A Multi-Threaded Runtime System for a
Multi-Processor/Multi-Node Cluster

Christopher Jason Morrone (morrone@capsl.udel.edu)
Computer Architecture and Parallel Systems Laboratory (CAPSL)
Dept. of Electrical and Computer Engineering, Univ. of Delaware

Newark, DE, USA

José Nelson Amaral (amaral@cs.ualberta.ca)
Department of Computing Science, University of Alberta
Edmonton, AB, Canada

Guy Tremblay (tremblay.guy@ugam.ca)
Dépt. d’informatique, Université du Québec & Montréal
Montréal, QC, Canada

Guang R. Gao (ggao@capsl.udel.edu)
CAPSL, Univ. of Delaware, Newark, DE, USA

Abstract.

We designed and implemented an EARTH (Efficient Architecture for Running
THreads) runtime system for a multi-processor/multi-node, cluster. For portability,
we built this runtime system on top of Pthreads under Linux. This implementation
enables the overlapping of communication and computation on a cluster of Sym-
metric Multi-Processors (SMP), and lets the interruptions generated by the arrival
of new data drive the system, rather than relying on network polling. We describe
how our implementation of a multi-threading model on a multi-processor /multi-node
system arranges the execution and the synchronization activities to make the best
use of the resources available, and how the interaction between the local processing
and the network activities are organized.

Keywords: multi-threading, cluster computing

1. Introduction

This paper describes the design and implementation of a runtime sys-
tem for the multi-threaded EARTH architecture. This is the first com-
pletely functional implementation of the EARTH system on a cluster
of symmetric multi-processor (SMP) nodes. Our runtime system is
designed for easy portability across Beowulf systems constructed with
various processor nodes. It uses standard Unix sockets for inter-node
communication and splits the tasks performed in the EARTH system
— thread execution, communication, and synchronization — into three
separate modules: an execution module, a sender module, and a receiver
module. As discussed in Section 4, this organization of the runtime sys-

';:‘ © 2001 Kluwer Academic Publishers. Printed in the Netherlands.

MorroneEtAl.tex; 19/04/2001; 14:46; p.1

2

tem is fundamental for an efficient, portable, and deadlock-free runtime
system.

This paper is organized as follows. Section 2 describes the EARTH
programming model and its programming language, Threaded-C (re-
lease 2.0), a revised version of the language used to write the programs
run on the EARTH system. Section 3 briefly describes the EARTH
architecture model and the role of the runtime system (RTS). Section 4
discusses the new design of the RTS. Performance results (speedup
curves) are then presented in Section 5, comparing our implementa-
tion of the EARTH runtime system for SMP clusters with an earlier
implementation of such system. Results are presented for two clusters,
one with 16 single processor nodes, and another with 64 dual-processor
nodes. Finally, Section 6 briefly presents related work.

2. The EARTH Programming Model and its Programming
Language

This section presents the EARTH programming model and how it
is embodied in a specific programming language, called Threaded-C.
EARTH’s programming model has its origin in the dataflow model
of computation. In a pure dataflow model fine-grain parallelism is
supported by representing programs as graphs where each node is
associated with a single instruction and arcs indicate data exchanged
between instructions. EARTH’s programming model also rests on the
notion of a dataflow graph, except that nodes can be associated with se-
quences of instructions whereas arcs are simply synchronization signals
indicating dependencies.

An important characteristic of EARTH’s programming model is its
two-level hierarchy formed by threaded functions and fibers. Threaded
functions are instantiated by the parallel activation of procedures. Threaded
functions are thus similar to the threads found in Java [12] or POSIX [5].
A distinguishing characteristic of EARTH’s threaded functions, how-
ever, is that they can themselves contain an additional level of paral-
lelism, called fibers. A fiber is an independent and lightweight thread
of execution that corresponds strictly to a segment of code inside a
threaded function. Furthermore, since the different fibers of a threaded
function share the same context, viz., the activation frame of their
parent procedure, they allow for rapid context switch and, thus, for
fine-grain parallelism.

