Design and Implementation of an Efficient
Thread Partitioning Algorithm

José Nelson Amaral, Guang Gao, Erturk Dogan Kocalar,
Patrick O’Neill, Xinan Tang

Computer Architecture and Parallel Systems Laboratory,
University of Delaware, Newark, DE, USA, http://www.capsl.udel.edu
Dep. of Comp. Science, Univ. of Alberta, Canada, http://www.cs.ualberta.ca

Abstract. The development of fine-grain multi-threaded program ex-
ecution models has created an interesting challenge: how to partition
a program into threads that can exploit machine parallelism, achieve
latency tolerance, and maintain reasonable locality of reference? A suc-
cessful algorithm must produce a thread partition that best utilizes mul-
tiple execution units on a single processing node and handles long and
unpredictable latencies.

In this paper, we introduce a new thread partitioning algorithm that can
meet the above challenge for a range of machine architecture models. A
quantitative affinity heuristic is introduced to guide the placement of
operations into threads. This heuristic addresses the trade-off between
exploiting parallelism and preserving locality. The algorithm is surpris-
ingly simple due to the use of a time-ordered event list to account for the
multiple execution unit activities. We have implemented the proposed al-
gorithm and our experiments, performed on a wide range of examples,
have demonstrated its efficiency and effectiveness.

1 Introduction

This paper is a contribution to the development of high-performance computer
systems based on a fine-grain multi-threaded program execution and architecture
model. A key to the success of multi-threading is the development of compila-
tion methods that can efficiently exploit fine-grain parallelism in application
programs and match them with the parallelism of the underlying hardware ar-
chitecture. In particular, partitioning programs into fine-grain threads is a new
challenge that is not dealt with in conventional compiler code generation and
optimization.

Our thread partitioning algorithm was developed for the Efficient Architec-
ture for Running THreads (EARTH), a multi-threaded execution and archi-
tecture model [8,4]. Under the EARTH model, a thread becomes enabled for
execution if and only if it has received signals from all the split-phase operations
that it depends on. Furthermore, threads are non-preemptive: once a thread is
scheduled for execution, it holds the execution unit until its completion. There-
fore whenever an operation may involve long and/or unpredictable latencies,

oo XX
READY READY

T i
seIIT1—/| e e e eI

DISPATCH DISPATCH

| MEMORY HIERARCHY | | MEMORY HIERARCHY |

NODE

NODE

INTERCONNECTION NETWORK

Fig. 1. Architecture abstract model.

the role of a compiler (or programmer) is to make the operation “split-phase”.
We call this requirement the split-phase constraint, and assume that such con-
straints are explicitly identified and presented to the thread partitioner. The
thread partitioning problem studied in this paper can be stated as follows.

Given a machine model M and a weighed data dependence graph G with
some nodes labeled as split-phase nodes, partition G into threads such
that the total execution time of G is minimized subject to the split-phase
constraints.

The main contribution of this paper is the development of an heuristic thread
partitioning algorithm suitable for a machine model that allows multiple execu-
tion units in each processing node.! Unlike previous related thread partitioning
algorithms, ours faces a new challenge: the existence of more than one thread
execution unit per node implies a trade-off between the need to generate enough
parallel threads per node to utilize these execution units, and the need to assign
related operations to the same thread to enhance locality of access.

2 Machine Model

Our architecture model is presented in Figure 1. Each processing node has N
execution units (EU) and one synchronization unit (SU). Both the EU and the
SU perform the functions specified in the EARTH Virtual Machine [8]. Threads
that are ready for execution are placed in the ready queue that is serviced by the
EUs. When an active thread performs a synchronization operation or requests a
long latency data transfer, the request for such a service is placed in the dispatch
queue. The SU is responsible for the communication with all other processing
nodes and for the synchronization between threads within the node.

! Notice that the algorithm presented in [7] collapses as much local computation as
possible into a single thread, thus making it inadequate for the machine model
studied in this paper that has multiple execution units per processing node.

In the model of Figure 1 each processing node has its own memory hierarchy,
but an EU can access memory locations in any node of the machine.? An access
to a location in the local memory hierarchy, a local access, has a lower latency
and higher bandwidth than a remote access. As in [7], we assume that a cost
model is provided that allows for an estimation of the cost of all local and all
remote operations required in a program statement. We use § to represent the
cost associated with the termination of a thread and the start of the execution
of another thread. Although we assume that a ready thread can be executed by
any one of the local processors, to favor data locality and benefit from the local
caches in the architecture, the partitioning algorithm takes into consideration
the amount of dependencies among statements when placing them in different
threads

3 Thread Partition Cost Model

We assume that a program is written in a sequential language augmented with
high level-parallel constructs, and that the data has been partitioned among
the memory modules in the processing nodes of the machine. Therefore, given a
program statement we can determine whether the statement is local or remote.
We also assume that the program has been translated into a Data Dependence
Graph (DDG).

