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Abstract

We present a comparative study of the implementation of
the Efficient Architecture for Running THreads (EARTH) on
IBM SP-2, Beowulf, and the MANNA machine. EARTH is
a programming, architecture, and execution model that im-
plements fine grain multi-threading. Each platform presents
different constraints on the interaction between the EARTH
runtime system and the network. We characterize the per-
formance in each implementation by measuring the cost of
EARTH operations, such as the exchange of synchroniza-
tion signals, the spawning of threads, and data transfers,
and also by comparing speedup curves for a set of applica-
tions.

Keywords: Fine-grain multi-threading, non-preemptive
threads, context-switching, distributed memory, network of
workstations.

1 Introduction

Designing multiprocessor systems that deliver a reason-
able price-performance ratio using off-the-shelf processor
and compiler technologies is a major challenge. While
modern processors can issue multiple instructions per cy-
cle, they lack the features required to address fundamental
issues in multiprocessing systems: latency, bandwidth and
synchronization overheads. A well designed parallel sys-
tem must balance the trade-off between a fine task granular-
ity [9] and the impact of communication latencies on per-
formance. Coarse-grain parallel systems can tolerate long
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latencies if the application provides enough parallelism be-
cause each task is long enough to amortize the communica-
tion overheads. But coarse grain systems do not fully ex-
ploit the parallelism existing in irregular parallelism. Fine-
grain parallelism, on the other hand, enables further paral-
lelization of many applications, but has proved to be diffi-
cult to support due to the higher relative cost of communi-
cation and synchronization latencies [9].

EARTH - Efficient Architecture for Running THreads [5,
10] is a multi-threaded architecture and program execu-
tion model that supports fine-grain, non-preemptive, light-
weight threads, or fibers. EARTH is designed to allow
the implementation of a multi-threaded execution model
with off-the-shelf microprocessors in a distributed mem-
ory environment [6]. In order to reduce OS related costs,
EARTH fibers operate at the user-level. The EARTH run-
time system assumes the responsibility to provide an in-
terface between an explicitly multi-threaded program and
a distributed memory hardware platform.

In this paper we present performance results from
three implementations of EARTH: EARTH-SP2, EARTH-
Beowulf,and EARTH-MANNA. All these implementations
run the same application program written in Threaded-C,
an explicitly multi-threaded extension of C. In all three
implementations the Threaded-C code is converted, by a
pre-processor, into ANSI-C with calls to runtime system
functions. The pre-processed code is then compiled into
an object file by a native C compiler. Finally, that ob-
ject code is linked with the runtime system obeject file to
create the final executable. The runtime system is an ob-
ject file which performs fiber scheduling, context switch-
ing between fibers, inter-node communication, inter-fiber
synchronization, global memory management, and dynamic
load balancing.

Given the EARTH programming and execution model,



and its implementation on platforms with different

processor-network,  processor-memory and network-
memory interfaces, we are interested in studying if the
EARTH multithreading model can effectively deliver
performance improvements for a range of applications
across these platforms. One should expect that obtaining
performance improvements on tightly coupled architectures

should be easier than on loosely coupled ones.

2 Hardware Platforms

We select three machines for this comparative study: the
MANNA, the IBM-SP2, and the EARTH-Beowulf. This
machines represent different levels of availability, cost, and
effort to implement a parallel system. The MANNA is a
research machine with dual processor nodes interconnected
through a cross-bar switch. The EARTH team had direct
access to the network interface and hardware storage in the
machine, and thus was able to produce a very efficient im-
plementation of the EARTH model. Only a few exemplars
of MANNA exist. The IBM SP-2 is an inherently paral-
lel machine that is typically available in computing centers.
The EARTH team was also granted access to the network
card data structures in the IBM-SP2 to enable the EARTH
runtime system to directly start network operations. The
Beowulf implementation uses exclusively off the shelf com-
ponents, hardware, network drivers, and operating system.
It is the most portable version of EARTH, and the most
available because the cost and effort to construct a Beowulf
cluster is minimal. However this portability results in higher
latencies for the EARTH operations.

