
Minimum Register Instruction Sequencing to Reduce Register

Spills in Out-of-Order Issue Superscalar Architectures

R. Govindarajan, Hongbo Yang, José Nelson Amaral, Chihong Zhang, Guang R. Gao

Abstract

In this paper we address the problem of generating an optimal instruction sequence for a
Directed Acyclic Graph (DAG), where is optimal when it uses a minimum number of registers.
We call this the Minimum Register Instruction Sequence (MRIS) problem. The motivation for
studying the MRIS problem stems from several modern architecture innovations/requirements that
put the instruction sequencing problem in a new context.

We develop an efficient heuristic solution for the MRIS problem. This solution is based on
the notion of an instruction lineage — a set of instructions that can definitely share a single reg-
ister. The formation of lineages exploits the structure of the dependence graph to facilitate the
sharing of registers not only among instructions within a lineage, but also across lineages. Our
efficient heuristics to “fuse” lineages further reduce the register requirement. This reduced register
requirement results in generating code sequence with fewer register spills.

We implemented our solution in the MIPSpro production compiler and measured the perfor-
mance on the SPEC95 floating point benchmark suite. Our experimental results demonstrate that
the proposed instruction sequencing method significantly reduces the number of spill loads and
stores inserted in the code, by more than 50% in each of the benchmarks. Our approach reduces
the average number of dynamic loads and stores executed by 10.4% and 3.7%, respectively. Fur-
ther, our approach improves the execution time of the benchmarks on the average by 3.2%.

In order to evaluate how efficiently our heuristics find a near-optimal solution to the MRIS
problem, we develop an elegant integer linear programming formulation for the MRIS problem.

R. Govindarajan is with the Supercomputer Education & Research Centre, Dept. of Computer Science & Automation,
Indian Institute of Science, Bangalore, India. H. Yang and G. R. Gao are with the Electrical and Computer Engineering,
University of Delaware, Newark, DE, USA. J. N. Amaral is with the Dept. of Computing Science, University of Alberta,
Edmonton, AB, Canada. C. Zhang is with Conexant Systems, Inc., Newport Beach, CA, USA.

1

Using a commercial integer linear programming solver we obtain the optimal solution for the
MRIS problem. Comparing the optimal solution from the integer linear programming tool with our
heuristic solution reveals that in a very large majority (99.2%) of the cases our heuristic solution
is optimal. For this experiment, we used a set of 675 dependence graphs representing basic blocks
extracted from scientific benchmark programs.

Keywords

Compiler Optimization, Code Sequence Optimization, Register Allocation, Instruction Schedul-
ing, Code Generation, Superscalar architectures, Instruction Level Parallelism.

1 Introduction

In this paper we revisit the optimal code generation problem [1, 9] also known as the evaluation-
order determination problem [42]: the problem of generating an instruction sequence from a data
dependence graph (DDG). In particular, we are interested in generating an instruction sequence that
uses the minimum number of registers. We define theMinimum Register Instruction Sequence (MRIS)
problem as:

Given a data dependence graph , derive an instruction sequence for that is optimal
in the sense that its register requirement is minimum.

Our study of the MRIS problem is motivated by the challenges faced by modern processor archi-
tectures. For example, a number of modern superscalar processors support out-of-order instruction
issue and execution [37]. Out-of-order (o-o-o) instruction issue is facilitated by the runtime schedul-
ing hardware and by the register renaming mechanism existent in superscalar architectures. An o-o-o
processor has more physical (i.e., not logical or architected) registers at its disposal for register re-
naming at runtime, that are not visible to the compiler. Due to these hardware mechanisms, o-o-o
issue processors have the capabilities to uncover the instruction level parallelism obscured by anti- and
output-dependences (together known as false dependences or name dependences). Hence it is impor-
tant in these processors to reduce the number of register spills, even at the expense of not exposing
instruction level parallelism [40, 36]. Reducing register spills reduces the number of loads and stores
executed, which in turn is important:

2

from a performance viewpoint in architectures that either have a small cache or a large cache
miss penalty;

from a memory bandwidth usage viewpoint as the elimination of spill instructions frees instruc-
tion slots to issue other useful instructions;

from a power dissipation viewpoint, as load and store instructions consume a significant portion
of the power budget.

As another argument to why the MRIS problem is relevant, in code generation for threads in fine-
grain multi-threaded architectures, it is often important to minimize the number of registers used in a
thread in order to reduce the cost of thread context switch [14].

