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Abstract. The widening gap between processor speed and memory latency increases the impor-
tance of crafting data structures and algorithms to exploit temporal and spatial locality. Refinement-
based path finding algorithms find near-optimal paths in very large sparse graphs where traditional
search techniques fail to generate paths in acceptable time. Refinement-based path finding uses
an abstraction of the graph to prune the search space substantially. In this paper we demonstrate
that further performance gains are obtained by improving the match between refinement-based
algorithm implementations and the memory hierarchy found in modern computers. Three simple
transformations in the data structures used to store the vertices of the graphs resulted in consis-
tently positive performance improvements upwards of 50%. Our testing of these implementations
in four machines and four compilers indicates that the performance improvements (1) are robust,
and (2) are orthogonal to compiler optimizations and search space reduction.

1 Introduction

Path-finding finds applications in many industries such as computer games, freight transport, passenger
traveling, circuit routing, network packet routing, etc. For instance, in the Real Time Strategy (RTS)
video-game genre refinement-based search and its variants are used to conduct path-finding for movements
on the game map [13]. In these games path-finding consumes up to 50% of total computation time [10, 23].
Using a modification to Dijkstra’s algorithm, the shortest path between two vertices in a graph G(V, E)
can be computed in O(ElogV) [9]. However for applications where |V| is very large we want to visit
only a fraction of the vertices in V to find approximations to the shortest path [17]. Refinement-based
search (RBS) is often used to restrict the search space [16]. Classic Refinement (CR), a variation of
RBS, partitions a large graph into many subgraphs, and generates an abstract graph that describes the
interconnections among the subgraphs. A path between two vertices, u and v in the original graph if
found by (1) identifying the vertices in the abstract graph that correspond to the partitions containing
u and v; (2) finding a path, in the abstract graph, between the vertices identified; (3) using this abstract
path to find a path in the original graph.

This paper presents a performance evaluation study of three techniques that improve spatial and
temporal locality of Classic Refinement: (1) data duplication; (2) data reordering; (3) merging of inde-
pendent data structures into a common memory area. These techniques benefit from wide cache lines
and from increased data reuse. They result in performance improvements between 7.5% and 34%. These
results are robust to changes in compilers and processor architectures. We compared the number of cache
misses and TLB misses in several versions of the algorithm, and established a strong correlation between
gains in performance and reduction in TLB misses. Finally, is hand crafting of data structures necessary
when we have optimizing compilers? We compiled our various implementations of Classic Refinement in
SGI, IBM, AMD, and Intel machines using both vendor compilers and GCC at optimization levels -O0
and -03. In all cases the hand-crafted data structures and algorithms resulted in non-trivial additional
performance improvements.

Section 2 presents the Classic Refinement algorithm. Section 3 describes the baseline implementation
and our three techniques. Section 4 presents experimental results and analysis. Section 5 discusses related
work.

* This research is partially funded by grants from the Natural Sciences and Engineering Research Council of
Canada and by the Alberta Ingenuity Fund.



2 Abstraction and Search

Let Go(Vo, Eo) be the input graph to Classic Refinement. Let G1(V1, E1) be an abstraction of Go. Both
Gy and G are undirected and unweighted graphs.

G| is partitioned into connected subgraphs. The abstract graph G must have one vertex for each
subgraph of Gy. If a vertex v) in Gg maps to a vertex v} in Gy, we say that v} is the image of v} at
abstraction level 1 (Note: 1111, should be read as “vertex p at abstraction level 1”). We also say that the
set of vertices in Gy that map to vertex v}) in G is the pre-image of v!. The abstract graph G; has an
edge (vp,v;) if and only if there is an edge (vf,v}) in Go such that v; belongs to the pre-image of v,
and v;-’ belongs to the pre-image of v(}. This transformation ensures that paths in Gy can be mapped to
corresponding paths in G;.

Because we can create an abstract graph for any undirected graph we can create an abstraction of
an abstraction to generate a hierarchy of abstractions. A sequence of graphs {Go,G1...,Gp_1} is an
abstraction hierarchy for source graph Gy if for 0 <7 < n — 1 G441 is an abstraction of G;.

To generate an abstraction hierarchy we use the “max-degree” STAR algorithm [16]. Given G and a

constant r, the STAR algorithm partitions Gy into subgraphs whose maximum diameter is at most 2r.