Fibers possess the following characteristics:

— Fibers are scheduled using a dataflow approach: a fiber becomes
ready to execute when it has received all appropriate signals.

MorroneEtAl.tex; 19/04/2001; 14:46; p.2

THREADED fib(int n, int *GLOBAL result, SPTR done)
{

int r1, r2;

1

2

3

4

5 if (n<=1) {
6 PUT_SYNC(1, result, done);
7

8

TERMINATE;
} else {

9 TOKEN(fib, n-1, TO_GLOBAL(&r1), TO_SPTR(READY));
10 TOKEN(fib, n-2, TO_GLOBAL(&r2), TO_SPTR(READY));
11 }

12

13 FIBER READY <* 2 %> {

14 PUT_SYNC(ri1+r2, result, done);
15 TERMINATE;

16 }

17 }

Figure 1. Threaded-C recursive procedure for computing the nth Fibonacci number

— Instructions within fibers execute sequentially based on the under-
lying language semantics (in our case, C).

— Fibers execute in a non-preemptive manner. In other words, a fiber
is never interrupted and must never block.

The Threaded-C language was designed to support the two-level
threading hierarchy of EARTH as well as the appropriate fiber se-
mantics (dataflow scheduling and non-preemptiveness). Threaded-C
evolved from an initial version, where some low-level details had to
be explicitly specified [18] (e.g., declaration of synchronization slots,
numeric values for identifying fibers and slots), to a more recent ver-
sion [19] designed to simplify the language and make it easier to use.
It is important to stress, however, that both versions of the language
allow a programmer to have complete control over the decomposition
into threads and fibers and on communications and synchronizations.

Figure 1 presents a recursive procedure fib, written in Threaded-C
(release 2.0), for computing the nth Fibonacci number. THREADED (Line 1)
means that parallel activations of this procedure can be created using
TOKEN (Line 9 and 10). Alternately we could have used INVOKE to create
tokens.

One key characteristic of the EARTH model, apparent also in Threa-
ded-C, is its underlying memory model. Although EARTH supports
a global address space with uniform addressing, it does not presume
that remote locations can be accessed using ordinary instructions. In

MorroneEtAl.tex; 19/04/2001; 14:46; p.3

4

Threaded-C, the notion of GLOBAL handle (pointer to a possibly remote
location) is thus introduced and special instructions are used to transfer
data to/from remote locations.

Based on these notions, the example can be explained as follows:

— The initialization fiber (Lines 5-11), executed as soon as fib starts,
first checks whether recursive calls must be performed or not.

— In the base case (Lines 6-7), the result is returned immediately
using a PUT_SYNC instruction. When the transfer is complete, a
signal is sent to the synchronization slot done. The thread then
terminates (Line 7), so the activation frame can be deallocated.

— In the recursive case (Lines 8-11), procedure calls are done using
the TOKEN instruction, which means the RTS will select the node(s)
where the procedures will be executed. These invocations will re-
turn their result using distinct local variables (r1 and r2) but will
both send a completion signal to the same slot (TO_SPTR(READY)).

— A synchronization slot is implicitly associated with a fiber of the
same name (Line 13). The “<x k *>” construct indicates how many
signals must be received before a fiber becomes enabled (ready for
execution). The result is also returned using a PUT_SYNC.

Threaded-C (release 2.0) provides support for multi-threaded pro-
gramming of SMP machines. On such machines, there can be multiple
fibers, all executing at the same time, accessing the same local memory.
Mutual exclusion mechanisms must thus be provided:

1. Mutually exclusive fibers: A fiber declared as EXCLUSIVE will always
be the unique exclusive fiber among a given thread to be executing
at any given time (similar to Java’s synchronized [12]).