The MRIS problem is related to, but different from, the conventional instruction scheduling [1,
16, 17, 28, 41] and register allocation [1, 7, 8, 10, 11, 15, 28, 30, 32, 39] problems. In traditional
instruction scheduling, the main objective is to minimize the total time (or length) of the schedule.
Thus such problem formulation must take into account the execution latencies of each instruction in
the DDG. In contrast, the latency of operations in the DDG and the availability of functional unit
resources are not a part of the MRIS problem formulation. To highlight this difference, we distinguish
the use of the terms “instruction schedule” and “instruction sequence”.

The MRIS problem is closely related to the optimal code generation (OCG) problem [1, 9, 34] or
the evaluation-order determination problem [42]. For the case in which the dependence graph is a tree,
an algorithm that produces an optimal sequence (in terms of code length) for the OCG problem exists.
For a general DAG, the problem is known to be NP-Complete since 1975 [34]. An important difference
between these traditional code generation approaches (OCG and evaluation order determination) and
our MRIS problem is that the former emphasize reducing the code schedule length while the latter
focuses on minimizing the number of registers used.

In this paper, we present a simple and efficient heuristic method to address the MRIS problem. The
proposed method is based on the following:

Instruction lineage formation: The concept of an instruction lineage evolves from the notion
of instruction chains [19] which allows the sharing of a register among instructions along a
(flow) dependence chain in a DDG. In other words, a lineage is a set of nodes in the DDG.
Instruction lineages model the DDG register requirement more accurately than instruction chains
(see Section 6).

3

Lineage Interference Graph: The notion of a lineage interference graph captures the definite
overlap relation between the live ranges of lineages even before the instructions in lineages are
scheduled, and its use to facilitate sharing of registers across lineages.

We implemented our heuristic approach (MRIS) in the SGI MIPSpro compiler suite and used that
implementation to evaluate our approach on the SPEC95 floating point benchmarks. For comparison
we also measured the performance of a baseline version of the compiler that performs traditional
compiler optimizations, but that does not optimize the instruction sequence with the goal of reducing
register pressure. We also compared our approach with an Optimized version of the MIPSpro compiler
that performs integrated instruction scheduling and register allocation. As the emphasis of our work is
on sequencing the instructions to reduce the register requirements and the number of spill instructions
executed, we measured the number of static as well as dynamic loads and stores in each benchmark
under different versions of the compiler. We also compare the execution time of the benchmarks. Our
experimental results are summarized as follows.

When compared to the baseline version of the MIPSpro compiler, the heuristic approach sig-
nificantly reduces the number of spill instructions inserted in the (static) code, on the average
by 63.14%, and by more than 50% in each of the benchmarks. The heuristic approach also
drastically reduces the number of basic blocks that require spills.

The number of dynamic load and store instructions executed reduces respectively, by as much as
20.9% and 11.2%, and on the average by 10.4% and 3.7%, in comparison to the baseline version
of the compiler.

The heuristic method also marginally improves the execution time, on the average by 3.2%. In
one of the applications, the performance improvement is as high as 14.2%.

Lastly, even compared to the optimized version, our heuristic approach performs better in terms
of all the above parameters, although the percentage improvement is relatively low.

The baseline version of the compiler performs the same optimizations included in the optimized com-
piler, including the same instruction scheduling and register allocation algorithms. In the optimized
compiler, when the local register allocation requires spilling, the local instruction scheduler is called
again using more accurate estimations for the register pressure. This second attempt at instruction
scheduling optimization, after the first attempt at register allocation, is disabled in the baseline com-
piler.

4

In order to assess the optimality and efficiency of the proposed heuristic we formulate the MRIS
problem as an integer linear programming problem and solve it using a commercial integer linear pro-
gramming solver. This implementation produces the optimal solution for the MRIS problem for DDGs
with a small number of nodes. Comparing this optimal solutions with the heuristic ones reveals that,
for a very large majority (99.2%) of the cases, our heuristic solution was optimal. For this experiment,
we used a set of 675 (small sized) DDGs representing basic blocks in scientific benchmarks programs.

The rest of the paper is organized as follows. In the following section we motivate the MRIS prob-
lem with the help of an example. In Section 3, we present our heuristic solution for the lineage for-
mation and a sequencing method to construct a near-optimal minimum register instruction sequence1.
Section 4 deals with the formulation of the MRIS problem as an integer linear programming problem.
We report static and dynamic performance measures of our approach in Section 5. Related work and
conclusions are presented in Sections 6 and 7.

2 Motivating Example

We first use an example to motivate the MRIS problem. Later we illustrate our heuristic approach
using the same example.