The MANNA (Massively parallel Architecture for Non-
numerical and Numerical Applications) was developed at
GMD-FIRST in Berlin, Germany, in the early 90’s [2].
Each node of the machine contains two 50-MHz Intel
i860XP RISC processors, each with an on-chip cache and
instruction cache of 16KB each. The two processors share
32 MB of DRAM on a common bus, and stay coherent
with this memory and each other using bus snooping and
the MESI protocol. The bus also runs at 50 MHz. Multiple
dual processor nodes of the MANNA are connected through
a custom-designed 16 x 16 packet-switched crossbars. Each
input port can accept one data byte per 20ns cycle, and the
input is buffered by a FIFO. The crossbar bandwidth is 800
MB/s if all 16 inputs are in use and each transmits to a dif-
ferent output port. The EARTH-MANNA implementation
has been described in [10].

The IBM RS/6000 Scalable POWER Parallel System
(SP-2) is a distributed memory multiprocessor. Each pro-
cessing node is equipped with a 120 MHz POWER?2 Super
Chip, 128 KB of data cache, 32 KB of instruction cache,
at least 64 MB of RAM, and operate with a 256 bit mem-
ory bus. The tb3 switch provides a network interface with
a peak hardware bandwidth of 150 MB/s in each direction.
A detailed description of the EARTH-SP2 implementation
can be found in [7].

The Beowulf cluster [8] is equipped with 200MHz Pen-
tium Pros, each node with 128 MB of RAM. The nodes are
interconnected through a 100 Mb/s switched ethernet net-
work. The EARTH inter-node communication and synchro-
nizations are implemented on top of the TCP/IP protocol.

3 Latency of EARTH Operations

The latency of operations required to communicate and
synchronize across processing nodes is a determinant factor
in the performance of some applications. In this section
we measure the latency of EARTH operations in all three
platforms. These measurements are presented in terms of
the number of processor cycles to facilitate a comparison
between the machines. It is important to observe that the
processor is not busy with the operation for the number of
clock cycles shown in Table 1. Most of the remote operation
time is spent either waiting on queues or in the network,
which releases the processor to execute other fibers which
are ready to run.

For the measurements in the “sequential” column in Ta-
ble 1, the EARTH operations are sequentialized. The next
operation in a given test is not issued until the previous op-
eration has completed and its synchronization signal has ar-
rived. In the case of the “pipelined” measurements, multiple
operations are issued immediately, without waiting for syn-
chronizations from the previous operations to arrive.

The measurements in the first row of table 1 are obtained
as follows:

sequential local: Fiber 1 issues a synchronization signal
that causes fiber 2 to became enabled. When enabled
fiber 2 issues a synchronization signal that causes fiber
1 to became enabled. This cycle is repeated N times
(we used NV = 100000 in our tests). The time required
for the IV repetitions is measured and the average per
synchronization signal is computed.

sequential remote: Same as above but fiber 1 and fiber 2



Machine Operation Sequential Pipelined
Local | Remote | Local | Remote
Sync Thread 116 199 420 49.7
Spawn Thread 113 213 — —
Get_Sync 141 348 56.8 94.0
MANNA Data_Sync 138 333 530 90.7
Fun. Call (1) 250 451 159 140
Fun. Call (18) || 410 628 276 223
Sync Thread 104 2751 24 414
Spawn Thread 101 2652 — —
Get_Sync 122 5366 322 699
SP2 Data_Sync 107 5276 272 695
Fun. Call (1) 231 5553 140 784
Fun. Call (18) 262 5656 171 831
Sync Thread 1146 | 21014 15.7 | 227552
Spawn Thread || 1193 | 22863 — —
Get_Sync 1211 | 41614 | 265 11482
Beowulf DataSync || 1201 | 41513 | 272 | 37272
Fun. Call (1) 2416 | 42728 | 1228 | 176389
Fun. Call (18) || 2514 | 43735 | 1339 | 160271