2. Atomic mailboxes: This data type provides a form of non-deterministic
merge operator, as typically found in dataflow models, that is, a
location where multiple messages from different sources can be
stored until retrieved by consumers. The key operations are the
followings (see [19] for additional operations):

— INITMAILBOX(MAILBOX *mb, SLOT s);: Allocates a mailbox on
the local processor and associates with it a synchronization
slot s where a signal will be sent each time a new item arrives.

— DROP_IN(MAILBOX *GLOBAL mb, void* item, int nb_bytes);:
Transfers an item (of size nb_bytes) to the (possibly) remote
mailbox mb. When the item has been put into the destination
mailbox, a signal is sent to its associated sync slot.

MorroneEtAl.tex; 19/04/2001; 14:46; p.4

memory bus

node
ElERE ¢
oc
. (©)
l il il . E
from RQ e node %
5
'_
(@]
node g
=z
2E 3
Sz :

w

—s E

Figure 2. EARTH Architecture

— RETRIEVE_ITEM(MAILBOX mb, void* item);: Retrieves an (arbi—
trary) item from mb. Contrary to DROP_IN, this operation must
be executed on the node where the mailbox has been allocated.

Threaded-C dataflow style communication and synchronization op-
erations can be and have been used to define other synchronization
mechanisms, for example, locks, semaphores, I-structures, communica-
tion channels, parallel reduction boxes, etc.

3. The EARTH Architecture Model and the Role of the
Runtime System

Figure 2 shows the general structure of the EARTH architecture model.
In this model, processing nodes are interconnected via a network and
each processing node contains a synchronization unit (SU) and one or
more execution units (EU). The EU is responsible for doing the “useful
work”, that is, for executing fibers. The SU is in charge of synchroniza-
tion, inter-node communication, scheduling, and load balancing. All of
the local EUs and the SU communicate with each other through the
ready queue (RQ) and the token queue (TQ).

Because fibers correspond to sequences of instructions and are non-
preemptive, and because the SU takes care of all synchronization tasks,
instructions from fibers can be executed using a regular instruction
pipeline. An EARTH machine can thus be built using off-the-shelf
processors [10]. For instance, the experimental results presented in
Section 5 were obtained on two different Beowulf machines: Ecgth-

MorroneEtAl.tex; 19/04/2001; 14:46; p.5

‘ Application ‘

Recelven ! Sender |
' Module! | Module|

‘ Network ‘

Figure 3. EARTH Runtime System

eow, a cluster at Michigan Technological University consisting of 64
dual-processor nodes, and Earthquake, a cluster at the University of
Delaware consisting of 16 single-processor nodes. Other implementa-
tions have also been built for various machines: MANNA, network of
Sun workstations, IBM SP-2, etc.

When using standard processors to build an EARTH machine, the
SU and the various elements comprising an EARTH node must be im-
plemented in software. Handling these various tasks, including creating
threads, scheduling fibers, and handling network communication, is the
task of the runtime system (RTS). In the next section, we present our
new design for this RTS.

4. The Design of the New Runtime System

Our goal is to design an EARTH runtime system that is portable,
makes efficient use of existing standard network interfaces, uses all the
processing resources available in SMP Beowulf clusters, and delivers
good performance.

The general structure of our new EARTH runtime system is shown
in Figure 3. The Execution Module executes fibers and also takes on the
respounsibilities of intra-node scheduling, synchronization, communica-
tion and load balancing, tasks which were performed strictly by the SU
in previous implementations of EARTH. The Receiver (resp. Sender)
Module handles incoming (resp. outgoing) messages. The Token Queue

MorroneEtAl.tex; 19/04/2001; 14:46; p.6

7

(TQ) contains work that may either be performed by a processor within
the local node, or that might be sent to a different node for execution.
The Ready Queue (RQ) contains fibers that must be executed locally,
and the Sender Queue (SQ) contains the outgoing messages.