Thus the program is represented by a graph G(V, E) where each node in V
represents a collection of program statements. A node can be a simple node such
as an assignment statement or a compound node such as a loop. If the execution
of the program statements requires accesses to a remote memory module, the
node is a remote node otherwise the node is a local node. Each edge (v;, v;) in
E represents a data dependency from v; to v;. An edge departing from a remote
node is a remote edge, and an edge departing from a local node is a local edge.
Like in [7] we represent E by an adjacency matrix C defined as:

C. = 1if (Ui,’l}j)EE
“J 71 0 otherwise

The partitioning algorithm is based on a cost model that associates a lo-
cal cost ¢k and a remote cost ¢ to each node v; that represent the number of
cycles that the nodes spends in the EU and the number of cycles that elapses
between the request and the completion of a split-phase transaction started by
the node. One of the main goals of the partitioning algorithm is to decide when
it is advantageous to dispatch the request, terminate the current thread and to
start the execution of a new thread when the remote operation is completed.
For some interconnection networks a model to predict the network performance
will be necessary because the remote cost is affected by the load in the network.
For the experiments with our partitioning algorithm, we assume that this cost

2 If the underline machine does not allow direct accesses to remote memory, the
EARTH systems emulates a global address space.

is bounded by a constant. The cost model presented in this paper can be con-
structed for any machine through profiling experiments and examination of the
machine specification for the number of cycles required to execute each class of
instruction. The network latency and bandwidth can also be readily measured.
For our experiments we use the values obtained by Theobald for the EARTH-
MANNA implementation [8].

4 Problem Formulation

Assume that at runtime threads are selected for execution from a single queue
of ready threads using an efficient scheduler. Given a DDG G with each node
v; € G annotated with its local cost ¢/ and its remote cost cf*, and a constant
thread switching cost ¢, the thread partitioning problem is the problem
of finding a thread partition P that meets two goals: (1) minimizes the total
execution time, (2) maximizes the affinity between nodes assigned to the same
thread. The affinity of a node v; of G to a thread T}, of P, A(v;,T}), is given by
the ratio between the number of dependences between nodes of T} and v;, and
the total number of incoming edges of v;.

> v;em, Cii
2. Cii

Observe that if all the incoming edges of v; are from nodes in T}, then A(v;, T}) =
1. On the other hand, if none of the incoming edges of v; are from nodes in T,
then A(v;, T) = 0.

Goals (1) and (2) should be pursued under the constraint that nodes con-
nected by a remote edge are assigned to different threads. Goal (1) is the prin-
cipal goal of the partition algorithm, while goal (2) is necessary to favor locality
of access because the abstract model assumes that all processors have equal
probability of fetching a thread from the ready queue.

The thread partitioning algorithm uses the affinity function to decide in which
thread to place a node of the DDG. The algorithm keeps a partial schedule of
the threads already formed and searches into this schedule for the best place to
insert a node from the DDG. To minimize the searching time, an event list is used
to store the starting and finishing time of each thread. A detailed description of
the thread partitioning algorithm including an example is presented in [1].

A(’Ui, Tk) =

5 Experimental Results

We use the Thread Partition Test Bed presented in [7] to generate random
DDGs to test the partition algorithm. We vary several properties of the DDGs
generated, including the number of nodes, the average number of outgoing edges
from a node, the percentage of remote nodes in the graph and the distribution
of local and remote costs in the nodes.

The distribution of execution costs for the nodes is as follows: A local node
can be of three types: 1) Local I/O (20%), 2) Local function call (10%), 3)
Other(math,etc.) (70%). A local I/O is assigned a cost of 10 cycles. A local
function call is assigned 10 cycles and a node of other type has 3 cycles. Remote
nodes can be of type: 1) Remote I/O (80%), 2) Remote function call (20%). A
remote I/0 is assumed to take 300 cycles, and the costs of remote function calls
are uniformly distributed between 400 cycles and 4000 cycles. This distribution
of node types and the degree of the DDG generated are based on static profiling
of EARTH-C benchmarks [7, 3]

5.1 Summary of Main Experimental Results
The main results of our experiments can be summarized as follow.

Absolute Efficiency Our new partition algorithm is very efficient for a wide
range of DDGs on all the machine models except the EARTH-Dual model
where only a single EU is available per node and there is a high cost associ-
ated with thread switching. The algorithm performs remarkably well when
the machine model has multiple execution units — e.g. for SMP and SCMP
models — the average absolute efficiency is above 99%.