Table 1. Latency of EARTH operations, measured in number of cycles (MANNA: 1 cycle = 20 ns; SP-2:

1 cycle = 8.3 ns; Beowulf: 1 cycle = 5.0 ns).

are scheduled in different processors, thus there is a
delay of going through the network to perform remote
operations.

pipelined local: Fiber 1 starts the clock and issues N syn-
chronization signals without waiting to receive a syn-
chronization signal. After receiving N signals fiber 2
is enabled and stops the clock. This version is called
“pipelined” because in a machine with separate SU and
EU units, the operation of the EU, SU and the net-
work can be superposed in a pipelined fashion. Even
in single-processor nodes, this method results in per-
formance gains because the sender CPU does not need
to wait for a reply from the receiver CPU, before send-
ing the next request. In addition, the synchronization
is handled in a different manner with the pipelined ver-
sion, that results in fewer context-switches than in the
sequential style of execution.

pipelined remote: Similar, but fiber 1 and fiber 2 execute
in different processors. When enabled, fiber 2 sends
a synchronization signal to another fiber in the same
processor as fiber 1 to stop the clock.

Both in the MANNA and in the IBM-SP2 the EARTH
runtime system has direct access to the network interface
through access to network card data structures. It can there-
fore initiate network operations without forcing a context
In fact, in the case of the MANNA, the second
processor performs all network related operations. This is

switch.

in contrast to the relatively high overheads associated with
traversing the TCP/IP stack in the case of Beowulf. Fur-
thermore, on Beowulf an arriving message generates an in-
terrupt, forcing the operating system to immediately handle
the message. This causes a context switch from the user
space EARTH runtime system to the Linux operating sys-
tem !. We are currently reviewing the EARTH-Beowulf im-
plementation to reduce the penalty of the intervening OS
actions in the latency of the EARTH operations.

One observation common to most operations is the high
latencies associated with sequential execution when com-

The times reported for the Beowulf runs are “wall clock time” and
thus include the costs of the intervening operating system activities. This
is a correct measurement because under the current implementation, the
user will not be able to distinguish between the time spent in the operating
system and in the EARTH runtime system



pared to the corresponding pipelined measurements. This is
expected, as the overheads associated with issuing the oper-
ations sequentially are absent in the pipelined runs. The dif-
ference in the processor speeds is very well reflected in the
different pipelined speedups for the latencies for local op-
erations (ratio of sequential latencies over pipelined laten-
cies). This ratio is highest in the case of Beowulf, because
of factors other than the processor speed. The EARTH run-
time system polls the network at the termination of every
fiber. After responding to synchronization or load balanc-
ing requests, execution continues with the next fiber in the
ready queue. Since a sequentially issued operation is ter-
minated in another thread, the polling costs add to the local
CPU costs.

Remote operations cost less in the MANNA than in the
IBM SP-2 or the Beowulf, because of the second processor
in the MANNA which takes care of the communication and
synchronization operations. The remote costs for sequen-
tially issued operations are higher in the Beowulf, because
of the time required to compose the sending and receiving
messages in addition to the polling time.

On the Beowulf, the behavior for pipelined and sequen-
tialized executions is reversed. The sequential version runs
far faster than the pipelined version. This results from the
higher context-switching overheads endured between the
runtime system code and the operating system while send-
ing messages across the network. After the runtime sys-
tem executes code for the operation, control is transferred
to the operating system to perform the actual communica-
tion. Then control switches back to the runtime system code
that issues the next operation. This switching between the
kernel and the runtime system is a primary reason for the
poor performance of remote pipelined operations.