In the following paragraphs, we describe the interface between the
RTS and the network, and how our design for the RTS benefits from
the resources available in an SMP machine. We also discuss the tradeoff
between polling and interrupts, blocking I/O, potential deadlocks in a
RTS, and the use of multiple processors in each node.

4.1. THE CASE FOR STANDARD UNIX SOCKETS

We chose the convenience of end-point communication provided by
Unix sockets to establish the communication channels between mul-
tiple SMP processor nodes. Sockets provide an easy to use Application
Programming Interface (API) that is consistent across many operating
systems and networking hardware.

Earlier implementations of EARTH used custom network interfaces
that allowed more efficient use of the network but were difficult to port
to newer hardware and operating systems [17, 11].

4.2. To PoLL or NotT To PoLL

We know three options to implement the communication between the
runtime system and the network interface: interrupts, polling, and
polling-watchdog. Interrupts are usually not desirable in a multi-threading
system because they interrupt the running thread and lead to a context
switch. The preferred method is for the runtime system to poll the
network between the execution of threads, and thus avoid unneces-
sary context switching. A third method, polling-watchdog, developed
especially for EARTH [14], mixes polling and interrupts in the fol-
lowing way: the runtime system polls the network between thread
context switching, but when a message arrives, a timer starts counting;
if the message is not handled within a given amount of time, the
network interface interrupts the runtime system. The advantage of
polling-watchdog is that it prevents a thread containing a long run-
ning loop from making the node where it is running oblivious to what
is happening in the remaining nodes of the cluster. To implement a
polling-watchdog, however, it must be possible to program the network
interface to implement the appropriate time-out mechanism. This was
done in earlier versions of the EARTH runtime system, but made those
systems less portable.

Since Unix sockets are used for our inter processing node communi-
cation, a polling approach would use the select() system call, making

MorroneEtAl.tex; 19/04/2001; 14:46; p.7

8

the kernel perform a linear search on its socket structures to identify
which socket has an incoming message. In a large cluster with many
open sockets, polling can thus become expensive (between 2,500-15,000
processing cycles).

The drawback of interrupts is that they happen asynchronously with
the thread context switching in a multi-threading system. Nevertheless,
our decision to use Unix sockets makes interrupts unavoidable and care
must be taken when handling them. When a message arrives, the Ether-
net card raises a hardware interrupt that the CPU handles by stopping
the currently running process. The OS interrupt handler decodes the
interrupt and runs the appropriate hardware driver. When the driver is
finished, the running process is allowed to continue at the point where
it was interrupted. In our design, the kernel informs the runtime system
of the arrival of a message and the runtime system immediately takes
the actions required to process the message within the EARTH model
before allowing the interrupted thread to resume execution.

4.3. BLOCKING Vvs. NON-BLOCKING I/O

After the runtime system is notified that a message arrived, it needs
to transfer the message’s content, using a read() operation, from the
socket buffer in kernel space into a buffer in user space. When the
runtime system needs to send a message, it issues a write() operation
to a socket. Both the read and the write operation behavior are affected
by the use of blocking or non-blocking I/O. Such effect appears when a
read requests more bytes than currently available in the socket buffer,
or when the buffer overflows in the case of a write operation. In a
non-blocking I/O system, any read or write operation will return im-
mediately with the number of bytes that were successfully read /written.
On the other hand, in a blocking I/O system, a call will not return (i.e.,
will block) until all bytes have been read/written.

Modern systems use default socket buffer sizes of 8192-61440 bytes [16].
Because modern processors are much faster than any available network-
ing technology, these small buffers often become full. Thus the potential
blocking situation can be frequent. If blocking I/0O is used in a system
where the same OS process handles both the network activities and the
execution of EARTH threads, precious CPU cycles would be wasted
when an I/O operation blocks. In our current design we opted for a
blocking I/O system but created two separate modules (pthreads) for
the network activities. Thus, a blocked I/O operation does not block
the processor indefinitely.

