

8

9

10

11

Total Number of Cases

H
ot

 c
as

es
 (

fr
eq

ue
nc

y
w

ei
gh

t >
 9

9%
)

vortex
bzip2
crafty
perlbmk

Figure 9. Case Frequency Distribution

Figure 9 illustrates the unevenness of case execution
frequencies. Each point in the figure represents a switch-
case that is executed more than 106 times in the training
run. In the vertical axis is the number of hot cases that
collectively account for more than 99% of the invoca-
tion of the statement. Points close to the X-axis repre-
sent statements where a few cases dominate the execu-

tion time. Hot case hoisting (HH) should benefit such
statements. For example, in 5 of the 6 frequently exe-
cuted switch-cases in vortex, a single case is executed
more than 99% of the time. A similar situation is ob-
served for perlbmk and bzip2. On the other hand,
the execution is almost evenly distributed for crafty.

4.2 Performance Analysis

Table 2 summarizes the strategies studied. The per-
formance improvements presented in Figure 10(a) are in
relation to the jump table strategy (JT). Switch-cases in
bzip2 and vpr are rarely executed, making the opti-
mizations studied of little relevance. On the other hand,
more frequently executed switch cases in perlbmk re-
sult in improvement of 4.96%. For other benchmarks
(such as crafty, vortex and gcc), the performance
improvement ranges from 1.3% to 3.8%. All three ver-
sions of O3 produce good performance and no single
combination of optimizations produces the best perfor-
mance for all benchmarks.

Feedback-guided compilation is recommended be-
cause it consistently generates faster executables. For
instance, perlbmk compiled under the BR+P strategy
is about 3% faster than the one compiled with only the

6

bzip2 crafty vpr vortex perlbmk gcc
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Benchmarks

P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t (

%
)

BR
BR+JT
BR+P
BR+JT+P
BR+JT+HH+P (O3)
O3+DP
O3+DP+SP

(a) Runtime Performance.

stall reduc. instr. inc. stall reduc. instr. inc.
−2

0

2

4

6

8

10

12

14

Benchmarks

M
et

ric
s

C
ha

ng
e

(%
)

perlbmk vortex

BR
BR+JT
BR+P
BR+JT+P
BR+JT+HH+P (O3)
O3+DP
O3+DP+SP

(b) Micro-architectural Study.

Figure 10. Runtime results.
BR strategy. Moreover, all the other techniques (HH,
DP and SP) depend on representative profiling to ensure
effective speculations.

DP generates the fastest code for vortex and SP
generates the fastest code for perlbmk. Hot switch-
cases in vortexwith dominant default cases (Figure 9)
explain DP’s effectiveness (improving performance over
O3 by about 0.7%). Several hot and very large switch-
cases in perlbmk make the SP strategy successful, im-
proving performance over O3 by about 1.7%.

A somewhat surprising observation is the limited ef-
fectiveness of the jump table strategy even when com-
bined with linear search. This result may be particular
to the Itanium and to the code scheduler in this com-
piler. Itanium-2 processors can execute 6 instructions
(2 bundles) in the same cycle. The runtime of a pro-
gram depends not only on the number of instructions
executed, but also on the effective utilization of instruc-
tion slots. This architecture is favorable to the search
strategy that executes a series of independent compare-

and-branch instructions. Theoretically, six cases can be
dispatched in 4 bundles (2 bundles for comparing with
6 case values and 2 bundles for 6 predicated branches).
On the other hand, the jump-table strategy needs to cal-
culate the address of the case entry in the jump table and
then load it from memory.

4.3 Micro-architecture Level Benchmarking

This section investigates how the optimization tech-
niques studied change the micro-architecture behavior
of two benchmarks: perlbmk and vortex. Fig-
ure 10(b) shows the variations in the number of retired
instructions and the number of processor stalls with each
technique when compared with JT.

In perlbmk BR results in 13.5% more retired in-
structions than JT but it reduces the number of pipeline
stalls by 9.5%. This is because BR often needs to enu-
merate more case values to find the desired target. But
these enumerations are independent of each other and
thus can be executed in parallel. On the other hand, JT
needs a load for the destination address.

For perlbmk, while BR+P reduces the number of
instructions executed by 13.5%, this reduction is only
4.7% for BR. This result argues for the use of profiling
feedback: it allows the compiler to place the frequent
case values earlier in the search list, thus shortening the
enumeration phase.

Changes to the number of instructions executed in
vortex are negligible when compared with those in
perlbmk. The reason is two fold. First, perlbmk
employs many more switch-cases, giving more weight
to switch-case optimizations. Second, the switch-cases
in perlbmk often contain more cases and larger code
than those in vortex. Therefore, BR executes many
more compare and branch pairs to enumerate possible
case values.

Most processor stalls are caused by Dcache misses,
branch miss-prediction stalls, or Icache misses.1 Our
experiments show very small differences in Icache stalls
and Dcache stalls among the strategies. This result is
not surprising given Itanium’s extensive Icaches. Icache
stalls account for no more than 4% of the total stalls in
SPEC2000 integer benchmarks; Dcache stalls account
for 73% to 85% and branch miss-prediction stalls ac-
count for 7% to 22%.

The very small increase in retired instructions in
O3+DP+SP implies that switch-case partition indeed

1Other factors lead to pipeline stalls, such as insufficient floating
point or register stack units. However, these factors contribute no more
than 5% of the total stalls and vary very little for different optimiza-
tions in our study.