The other EARTH operations measured in Table 1 in-
clude the direct spawning of a fiber; a get_sync opera-
tion in which fiber 1 requests a word of data from fiber 2
and fiber 2 synchronizes fiber 1 when the data arrives; a
data_sync operation in which fiber 1 sends a word of data
to fiber 2 and fiber 2 synchronizes fiber 1 when the data ar-
rives; and function calls with 1 and with 18 parameters, that
represent the invocation of a threaded function either in the
same node or in a remote node.

4 Performance Measurements

In this section we present performance results for three
applications: N-Queens, Paraffins(28), and a dense matrix
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Figure 1. Absolute speedup for Queens(12)
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Figure 2. Absolute speedup for Paraffins(28)

multiply, on all three platforms. The N-Queens is a typical
recursive program that counts how many ways N queens
can be placed in an N x N chess board so that no queen
may attack another. In the version that we used, N = 12,
and the parallelism is “throttled”. When four queens are
placed on the board, the program switches to a sequential
execution and no longer generates migratable tokens. The
idea is that at the level of the recursion enough instantiations
of the recursive function have been generated to distribute
the computation among the processors in the machine.
Paraffins is one of the four “Salishan problems” from
the 1988 Salishan High-Speed Computing Conference.
Paraffins enumerates all distinct isomers of each paraffin
(molecule of the form C', Ha,,42) of size up to a given max-
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imum. The problem solved by paraffins is similar to the
problem of detecting isomorphisms in labeled free trees. A
list of paraffins is generated and the program returns an ar-
ray filled with the number of distinct paraffins of each size
up to and including the maximum. This benchmark belongs
to the irregular class of problems, with irregular communi-
cation patterns, and unbalanced computations. In our ex-
periments we measured the performance for Paraffins(28).

The dense matrix multiply algorithm that we used in this
study is a simple, non-blocking algorithm that computes
C = A x B,where A, B and C are N x N matrices (in
our measurements N = 1024). Matrices A, B, and the
resulting matrix C' are all stored in node zero. Node zero
generates migratable tokens that each compute one row of
the matrix C' and send the result back to node zero. The
first time that a node executes a token, it copies the entire
matrix B to its local memory and the specified row of A. It
retains the copy of B to reuse in the computation of future
tokens. Although a dense matrix multiply is a very regular
algorithm, this version relies on the dynamic load balancer
to distributed the load among the processors.

Figures 1 through 3 show the absolute speedup for the
three benchmarks on each machine. The table 2 displays
the actual execution times for the applications on the three
platforms. The absolute speedup is measured as the quotient
of the time required to execute a sequential version of the
code and the time required to execute the parallel version in
P processors.

In the MANNA, the slow CPU speed results in high
elapsed time for sequential execution. The load balancer
used on MANNA, “dual”, provides a very simple load bal-
ancing algorithm, with minimum overheads. It generates
extra network messages due to the virtual ring topology it
uses, but they are compensated by the MANNA'’s dedicated
processor in each node which deals with the network traffic.

The “his” balancer used in the SP-2 and Beowulf ma-
chines, on the other hand, works on single processor nodes.
In order to reduce the network traffic, the his balancer uses
history information to send tokens directly to the destination
nodes, rather than following a virtual ring topology. This
balancer works very well in the case of the IBM SP-2, due
to its efficient network interface. However, in the case of the
Beowulf, high CPU speed and low network speed result in
comparatively poor performance, especially in the case of
irregular, and communication intensive applications. Due
to the high CPU speed, the computation time is usually not
high enough to amortize the remote communication costs.

Another important factor is the uni-node support effi-
ciency or USE factor [5, 10]. The USE factor is the ratio
of sequential execution time and the elapsed time for one-
node parallel execution. An ideal 100% use-factor indicates
minimum overheads imposed by the multi-threaded envi-
ronment, and the presence of enough parallelism in the form
of fibers to hide the latencies of the multi-threaded opera-
tions. A unity USE factor also suggests that good absolute
speedup is possible for the tested application.