MorroneEtAl.tex; 19/04/2001; 14:46; p.8

4.4. A DEADLOCK-FREE RUNTIME SYSTEM

When blocking I/O is used, a potential deadlock condition may arise
when both the socket send buffer on one end of a link and the socket
receive buffer on the other end of the same link become full. Potentially
both nodes might be blocked in a write() operation to the send buffer
and neither will read from the receive buffer to allow communication to
proceed. More general deadlock situations can be described considering
multi-threaded programs that have cycles of inter-node dependencies.

Our solution, as shown in Figure 3, is to create two separate modules
in each processing node: a sender module and a receiver module. Now,
when the sender module blocks, the processor can switch to the receiver
module and read any incoming data that is there. If the scheduling is
fair with respect to the receiver module, this will not lead to a deadlock
situation, even if the execution module is allowed to proceed when the
sender module blocks.

4.5. BENEFITING FROM SMP

The RTS described here uses the blocking mode of access to sockets.
Polling is avoided by the use of blocking calls to select(), which will only
return when incoming traffic has arrived in a socket’s receive buffer.

To avoid wasting cycles when blocking occurs — waiting for incom-
ing network reads or waiting for outgoing network writes — the parts
of the RTS that might block are decomposed into separate modules
(pthreads). Furthermore, these threads are distinct from the thread
responsible for running fibers.

The part of the RT'S which runs fibers is called the Ezecution Module
(EM). The two modules which, together, handle all networking activity,
are known as the Sender Module (SM) and the Receiver Module (RM).
These three modules are implemented as separate threads using POSIX
threads (pthreads). The networking modules are only active when there
is network traffic that needs to be handled; at all other times, they avoid
wasting CPU cycles by going to sleep.

With the new modular design of the RTS, it becomes easier to
provide SMP node support. Not only can the EM, SM, and RM run
concurrently, but also we might implement multiple EMs in the same
processing node, with concurrent executions in multiple processors.

When multiple EMs are active, each has its respective Ready Queue,
although they all share a Token Queue and a Send Queue. All of the
modules are implemented as pthreads, and therefore share the same
memory space. Intra-node communication is accomplished simply and
efficiently through memory reads and writes.

MorroneEtAl.tex; 19/04/2001; 14:46; p.9

10

5. Experimental Results

5.1. THE EXPERIMENTAL PLATFORM

In order to evaluate the performance of our runtime system, we installed
it on two Beowulf clusters: “Earthquake” operated by the Computer
Architecture and Parallel Systems Laboratory at the University of
Delaware, and “Ecgtheow” operated by the Computational Science
and Engineering program at Michigan Technological University and
sponsored by the NASA HPCC/ESS project. Earthquake is sixteen
500MHz Pentium IIT processor nodes with 128 MB of RAM. Ecgtheow
has 64 nodes, each with dual Pentium Pro processors (a total of 128
processors) and 128MB of RAM. The interconnection network for both
clusters is Fast Ethernet. For our RTS implementation, the most im-
portant distinction between these two clusters is the single processor
nodes in Earthquake and the dual processor nodes in Ecgtheow.

We also ran two versions of the runtime system to evaluate the influ-
ence of the runtime system design and implementation on performance.
RTS 1.2 uses a polling method to access the network, implements non-
blocking sockets and concentrates all the activities (thread execution,
sender, and receiver) in a single module. By contrast, RTS 2.0 uses
interrupts to access the network, implements blocking sockets, and sep-
arates the execution of threads, the sending, and the receiving activities
of the network into three separate threads.

5.2. TEST PROGRAMS

We used three programs to evaluate our implementation of the run-
time system: (1) a recursive implementation of Fibonnacci in which
each non-base call to the Fibonnacci function generates two distinct
recursive calls (see Figure 1 (p. 3) for a Threaded-C version of this pro-
cedure); (2) a recursive, non-throttled implementation of N-queens; and
(3) ATGC (Another Tool for Genome Comparison), a multi-threaded
implementation of a dynamic programming algorithm for sequence com-
parison [15].