Effectiveness of Search Heuristics The use of an event list and of a time
line schedule results in an effective search for the placement of a new node
(see [1] for details).

Latency Tolerance Capacity The algorithm is robust to variations in la-
tency. In our experiments a remote operation latency varied between 400 and
4000 cycles. As shown in Table 1 the partition algorithm produces thread
partitions that are able to tolerate these varied latencies.

5.2 Machine Architectures

We define four different machine architectures for our experiments. MANNA is
a multiprocessor machine with 40 processors distributed in 20 processing nodes
interconnected by a crossbar switch. MANNA is the first platform in which the
EARTH model was implemented [5].

EARTH-MANNA-DUAL: An implementation of the EARTH architecture
on the MANNA machine. The second processor is used for the SU func-
tion. Therefore, according to our model, this is a machine with a single EU
per node. The thread switching cost in this machine is § = 36 cycles (see
measurements reported in [8]).

EARTH-MANNA-SPN: The two processors in the machine are used to im-
plement the SU functions. Therefore, this machine has two EUs per process-
ing node. The thread switching cost is 6 = 16 (see measurements reported
in [8]).

EARTH-SU: This is the EARTH architecture with a custom hardware SU.
We consider a machine with a single execution unit per processing node and
with a thread switching cost § = 2 (see measurements reported in [8]).

SMP: This is an Symmetric Multi-Processor machine with 4 processors per
node. In such a machine we expect the thread switching cost to be similar
to the one for the MANNA-SPN, therefore we will use § = 16.

Single-Chip Multi-threaded Processor (SCMP) In this case we consider
a hypothetical machine that has multiple functional units with multi-threading
support. We assume a machine with 8 EUs and with a thread switching cost
of § =10.

5.3 Measuring Absolute Efficiency

An optimal partition cannot result in an execution time that is shorter than
the critical path of the program or shorter than the total amount of work to be
performed divided by the number of EUs available. Thus, a lower bound for the
execution time is given by:

P
ZZ—‘lowest = maX(Tcrita %)
where T¢.;, is the length of the critical path, the sum of the local cost ciL of all
nodes is the total amount of work to be performed by the program, and N is the
number of EUs in the machine. We define the absolute efficiency as the ratio:

E = ZZ—‘louu»zst/il—‘end

where T,,q is the execution time for the program with the thread partition
produced by our algorithm running under an efficient FIFO scheduler. E = 100%
means that the partition algorithm found a partition that can result in the
optimal execution time.

To measure the efficiency of the algorithm, we varied the percentage of remote
nodes in the randomly generated DDG from 25% to 75%, and the size of the
graph from 10 nodes to 1000 nodes. Each graph has three times as many edges
as the number of nodes. Then we generated twenty distinct random DDGs and
applied the partition algorithm to each one of them. We computed the average
execution time for each run, compared it with Tjowest, and present the average
efficiency in Table 1. The algorithm did remarkably well for machines with four
or eight execution units per processing node (SMP and SCMP). The algorithm
also did quite well both for the EARTH-SU that has a single EU and a very low
thread switching cost and for the EARTH-MANNA-SPN that has two EUs per
processing node. The results for graphs with a large number of nodes for the
EARTH-MANNA-DUAL are not as good. This should not come as a surprise
because this architecture has a single EU and very large thread switching costs.

6 Related Work

The thread partition problem for multi-threaded architectures is similar to the
task partitioning and scheduling problem [6, 9]. In both problems a program has

% Remote Nodes

Machine Edges | 10 [20 [50 [100]200] 500 [1000
EARTH 25% |87.6]91.8]90.0(83.6{82.3| 7.0 | 78.1
MANNA- 50% |96.3]95.8/96.8(93.783.8| 71.6 | 71.2
DUAL 75% |96.598.7/98.9]98.2/95.6] 69.5 | 66.0
EARTH- 95% |95.2]98.2(05.9(94.2[91.5| 87.1 | 88.6
MANNA- 50% |95.797.6/98.7(97.7|97.8| 88.5 | 83.7
SPN 75%]99.3/99.8/99.999.8/99.8] 99.3 | 80.3
95% 195.3]98.3|92.4]93.2/96.7] 99.9 |100.0