2.1 Refinement-based Search

Definition 1. An ordered list of G, vertices, P = {v§,v{,...,vi_,}, is a path in G, if and only if G,
contains the edges (v3,v?), (v, %), ..., (vi_,,v¢_ ). We use the notation P[j] to refer to the j'" element
in path P.

Definition 2. A path P = {v§,v{,...,vf ;} in G, is a constrained path if and only if it is the
shortest path between v§ and vi_,, such that vertices vy, vf,...,vy_; belong to the pre-image of the same
vertex vg“. Because the pre-image of v;H is a connected subgraph of G,, when computing a constrained
path, a search algorithm restricts its search space to the vertices in the pre-image of vg+1.1

Definition 3. Let vit! and vl be two vertices in Gqq1 such that (viH!, v3t!) is an edge in Goy1. Let
vy be a vertex in the pre-image of ’U;J'_l. Then there exist a path from v} to any vertex in the pre-image
of 113"‘1. A constrained jump path J from vl to the pre-image of Ug+1 is the shortest path between v}
and any vertex in the pre-image of vg"‘l, such that any edge traversed by J connects vertices that belong
either to the pre-image of vi™ or to the pre-image of v3*'.?

2.2 Classic Refinement

Figure 1 presents pseudocode for Classic Refinement. Given a source graph Gy and an abstraction hier-
archy A = {Gg,G1,...,Gnr_1} we are interested in finding a path in G between a source vertex s® and a
goal vertex g°. The Classic Refinement (CR) algorithm starts by finding a path, P,_;, between s"~! and
g™~ !, the images of the source and goal vertices in the highest level of the hierarchy, G,,_1. If no such
path exists then the algorithm returns NULL (steps 1-5). LOOKUPVERTEXIMAGE(g®, n — 1) returns the
image of g° at abstraction level n — 1. FINDPATH(s" 1, g" !, n — 1) returns a path from s"~! to g"~! at
abstraction level n — 1.

If a path is found, CR iterates through each level of abstraction (for loop at step 6). Let P =
{s™1 0t . with git1} be the path in Giy1. In order to compute the path P;, CR initializes b to the
image of s° at abstraction level i. CR then computes the constrained jump path J from b to a vertex in
the pre-image of the next P,y vertex, P;y1[j + 1] (step 10). By definition the last vertex in J is the first
vertex in the pre-image of P;y1[j + 1] visited by J. CR appends the constrained jump path J to P; and
updates b so that it is now the first vertex visited in P;y1[j + 1] and iterates until the pre-image of g**!
is reached.

Finally, when b is the initial vertex in the pre-image of ¢g*t!, CR computes a constrained path C
between b and g?, the image of ¢g° in G; (step 15) and appends C to P;. When the recursion finishes, CR
returns the path F.

! In a constrained path all vertices are in the same pre-image. Go may contain a shorter path between vg and
v}_4 than the constrained path P, but any such path contain at least one vertex outside the pre-image of vg+1,
and therefore is not a constrained path.

2 Again, a shorter path from v¢ to the pre-image of v;'H may exist in Go, but it would have to include at least

one vertex outside the pre-image of v}f“ or vfl”'l and thus not be constrained.



CLASSICREFINEMENT (4, s°, g%, n)

1: 5" !+ LoOKUPVERTEXIMAGE(s?,n — 1)
2:  ¢g"" ' < LoOKUPVERTEXIMAGE(g®,n — 1)
3: P, 1+ FINDPATH(s" !, g" ' n—1)

4: if |P,_1| =0 then

5: return NULL

6: fori=n—-2toi=0

7 P; + {}

8: b < LOOKUPVERTEXIMAGE(s®, 1)

9: for j«0toj=|Pyi|—1

10: J < FINDCONSTRAINEDJUMPPATH(G;, b, Pi+1[j + 1])
11: P; +APPEND(P;, J)

12: b «LASTVERTEX(J)

13: endfor

14: 9i < LOOKUPVERTEXIMAGE(g?, 9)

15: C + FINDCONSTRAINEDPATH(b, g°, %)
16: P; +ApPPEND(P;, C)

17: endfor

18: return P

Fig. 1. Classic Refinement Algorithm.