Figure 4 presents the speedup curves for runs of £ib(32) (a recursion
with 4.3 billion leaves) on Ecgtheow and Earthquake with both RT'S 1.2
and RTS 2.0. The recursive Fibonnaci implementation is not throttled
because it is used to test the runtime system ability to handle appli-
cations that generate a large number of threads. Observe that, for all
speedup curves presented in this section, Ecgtheow has two processors
in each processing node while Earthquake has only a single processor
in each node. RTS 2.0 (1 EM) is a version of the runtime system that

MorroneEtAl.tex; 19/04/2001; 14:46; p.10

11

Speedup
@
T
1

s Ectheow RTS 1.2 —+—
2F Ectheow RTS 2.0 (1 EM) ——x-—- +
7 Ectheow RTS 2.0 (2 EM) ---%---

Earthquake RTS 1.2 &
Eartpquake RT§ 2.0 =

0 5 10 15 20 25 30
Number of Nodes

Figure 4. Speedup curves for Fibonnaci

implements a single execution module in each processing node, while
RTS 2.0 (2 EM) implements two execution module per processing node.

For clusters with more than 10 processing nodes, RTS 2.0 outper-
forms RTS 1.2 in both machines. When two EMs are used in Ecgtheow,
RTS 2.0 delivers a speedup of 15 in 16 dual-processor nodes, while RTS
1.2 has a speedup of only 10.5. Observe that on Earthquake when only
eight single-processor nodes are used RTS 2.0 underperforms RTS 1.2.
This is because, with a single processor per node, the cost of switching
between the multiple modules of RT'S 2.0 becomes significant. This cost,
however, is amortized by the more efficient network interface when all
16 nodes of Earthquake are used.

The goal of the N-queens program, a recursive backtracking algo-
rithm that is representative of some typical highly parallel applications,
is to determine the number of ways in which n queens may be placed on
an n x n chessboard so that no queen is in a position to attack another.
Figure 5 shows the speedup curves for N-queens on a 12 x 12 board.
RTS 2.0 shows clear improvement over RT'S 1.2. Also important to note
is the decline in speedup that happens with RTS 1.2 when the program
runs on more than 8 nodes. Increase in speedup clearly tapers off at 8
nodes for RTS 2.0 as well, but speedup continues to increase gradually
as nodes are added, and there is no adverse effect on runtime. !

! Much better speedup curves for N-queens(12) can be obtained when the pro-
gram is throttled at an adequate level and stops generating new threads. In this

MorroneEtAl.tex; 19/04/2001; 14:46; p.11

12

16
‘ Ectheow RTS 1.2 ———
Ectheow RTS 2.0 (1 EM) ——x—-
Ectheow RTS 2.0 (2 EM) %~
14 Earthquake RTS 1.2 & o
Earthquake RTS 2.0 —-=~
12 E
10 E
o
=]
3 8t SN
Q.
)
6 4
4+ o
2 o
/
0 Il Il Il Il Il Il
0 5 10 15 20 25 30

Number of Nodes

Figure 5. Speedup Curves for N-Queens(12)

90
80 o
70 o
60 « o
g 50 S
=) . -
S - -
I A
o] i o
o B >
@ 40 i
30 o
20 o
Ecgtheow RTS 1.2 —+—
10 W Ecgtheow RTS 2.0 (1 EM) ---x<--- |
Ecgtheow RTS 2.0 (2 EM) ---*---
3 Earthquake RTS 1.2 &
o ‘ ‘ ‘ Earthql‘Jake RTS 20 -