EARTH-SU 50% |95.9(95.4/99.2(97.0{92.0] 92.8 | 98.1

75% 98.4|99.3(98.4|97.8|98.5| 90.3 | 94.1
25% 99.2199.7(99.8(99.9199.3(99.9 | 99.9
SMP 50% 99.7199.8(99.9199.9199.9(99.9 |100.0
75% 99.8/99.9(99.9{99.9199.9(100.0|100.0
25% 99.2199.8(99.8199.9199.3(99.9 | 99.9
SCMP 50% 99.7199.8(99.9199.9199.9(99.9 |100.0
75% 99.7199.9(99.9{99.9199.9({100.0|100.0

Table 1. Average partition algorithm efficiency.

to be divided into smaller pieces with respect to some constraints (dependencies).
The focus of task partition is to allocate N tasks onto M processors in order to
reduce the total execution time. This problem is often represented as a graph
partition problem in which nodes denote tasks and edges represent two types
of constraints: precedent constraint, i.e., one task must complete before another
task can start; and communication constraint, i.e., data must be exchanged be-
tween two tasks. When the communication constraint is taken into consideration
the task partitioning problem is an NP-complete problem [2]. In this case, the
optimization goal is often reduced to minimize the total communication [6]. For
further discussion of related work we refer to [7] and [1].

7 Conclusion

We designed, implemented, and evaluated an efficient, effective, and robust algo-
rithm to partition a program into threads for the case in which multiple execution
units are available in each processing node of a parallel architecture. The algo-
rithm is efficient because it generates a partition that results in an execution
time that is very close to the best possible execution time determined by the
length of the critical path and the total amount of computation existing in the
program. The algorithm is robust because it worked efficiently for a varied set of
architectures and a wide range of latencies between processing node. The algo-
rithm is effective because it employs a data structure associated with a searching
algorithm that reduce the time complexity of the algorithms. On our experimen-
tal framework we tested the algorithm with several thousand data dependency
graphs with up to a thousand nodes and several thousand connections.

Acknowledgements

We would like to thank Andres Marquez, Arthour Stoutchinin, Gagan Agarwal,
Kevin Theobald, and Mark Butala for productive discussions and valuable help.
We acknowledge the support of DARPA, NSA and NASA through a subcontract
with JPL/Caltech. The current EARTH research is partly funded by the NSF.

References

1. J. N. Amaral, G. R. Gao, E. D. Kocalar, P. O’Neill, and X. Tang. Design and imple-
mentation of an efficient thread partitioning algorithm. Technical report, University
of Delaware, Newark, DE, July 1999. CAPSL Technical Memo 30.

2. Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freemann and Co., New York, New York,
1979.

3. Laurie J. Hendren, Xinan Tang, Yingchun Zhu, Guang R. Gao, Xun Xue, Haiying
Cai, and Pierre Ouellet. Compiling C for the EARTH multithreaded architecture.
In Proceedings of the 1996 Conference on Parallel Architectures and Compilation
Techniques (PACT ’96), pages 12-23, Boston, Massachusetts, October 20-23, 1996.
IEEE Computer Society Press.

4. Herbert H. J. Hum, Olivier Maquelin, Kevin B. Theobald, Xinmin Tian, Guang R.
Gao, and Laurie J. Hendren. A study of the EARTH-MANNA multithreaded sys-
tem. International Journal of Parallel Programming, 24(4):319-347, August 1996.

5. Olivier Maquelin, Guang R. Gao, Herbert H. J. Hum, Kevin B. Theobald, and Xin-
Min Tian. Polling Watchdog: Combining polling and interrupts for efficient message
handling. In Proceedings of the 23rd Annual International Symposium on Computer
Architecture, pages 178-188, Philadelphia, Pennsylvania, May 22-24, 1996. ACM
SIGARCH and IEEE Computer Society. Computer Architecture News, 24(2), May
1996.

6. Vivek Sarkar. Partitioning and Scheduling Parallel Programs for Multiprocessors.
Research Monographs in Parallel and Distributed Computing. Pitman, London and
The MIT Press, Cambridge, Massachusetts, 1989. Revised version of the author’s
Ph.D. dissertation (Stanford University, April 1987).

7. Xinan Tang, Jian Wang, Kevin B. Theobald, and Guang R. Gao. Thread par-
titioning and scheduling based on cost model. In Proceedings of the 9th Annual
ACM Symposium on Parallel Algorithms and Architectures, pages 272281, New-
port, Rhode Island, June 22-25, 1997. SIGACT/SIGARCH and EATCS.

8. Kevin Bryan Theobald. EARTH: An Efficient Architecture for Running Threads.
PhD thesis, McGill University, Montréal, Québec, May 1999.

9. T. Yang and A. Gerasoulis. List scheduling with and without communication delay.
Parallel Computing, 19:1321-1344, 1993.