3 The Three Data Layout Techniques
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Fig. 2. Running Example.

Our baseline implementation of Classic Refinement is based on sound implementation techniques for
sparse graph traversal algorithms based on adjacency lists representations. We use the graph in Figure 2
as an example. In the baseline the vertex vJ of Figure 2 has the data structure shown in Figure 3(a). ID
is a unique identification. The traversal visit marker (TVM) indicates if the vertex has been visited. BP
is a back pointer. Image is a pointer to the vertex’s image. Degree is the number of neighbors.

The use of a 32-bit field for the TVM allows us to not have to reinitialize it upon the start of each
search. All TVMs are initialized to zero. A global search counter is maintained. Whenever a vertex v is
visited during the zt* search, its TVM is set to z. Therefore any vertex that has a TVM smaller than z
during search z, has not been visited yet.

We use Breadth First Search (BFS) to search for constrained paths and constrained jump paths. BFS
stores vertices to be visited in a working queue. This queue is sometimes implemented as a circular buffer
to save memory [9]. However we found that the overhead of checking for wrap-around and overflow is
high. We eliminate this bookkeeping by simply allocating enough memory to contain a pointer to each
vertex in the graph. This practice is used in path finding engine implementations in video games [1,13].

Vertex Clustering: Figure 4 shows a layout of the vertex data structures in memory for the graph of
Figure 2. Each small box represents a 32-bit memory field. For convenience of drawing we present eight
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Fig. 3. Fields in the data structure of a vertex.
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32-bit fields per line. We identify the 32-bit field where the data structure corresponding to each vertex
starts. Consider a search, in Figure 2, for a constrained jump path from v} to v} starting at v and ending
at v9. The shaded areas in Figure 4 show the memory locations that are accessed in this search. Besides
the irregular memory access pattern shown in Figure 4, the baseline implementation also keeps a work
queue in a separate region of memory. Accesses to this queue are interleaved with the accesses shown in
Figure 4. Such accesses hurt spatial locality and are potential source of data cache conflict misses.

Our vertex clustering technique re-arranges the vertices, such that vertices that map to the same
image are located in close proximity of each other in memory. Figure 5 shows the memory layout after
of Figure 4after vertex clustering. Shaded areas are locations accessed for the same constrained jump
path search. Notice how the memory accesses are much closer to each other in memory. We expect vertex
clustering benefit abstractions generated with larger radius.

Image Mapping: Even after vertex clustering, the constrained jump path discussed above still has poor
spatial locality. In order to search a path of vertices that map to v} we need to access the Image field of
each vertex encountered during the search. As a result the search accesses memory locations that are far
from the clustered vertices (see the shaded box at the bottom of Figure 5).



Our image mapping augments the vertex data structure as shown in Figure 3(b) to include the image
field of each neighbor of the vertex. Thus when finding constrained jump paths or constrained paths the
search does not access remote memory locations to determine the pre-image of a neighboring vertex.

Embedded Queue: The next source of poor memory reference pattern is the working queue of BFS
that resides in a remote memory region. The interleaving of accesses between the vertex cluster region
and the working queue region may cause cache thrashing — entries that will be used later are discarded
because of memory conflicts — and reduces the benefits of the free prefetching due to large cache lines.

Ourembedded queue technique stores the information about vertices yet to be visited by BFS within
the vertex’s data structures. To implement a BFS embedded queue we augment the vertex data structure
with an additional field, the embedded queue pointer (EQP), as shown in Figure 3(c). The EQP field
contains a pointer to the last vertex that was added to the working queue.

3.1 The Embedded Queue Constrained Jump Path Algorithm

EMBEDDEDQUEUECONSTRAINEDPATH(G(V, E), s, 1)
1: EQP(s) «+NULL

2: w<s

3: w' + NULL

4: while TRUE

5: while w # NULL

6: for v € V such that (w,v) € E
T: if Image(v) =1

8: BST_BP(v) + w

9: return v

10: if I'mage(v) # I'mage(s)
11: continue

12: if TV M (v) = TRUE
13: continue

14: BST_BP(v) + w

15: EQP(v) + v

16: w v

17: TVM(v) «+ TRUE

18: endfor

19: w + EQP(w)

20: endwhile

21: w4 w'

22: w’ + NULL

23: endwhile

Fig. 6. Embedded Queue Constrained Path Algorithm with Abstract Map

The pattern of vertex visitation in BFS can be viewed as an expanding wave that starts at the initial
vertex. If we divide this expansion into phases, in phase 0 we visit the starting vertex s, in phase 1 we
visit all the immediate neighbors of s. In phase 2 we visit all the vertices that are two hops away from
the starting vertex, and so on. The embedded queue algorithm, shown in Figure 6, uses w to access the
linked list formed by the embedded queue pointers (EQP) of the vertices that are being visited in the
current phase. It uses w' to build the linked list of the vertices to be visited in the next phase.