0 10 20 30 40 50 60
Number of Nodes

Figure 6. Speedup curves for ATGC

MorroneEtAl.tex; 19/04/2001; 14:46; p.12

13

The third benchmark — ATGC — is a dynamic programming algo-
rithm for DNA sequence comparison. In this program run, two random
DNA sequences, both of size 40K base pairs, were compared. In the
graph of Figure 6, the speedup curves for RTS 1.2 and RTS 2.0 using
one EM are very similar. ATGC is an application which is far more
CPU intensive than network intensive. Likewise, when ATGC is run
on Earthquake, the speedup curves for RTS 1.2 and RTS 2.0 are very
similar. The advantage of the new design in RTS 2.0 is made more
evident when a second EM is activated. RTS 2.0 is able to fully utilize
both processors in every node of Ecgtheow, which results in a speedup
curve nearly double that of the other two curves. 2

6. Related Work

The EARTH model has its origin in the argument-fetching dataflow
model, a dataflow model without flow of data [9]. EARTH also has been
influenced by early work in multi-threading parallel architectures [13].
Earlier implementations of the EARTH system are described in [10, 17,
11]. The ATGC program is described in [6, 15]. Recent projects most
relevant to our research are Cilk and MPI.

Like EARTH, Cilk is a C-based multithreaded language and runtime
system [2]. However, in its initial design, Cilk targetted exclusively
shared memory machines. Cilk uses a provably good “work-stealing”
scheduling algorithm and follows a “work-first” principle. Cilk con-
centrates on minimizing overheads that contribute to work, even at
the expense of overheads that contribute to the critical path [8]. Cilk-
NOW is an implementation of Cilk for networks of workstations [1, 3]. It
transparently manages resources, provides transparent fault tolerance,
and implements “adaptive parallelism” which allows a Cilk application
to run on a set of workstations that may grow and shrink throughout
program execution.

Cilk’s underlying programming model is limited to divide-and-conquer
parallelism and does not support the two level hierarchy of threaded
functions vs. fibers that makes Threaded-C a multithreaded language
that can express parallelism at varying level of granularity, including
irregular fine-grain parallelism.

MPI is a standard interface for the message passing paradigm that
seeks to combine the most attractive features of existing message pass-

study we do not throttle because our goal is to assess how well the RTS handles
high volumes of tokens.

2 Notice that when executing in 60 nodes Egtheow is using 120 processors. Thus
the speedup o f 90 in Figure 6 is sublinear.

MorroneEtAl.tex; 19/04/2001; 14:46; p.13

14

ing systems [7]. MPI is a widely accepted industry standard that makes
it possible to write portable parallel programs. MPI’s programming
model, contrary to Threaded-C, supports only coarse-grain parallelism
with all processes having to be created statically. On the other hand,
MPI provides a rich set of operations for global communication, e.g.,
broadcast, scatter, and gather [4].

7. Conclusion

This paper has presented the new design of the runtime system for the
EARTH multithreaded architecture. The intended target machines for
this new RTS are modern multi-nodes systems with multiple proces-
sors per node (SMP clusters). The RTS has been designed with the
goal of being portable, yet being able to benefit efficiently from the
power of multiple processors per node. In order to do this, the RTS
implementation uses multiple threads of execution.

Acknowledgments

The authors would like to thank current and former members of CAPSL

at the University of Delaware for valuable ideas exchange. Special
thanks to Kevin Theobald for the N-queens code, and to Juan del
Cuvillo and Wellington Martins for the ATCG code. The authors also
acknowledge the partial support from DARPA, NSA, NSF (under grants
NSF-INT-9815742 and NSF-CSA-0073527), and NASA. The initial EARTH
work was partially supported by the Natural Sciences and Engineering
Research Council (NSERC) of Canada.

References

1. R. Blumofe. Ezecuting Multithreaded Programs Efficiently. PhD thesis, MIT,
Dept. of EE and CS, Sept. 1995.

2. R.D. Blumofe, C.F. Joerg, B.C. Kuszmaul, C.E. Leiserson, K.H. Randall, and
Y. Zhou. Cilk: An efficient multithreaded runtime system. In Proceedings of
the 5th Symposium on Principles and Practice of Parallel Programming, pages
207-216, 1995.