In the case of Queens(12), both the MANNA and the SP2
implementations of EARTH deliver almost linear speedup.
The his balancer on the SP-2 performs better than the dual
balancer which is tuned for the dual processor MANNA.
However the speedup of the Beowulf implementation ta-
pers off after a small number of processors. We believe
that this happens mostly because of the iterations between
the EARTH runtime system and the Linux operating sys-
tem actions, including the frequent interruptions to the ker-
nel because of frequent arrival of small messages. The low
USE factor for Queens on Beowulf suggests that, despite
throttling, the multi-threaded overheads play a part in the
poor speedup.

The IBM SP-2 platform performs best for the irregular
application Paraffins(28). However, the elapsed time for se-
quential execution on the SP-2 is low, resulting in a very low
USE factor. This in turn results in poor absolute speedup
when compared to the MANNA or the Beowulf. The dy-
namic computation in this application is handled very well



. Parallel: Num of Processors
Benchmark Machine SEQ 1 | 2 | 1 | g | B | 6
MANNA 1725 | 1746 | 8.74 437 | 2.19 1.46 1.10
Queens(12) SP2 4.79 478 2.50 1.21 0.58 | 041 0.30
Beowulf 6.63 1156 | 6.51 360 | 222 | 1.77 1.59
MANNA 398 398 200 101 510 | 347 | 258
Paraffins(28) SP2 572 205 103 518 | 262 17.3 13.1
Beowulf 168 342 174 882 | 459 | 335 | 249
MANNA 364 542 271 138 704 | 36.71 | 30.70
Matrix SP2 28347 | 284 | 14995 72 3197 | 2048 | 394
(1024X1024) Beowulf 245 249 | 128.22 | 66.27 | 3498 | 25.68 | 21.22

Table 2. Execution time (in seconds) for the sequential and parallel versions of three benchmarks on

the MANNA, IBM-SP2, and Beowulf platforms.

by the high speed processors of the Beowulf when com-
pared to the MANNA.

The matrix multiplication application represents the reg-
ular class of problems, where the computation time can
amortize the minimal multi-threading overheads. This is
visible in the near unity USE factors for the SP-2 and the
Beowulf platforms. On the other hand, with the MANNA
platform, the extremely regular computation requiring lots
of memory accesses fails to hide or overlap with the multi-
threading overheads on the slow CPU.

5 Final Remarks

The relatively poor performance for both the EARTH-
SP2 and the EARTH-Beowulf for the paraffins benchmark
reflects the difference in speed between the processor and
the network of these machines. For instance, on Table 1
we observe that a remote sync operation on EARTH-SP2
requires 14 times more cycles than on EARTH-MANNA.
On EARTH-Beowulf the remote sync requires on average
of 106 more processor cycles than on EARTH-MANNA.

The dense matrix multiplication algorithm used in this
study was designed to test the EARTH load balancer?.
The speedups shown in Figure reffig:matrix-speedup for all
three machines demonstrate that the load balancer effec-
tively distributes the processing load among the nodes.

Applications belonging to three different programming
models- recursive, irregular and regular classes are stud-

2Because of data locality a blocking algorithm would deliver better per-

formance.

ied for their performance on the three different platforms.
While the CPU speed and the load balancer adopted are
seen to affect performance in a major way across all the
platforms, the high communication costs associated with
the network interface seemed to have a biggest impact on
all communication intensive applications in the EARTH-
Beowulf.

6 Related Work

In the Threaded Abstract Machine (TAM) [3] all
threaded operations are under the control of the compiler.
It has the non-trivial requirement that the runtime behav-
ior of the fine-grain threads be predictable at compile time.
Cilk is a multi-threading language that handles fine-grain,
non-blocking threads in a shared memory environment.
Cilk is well suited for the the implementation of fully-
strict computations and divide-and-conquer problems [1].
The distributed Filaments system [4] implements fine-grain
threads in a distributed shared memory environment with
no hardware support for distributed shared memory. Ac-
tive threads [11] offer fine-grain, non-preemtive, blocking
threads running over traditional kernel threads.
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