When traversing a list in a given phase of BFS, we use EQP to find the next vertex to be visited. In
the initialization (steps 1-3) the EQP of the starting vertex s is assigned NULL to ensure that the phase
0 will terminate. NULL is also assigned to w’' to ensure that the next phase will also terminate. The
first vertex of phase 0 is s. The algorithm will terminate when a vertex whose image is I is encountered
(step 7).2 Adjacency lists ensure that the accesses in the for loop (step 6) benefit from spatial locality.
Vertices that are not in the same image as the starting vertex (step 10) or that have already being visited
(step 12) are not included in the working list for the next phase.

3 The algorithm assumes that if the start vertex s is in abstraction level a, then G,+1 has an edge between the
image of s and the destination image I.



Spatial locality is promoted because: (1) the comparison between the image of v and the image of the
starting vertex s (step 10) accesses data within v (image mapping); and (2) accesses to EQP (steps 15
and 19) are also within v and w (embedded queue).

The direction in which the embedded queue is constructed and traversed matters. We build a backward
queue in the sense that the newly discovered vertex v is placed at the front of w’, not the rear. The
advantage of this traversal direction is that when we finish building the queue, we start to visit vertices
in the reverse order in which they were added to the queue. Thus we are likely to visit vertices that we
have recently visited and benefit from temporal locality.

4 Experimental Results

The results of our experiments can be summarized as follows:

— The combination of clustering vertices, embedding queues and mapping images produces consistent
performance improvement upwards of 50%. This improvement is the result of improved page-level
and cache line level locality.

— These techniques are robust to changes in the compiler, the processor architecture and memory
hierarchy (see Figures 7-9 and Table 4). When used in isolation, the technique that produces the
best result depends on the type of graph. Combining techniques often results in better performance
improvements.

4.1 Experimental Framework

We studied the performance of our three techniques: embedded queues (Q), vertex clustering (V), and
image mapping (I). We wrote eight versions of Classic Refinement: Baseline, Q--, -V-, -=1, QV-, Q-1I,
-VI, and QVI (the three characters in the version denotes either the presence or the absence of each one
of the features).

We selected three types of graph for our study:

2D-Plane A h x w two-dimensional plane. Except for borders, each vertex is connected by 4 edges.
2D-Planes represent 2D graphs such as street maps and RTS video-game game-worlds.

3D-Cube An h x w x d three-dimensional cube. Except for borders, each vertex has degree 6. 3D-Cubes
stand for graphs representing three-dimensional objects, such as buildings and bridges.

Airway-Road We fit the road network of the city of Pittsburgh into each vertex of an airline route
graph. We vary the size of the road network from 512 to 3584 to obtain several graph sizes. These
graphs are representative of graph used for trip and transportation planning.

The following is true for all experiments reported in this paper: (1) we report the wall clock time,
measured in seconds with a C system function call, required to compute 10,000 paths between random
pairs of vertices.* (2) The times reported include the construction of the actual path into a single linked-
list through the traversal of the BP pointers of the vertices in the path.5 (3) The abstraction generation
uses a radius of 2, and recurses until it constructs an abstract graph with a single vertex. (4) The pre-
processing time required to generate the abstraction is not included in the runtimes. (5) Unless otherwise
stated, we used a vendor compiler at optimization level -O3.

The machines and compilers used are listed in Table 1. For hardware counters, we used the Perfex
library on the SGI machine, PMC on the AMD machine, and the PAPI libraries on the IBM and Intel
machines. We compiled and ran the Baseline and the QVI versions of the program at two levels of
optimization (-O0 and -O3) for all the compilers listed in Table 1. The combination of the data layout
techniques discussed in the paper (QVI) consistently produced performance gains for all compilers, levels
of optimization and machines.

4 Because every graph is connected our experiments never include dead-end searches. To generate the random
pairs we used the portable and deterministic random number generator described in[26].