7

splits only cold cases out of the host functions.
O3+DP+SP improves the runtime of perlbmk. As
there is no further inlining, the benefit comes from
the simplified case dispatching and processor stall re-
duction. Processor level benchmarking shows that SP
reduces branch miss-prediction stalls by about 2.9%,
while other stalls remain similar.

4.3.1 Function Body Reduction by Switch-Case
Partitioning

Switch-case partitioning reduces the size of functions.
For perlbmk, where 23 switch-cases are partitioned,
the function size reduction ranges from 3% to 79.7%,
with an average of 36.3%. In vortex, where 6 par-
titions occur, the function size reduction ranges from
1.3% to 53.6%, with a average at 25.1%. Most of the
partitioned functions are very large, some with more
than 1000 lines of C code. These functions cannot be
inlined in most compilers. The better cache behavior ob-
tained by improved code placement of smaller functions
should have greater impact on performance in proces-
sors with small I-caches.

5 Related Work

Previous research on transformation for switch-cases
focused on efficient case selection [1, 2, 5, 6, 7, 8, 10].
ORC implements the methods in [2, 7, 8].

In [7] cases are clustered according to their proximity
in the PascalF compiler. Case dispatch is implemented
in two levels: (1) comparison tree search to find the clus-
ter and (2) jump table finds the case action.

Bernstein asserted that the problem of splitting the
cases in a switch-case statement into a minimum number
of clusters of a given density was NP-complete and de-
vised greedy heuristics to clustering the cases [2]. Bern-
stein’s techniques were implemented in several compil-
ers, including the Objective Caml compiler [9]. How-
ever, Kannan and Proebsting later showed that Bern-
stein’s problem modeling was wrong and presented an
algorithm to find the solution in O(n2) time where n is
the number of the cases in the switch-case statement [8].
Bernstein also suggested that cases could be reordered
according to their execution frequency.

Some approaches assume that switch cases have been
transformed to a series of conditional branches and try to
reorder these branches according to importance [12] or
convert them into indirect jumps [11]. In contrast, our
approach is more straightforward because we optimize
switches directly.

Conclusion

This paper presented two new speculative approaches
to take advantage of the skewed execution frequency
among the cases. A thorough investigation of the trans-
formation strategies for switch-cases showed their im-
pact on runtime performance, processor-level behav-
ior and function sizes. The effectiveness of the tech-
niques depends on the program’s characteristics such
as the time spent on switch-case statements, the num-
ber of cases, and the case frequency distribution. When
switch-case statements are frequently executed, such as
in perlbmk, code optimization can yield significant
performance gain.

6 Acknowledgements

This research is supported by the Natural Science and
Engineering Research Council of Canada (NSERC) and
could not be done without ORC. Special thanks do Sun
C. Chan, Li-Ling Chen, and Shane Brewer.

References

[1] L. V. Atkinson. Optimizing two-state case state-
ments in PASCAL. Software – Practice and Expe-
rience, 12(6):571–581, June 1982.

[2] R. L. Bernstein. Producing good code for the case
statement. Software – Practice and Experience,
15(10):1021–1024, Oct 1985.

[3] J. W. Davidson and A. M. Holler. A study of a C
function inliner. Software - Practice and Experi-
ence (SPE), 18(8):775–790, 1989.

[4] J. W. Davidson and A. M. Holler. Subprogram in-
lining: A study of its effects on program execution
time. IEEE Transactions on Software Engineering
(TSE), 18(2):89–102, 1992.

[5] U. Erlingsson. Lucid and efficient case analy-
sis. Technical Report TR-95-14, Department of
Computer Science, Rensselaer Polytechnic Insti-
tute, Troy, NY, 1995.

[6] U. Erlingsson, M. S. Krishnamoorthy, and T. V.
Raman. Efficient multiway radix search trees.
Information Processing Letters, 60(3):115–120,
1996.

[7] J. L. Hennessy and N. Mendelsohn. Compilation
of the Pascal case statement. Software – Practice
and Experience, 12:879–882, 1982.

8

[8] S. Kannan and T. A. Proebsting. Short communi-
cation: Correction to producing good code for the
case statement. Software – Practice and Experi-
ence, 24(2):233–233, Feb 1994. Erratum for [2].

[9] F. Le Fessant and L. Maranget. Optimizing pattern
matching. In International Conference on Func-
tional Programming, pages 26–37, Florence, Italy,
2001.

[10] A. Sale. The implementation of case statements
in pascal. Software – Practice and Experience,
11(9):929–942, September 1981.

[11] G. R. Uh. Effectively Exploiting Indirect Jumps.
PhD thesis, Florida State University, Tallahas-
see,FL, December 1997.

[12] M. Yang, G.-R. Uh, and D. B. Whalley. Effi-
cient and effective branch reordering using profile
data. ACM Transactions on Programming Lan-
guages and Systems (TOPLAS), 24(6):667–697,
Nov 2002.

[13] P. Zhao and J. N. Amaral. To inline or not to inline,
enhanced inlining decisions. In 16th Workshop on
Languages and Compilers for Parallel Computing,
pages 405–419, College Station, TX, Oct 2003.

[14] P. Zhao and J. N. Amaral. Splitting functions.
Technical Report TR04-18, Dept. of Computing
Sciences, Univ. of Alberta, Edmonton, Canada,
2004.

9