3. R.D. Blumofe and P.A. Lisiecki. Adaptive and reliable parallel computing
on networks of workstations. In USENIX 1997 Annual Technical Symposium,
California, 1997.

4. J. Bruck and al. Efficient message passing interface (MPI) for parallel com-
puting on clusters of workstations. In 7th Annual ACM Symp. on Parallel
Algorithms and Architectures, pages 64-73.

MorroneEtAl.tex; 19/04/2001; 14:46; p.14

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

15

D.R. Butenhof. Programming with POSIX Threads. Addison-Wesley, 1997.
J.B. del Cuvillo, W.S. Martins, G.R. Gao, W. Cui, and S Kim. ATGC: Another
tool for genome comparison. In International Conference on Computational
Molecular Biology - RECOMB, April 2001.

Message Passing Interface Forum. MPI: A message-passing inter-
face standard (version 1.0). Technical report, May 1994. URL
http://www.mcs.anl.gov/mpi/mpi-report.ps.

M. Frigo, C.E. Leiserson, and K.H. Randall. The implementation of the Cilk-5
multithreaded language. In Proceedings of the ACM SIGPLAN ’98 Confer-
ence on Programming Language Design and Implementation, pages 212-223,
Montréal, Québec, June 17-19, 1998. SIGPLAN Notices, 33(6), June 1998.
G.R. Gao and R. Yates. The argument-fetching dataflow architecture project:
A status report. In Can. Conf. on Elec. and Comp. Eng., Montreal, Sept. 1989.
H.H.J. Hum, K.B. Theobald, and G.R. Gao. Building multithreaded architec-
tures with off-the-shelf microprocessors. In Proc. of the 8th IEEE Intl. Parallel
Processing Symp. (IPPS ’94), Cancun, Mezico, pages 288—294, April 1994.

P. Kakulavarapu, O. Maquelin, and G.R. Gao. Design of the runtime system
for the Portable Threaded-C language. CAPSL Technical Memo 24, Depart-
ment of Electrical and Computer Engineering, University of Delaware, Newark,
Delaware, July 1998. In ftp://ftp.capsl.udel.edu/pub/doc/memos.

D. Lea. Concurrent Programming in Java — Design Principles and Patterns
(Second Edition). Addison-Wesley, 2000.

B. Lee and A.R. Hurson. Dataflow architectures and multithreading. IEEFE
Computer, 27(8):27-39, 1994.

O. Maquelin, G.R. Gao, H.H.J. Hum, K.B. Theobald, and X.-M. Tian. Polling
Watchdog: Combining polling and interrupts for efficient message handling. In
23rd Annual International Symposium on Computer Architecture, pages 178
188.

W.S. Martins, J.B. del Cuvillo, F.J. Useche, K.B. Theobald, and G.R. Gao. A
multithreaded parallel implementation of a dynamic programming algorithm
for sequence comparison. In Pacific Symposium on Biocomputing, Jan. 2001.
W.R. Stevens. UNIX Network Programming, Networking APIs: Sockets and
XTI, volume 1. Prentice-Hall, Upper Saddle River, NJ, 1998.

K.B. Theobald. FARTH: An Efficient Architecture for Running Threads. PhD
thesis, McGill University, Montréal, Québec, May 1999.

K.B. Theobald, J.N. Amaral, G. Heber, O. Maquelin, X. Tang, and G.R. Gao.
Overview of the Threaded-C language. CAPSL Technical Memo 19, University
of Delaware, March 1998.

G. Tremblay, K.B. Theobald, C.J. Morrone, M.D. Butala, J.N. Amaral, and
G.R. Gao. Threaded-C language reference manual (release 2.0). CAPSL
Technical Memo 39, University of Delaware, Sept. 2000.

MorroneEtAl.tex; 19/04/2001; 14:46; p.15