5 Building the actual path takes from less than 1% to 17% of the execution time.

6 In practice, once an abstraction is generated, millions of path searches are performed.



| Feature [ SGITP27 | IBM p610 | Intel P4 | AMD 2000+ |
Processor MIPS R12K POWER3 Pentium 4 20004+-XP
Data Size 32Kb 64KB 8 KB 64 KB
Cache Assoc. 2-Way 128-Way 4-Way 2-Way
L1 Line 32 Bytes 128 Bytes 64 Bytes 64 Bytes
Data Size 4 MB 8 MB 512 KB 256 KB
Cache Assoc. 2-Way 4-Way 8-Way 16-Way
L2 Line 128 Bytes 128 Bytes 64 Bytes 64 Bytes
Data TLB Size 56 Entries 256 Entries |128 Entries 32 Entries
L1 Assoc. Fully 2-Way Fully Fully
Data TLB L2 none none none 256 Ent./4-Way
VM Page Size 16Kb 4Kb 4KB 4KB
DRAM 1 GB 1GB 1 GB 1 GB
Clock Speed 350 MHz 450 MHz 2260 MHz 1667 MHz
Combpilers MIPSpro (7.2.1)[IBM XLC (6.0)| Intel (6.0) Intel (6.0)
GCC (2.7.2) GCC (2.9) |GCC (2.96)| GCC (2.96)
Table 1. Machines and compilers used in our experiments.
4.2 Results

The goal of our experiments are:

1. to determine if QVI is robust to changes in compilers, proc. architectures, and memory hierarchy —
it is;

2. to study the performance of several types of graphs in various machines — QVI produces the largest
performance improvements with Airway-Road graphs;

3. to identify the contribution of each technique to performance — it depends on the graph type;

4. to correlate the performance with cache misses and TLB misses — TLB misses are most significant.
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Robust Techniques: The graphs in Figures 7 through 9 display the execution time for the baseline
version and the QVI version of the code in all four machines for three problem sizes of each graph type.
For each experiment the lighter part of the bar is the execution time for QVI and the darker part is
the additional execution time required for the baseline. The percentage reduction in execution time is
printed on the top of each bar. The number below each bar is the graph size. QVI speed improvements
vary from 1.0% to 51.2%. Table 2 shows the minimum, maximum, and average execution time reduction
(in percentage) for each graph type when eight graph sizes are taken into consideration. The 3D-Cube
and Airway-Road graphs resulted in more performance improvement than the 2D-Plane graphs on all
machines and for all compilers.

Figures 7 through 9 show that QVI is robust to changes in machine architectures. Is QVI also robust to
compiler changes? To answer this question Table 4 shows the execution times, at optimization level -O3,
for two different compilers in each machine. QVI consistently performs better than the baseline. Also,
not surprisingly most vendor compilers outperform GCC. However, the difference is not great: GCC
performance is very close to most vendor compilers for our programs.

. | 1024 2D-Plane | 96 3D-Cube [3584 Airway-Road
Machine yr N ax [Avg. [Min.[Max.|Avg. [Min.[Max.| Avg.
SGI 0110449 [14.6(30.6 |24.5[24.6|30.0| 284
IBM 9.3 |15.0(11.7|23.5|44.4(34.9|25.8|33.5| 29.6
AMD 34|76 |6.7)26.6|33.1[30.4|18.2|51.2| 26.9
INTEL | 4.2 [{10.2] 8.9 |31.6|38.6 |35.7|34.7|51.8 | 41.3
Table 2. Percentage reduction in execution time for QVI over the Baseline for each graph type

. |1024 2D-Plane | 96 3D-Cube [3584 Airway-Road
Machine Min.[Max.[Avg.|[Min.[Max.[Avg.|Min.[Max.| Avg.
SGI 0.0 |15.6 | 8.3 |17.2|32.9|27.4|20.0|27.8| 23.8
IBM -21.11 83 | 0.5 |15.3[42.0(30.1|21.1{28.0| 25.3
AMD 48 | 84| 7.3 |28.1|34.1|31.5|18.5|50.7| 27.9
INTEL | 5.3 [11.5]9.9 [34.8[40.1|37.4[35.9[46.9| 41.3
Table 3. Percentage reduction in execution time for -VI over the Baseline for each graph type

SGI IBM Intel AMD Av
MIPS | GCC [ XLC | GCC | ICC | GCC | ICC [ GCC g
1024 2D-Plane

Base |17.07 [ 16.38 | 864 | 9.29 | 864 | 879 | 5.57 | 5.51
QvI 14.75 | 14.67 | 7.34 | 7.84 | 8.01 | 8.04 | 5.08 | 5.00
Improv.|13.6%(10.4%(15.0%(15.6%]| 7.3% | 8.5% | 8.8% | 9.3% [11.1%
96 3D-Cube
Base 6.83 | 6.53 | 419 | 453 | 3.69 | 3.75 | 2.67 | 2.73
QVI 4.71 4.53 2.33 | 2.45 2.47 | 2.48 1.64 1.62
Improv.|31.0%|30.6%|44.4%(45.9%33.1%33.9%(38.6%40.7%|37.3%
3584 Airway-Road
Base [22.33[19.40 | 7.89 | 9.79 [16.95 | 17.07 | 10.74 | 10.85
QvI 14.72 | 14.17 | 5.64 | 6.58 | 13.86 | 13.96 | 6.99 | 7.21
Improv.|34.1%(27.0%(28.5%(32.8%(18.2%(18.2%(34.9%33.5%|28.4%

Table 4. Comparison of execution times (measured in seconds) for the baseline and QVI implementations of the
algorithm using different compilers in each machine.

Implem.

Contribution of Individual Techniques Which technique (Q, V or I) contributes the most to per-
formance? Could a single technique in isolation produce similar benefits? The best performances are
highlighted in Table 5. Machines with large L2 caches, such as the IBM p610 (8 MB) and the SGI IP27
(4 MB), benefit from combining V with Q. In machines with modest L2 caches, such as the Intel P4 (512
KB) and the AMD 2000+ (256 KB), the placement of vertex information and the queue entries in neigh-
boring memory locations appears to be detrimental to performance. Combining techniques yields better
performance than applying each technique in isolation. Though -VI and QVI yield similar performance,
we recommend QVI because it always improve performance over the baseline whereas -VI occasionally
degrades performance (see Table 3).



Implement Graph
Machine | 2D-Plane 3D-Cube [Airway-Road
Time|Improv|Time|Improv| Time|{Improv
Baseline | 16.39] 0.0%| 6.53] 0.0%]| 19.40] 0.0%
Q-- 16.36| 0.1%| 6.63| -1.5%| 18.87| 2.7%
-V- 15.76| 3.8%| 6.25| 4.3%| 16.20| 16.5%
SGI --I 16.82| -2.7%| 5.58| 14.5%| 18.63| 4.0%
Qv- 16.11| 1.6%| 6.34| 2.9%| 15.97| 17.7%
Q-I 17.04| -4.0%| 5.88| 10.0%| 19.57| -0.9%
-VI 13.83|15.6%| 4.38|32.9%| 14.33| 26.1%
QvI 14.67| 10.4%| 4.53| 30.6%|14.17|27.0%
Baseline 8.64] 0.0%| 4.19] 0.0%| 7.89] 0.0%
Q-- 8.49| 1.7%| 4.30| -2.6%| 7.90| -0.1%
-V- 8.45| 2.2%| 3.80| 9.3%| 6.45| 18.3%
IBM --I 9.31| -7.8%| 3.57| 14.8%| 8.17| -3.5%
qQv- 8.22| 4.9%| 3.88| 7.4%| 6.35| 19.5%
Q-I 8.96| -3.7%| 3.48| 16.9%| 7.85| 0.5%
-VI 7.92| 8.3%| 2.43| 42.0%| 5.97| 24.3%
QVI 7.34|15.0%| 2.33|44.4%| 5.64|28.5%
Baseline 8.64] 0.0%]| 3.69] 0.0%| 16.95] 0.0%
Q-- 9.04| -4.6%| 3.84| -4.1%| 17.36| -2.4%
-V- 8.76| -1.4%| 3.44| 6.8%| 16.27| 4.0%
AMD --I 9.26| -7.2%| 3.12| 15.4%| 16.75| 1.2%
Qv- 8.88| -2.8%| 3.55| 3.8%| 16.26| 4.1%
Q-I 9.57(-10.8%| 3.20| 13.3%| 16.82| 0.8%
-VI 7.99| 7.5%|2.43|34.1%13.81|18.5%
QvI 8.01| 7.3%| 2.47| 33.1%| 13.86| 18.2%
Baseline 557 0.0%| 2.67] 0.0%| 10.74] 0.0%
Q-- 5.86| -5.2%| 2.78| -4.1%| 11.11| -3.4%
-V- 5.22| 6.3%| 2.40| 10.1%| 8.00| 25.5%
Intel —-I 6.01| -7.9%| 2.25| 15.7%| 11.35| -5.7%
Qv- 5.49| 1.4%| 2.50, 6.4%| 8.27| 23.0%
Q-I 6.20(-11.3%| 2.30| 13.9%| 11.53| -7.4%
-VI 5.03| 9.7%| 1.60/40.1%| 6.88|35.9%
QvI 5.08| 8.8%| 1.64| 38.6%| 6.99| 34.9%

Table 5. Individual effect Q, V, and I on the performance of shortest path search. Time measured in seconds.
Improvement in percentage reduction of execution time. Bold numbers are the best results for 1024 2D-Plane, 96
3D-Cube, and 3584 Airway-Road each machine.
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Fig.10. TLB misses and L2 cache misses for the 3D- Fig.11. TLB misses and L2 cache misses for the Airway-
Cube graph on the IBM machine. Road graph on the INTEL machine.

Cache and TLB Misses Using hardware counters we determined that all implementations issued and
graduated similar number of instructions, and have a similar number of control hazards. Figures 10
and 11 show the variations in L2 and TLB misses for selected machine/graphs. To generate each graph



we ordered the results from several graph sizes according to the execution time reduction (shown in
the horizontal axis). The graphs show the variations in the number of TLB misses and L2 cache misses
between theBaseline and QVI. The graphs show a weak correlation between the performance improvement
and the reduction in TLB misses. This behavior is weaker for some machines than for others (see [20] for
more comprehensive results).

5 Related Work

We are not aware of previous work on improving the locality of abstraction search algorithms such as
Classic Refinement. Edelkamp and Schrédl address the problem of thrashing of pages at the virtual
memory level [11,12]. They apply their localized A* to a route planning system. They improve reference
locality by sorting vertices based on their relative geographic locations and by altering the order in
which states are expanded during search. In the field of external memory algorithms we find v Various
techniques, referred to external memory algorithms, improve the I/0 efficiency of graph search [19,21,4,
7,2,25]. Typically these methods use vertex clustering (grouping) and image mapping (data redundance).
For instance, blocking is used to minimize the number of page faults incurred during the traversal of paths
in planar graphs. The idea of vertex clustering is applied to sparse matrix multiplication [22,15].

Graph partitioning, needed for abstraction generation, is a well studied problem [18]. Improvements
to partitioning of the source graph could yield improvements to page level locality. Cache oblivious
algorithms aim at improving data access locality of algorithms independent of memory hierarchy param-
eters [14, 3, 5].

Russell’s improvements to existing heuristic search algorithms is an example of the focus of the
Artificial Intelligence community on search space reduction [24]. While reducing the search space may
produce improvements of orders of magnitude, the gains obtained by the careful crafting of data structures
presented in this paper are orthogonal to the search space reduction, and the two techniques can be
easily combined. The improvements that we obtained with the redesign of data structures (10-50%) are
in line with performance improvements obtained through compiler transformations that improve data
placement [6,8]. Notice however that the automated techniques found in contemporary compilers are
quite inept at improving data locality with respect to graph search in general. Even with the ongoing
development of profile oriented compilation we forsee this to continue to be the case because techniques
such as our embedded queue and image mapping methods not only require a change in the manner data
is layed out in memory but also require changes to the search algorithms themselves.

6 Conclusion

Extensive research in the Artificial Intelligence and computer game communities has produced efficient
approximation algorithms to quickly find short paths in very large sparse graphs. Researchers in these
communities have been careful to ensure that the graphs and auxiliary data structures all fit in main
memory to avoid swapping to disk. However, the effects of temporal and spatial locality in the implemen-
tation of these algorithms has been mostly overlooked. This paper demonstrates that simple changes to
the data structures and algorithm implementations can yield consistent performance gains in path find-
ing algorithms. Moreover our experimental results indicate that improvements are obtained in multiple
architectures and with different compilers.
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