2.1 Motivating Example

Consider the computation represented by a data dependence graph (DDG)2 shown in Figure 1(a). Two
possible instruction sequences for this DDG are also shown in the figure along with the live ranges
of the variables – (for simplicity, we assume in this example that all the variables are dead at
the end of the basic block). For the instruction ordering shown in Figure 1(b) we have four variables
simultaneously live in statements and , therefore four registers are required. However, with the
sequencing shown in Figure 1(c) only three variables are simultaneously live and therefore we may
use only three registers. In this particular example, the minimum register requirement is three. Hence
the sequence shown in Figure 1(c) is one of the minimum register sequences.

1We use the term near-optimal to indicate that in our empirical investigation, our heuristic algorithm compared well
with known optimal solutions. We make no claims about near-optimality from an approximation theory stand point.

2Since our focus in this paper is on generating an instruction sequence that reduces register pressure, we consider only
flow dependences in our DDG. Other dependences due to memory (such as store–load dependences), while important from
a scheduling viewpoint, do not influence register allocation and hence need not be considered for computing the register
requirements.

5

(b) Instruc tion Sequenc e 1 (c) Instruc tion Sequenc e 2

h

a

b c d e

gf

a : s1 = ld [x];

h : s8 = s6 * s7;

d : s4 = s1 - 4;

e : s5 = s1 / 2;

g : s7 = s4 - s5;

c : s3 = s1 * 8;

f : s6 = s2 * s3;

b : s2 = s1 + 4;

s1

s2

s3

s4

s5

s6

s7

s1

s4

s5

s7

s6

s3

s2

(a) DDG

a : s1 = ld [x];

h : s8 = s6 * s7;

c : s3 = s1 * 8;

e : s5 = s1 / 2;

b : s2 = s1 + 4;

f : s6 = s2 * s3;

d : s4 = s1 - 4;

g : s7 = s4 - s5;

Figure 1: Motivating Example

The MRIS problem can be stated as follows: given a set of instructions and the data dependences
among them, build an instruction sequence that requires a minimum number of registers. The input for
the MRIS problem is a Data Dependence Graph (DDG) where the nodes represent instructions and the
directed edges, also referred to as flow arcs, are data dependences.3 The edges of the DDG impose a
partial order among the instructions. In this paper we restrict our attention to acyclic DDGs and hence
do not consider any loop-carried dependences.

We say that multiple instructions share a single register if they use the same register as a destination
for the values that they produce. We need to identify which nodes in the DDG can share the same
register in a legal sequence. Although a complete answer to this question is hard to determine, the data
dependences in the DDG provide a partial answer. For instance, in the DDG of Figure 2(a), since there
is a data dependency from node to node , and there is no other node that use the value produced
by node , we can definitely say that, in any legal sequence, the register associated with node can be
shared by node . Similarly nodes and can share the same register. Next, can nodes and share
the same register? The answer is no, because, in any legal sequence, the values produced by these
instructions must be live simultaneously so that the computation in node can take place.

Another interesting question is whether nodes and can share the same register. The data de-
pendence in the DDG neither requires their live ranges to definitely overlap (as in the case of nodes
and) nor it implies that they definitely will not overlap (as in the case of nodes and). Hence to
obtain a minimum register instruction sequence, one must order the nodes in such a way that the live
ranges of nodes and do not overlap, and hence they can share the same register. In the following
subsection, we outline our approach which uses some efficient heuristics to arrive at a near-optimal
solution to the MRIS problem.

3Although we present the MRIS formulation for the DDG of a basic block, our method is also applicable to su-
perblocks [23].

6

h

a

b c d e

gf

h

a

b c d e

gf

L2 L3

L4L1

(b) Augmented DDG (a) Orig ina l DDG (c) Lineage Interferenc e Graph

L2 = [c , f);
L3 = [e, g , h);
L4 = [d , g);

L1 = [a , b , f, h);

Figure 2: Data Dependence Graph for the Motivating Example

2.2 Overview of the Lineage Based Algorithm

Our solution to the MRIS problem uses the notion of instruction lineages. If is a node in a DDG
and has one or more descendents, then produces a value and must be assigned a register.4 If
we have a sequence of instructions in the DDG where is the descendant of ,
is the descendant of , etc., then we can form a lineage of these instructions in such a way that

an instruction sequencing in which all the instructions in the lineage share the same register can be
generated. That is, the register assigned to is passed on to (’s heir) which is passed on to ,
and so on. Due to the data dependency between pairs of instructions in the lineage, any legal sequence
will order the instructions as , , , , and, hence, if the live range of the variable defined by
ends at , then can definitely reuse the same register allocated to .

What if has more than one descendant? In order for to use the same register that used, we
must ensure that the other descendents of are sequenced before . Thus the selection of one of the
descendents of to be the heir of the register creates sequencing constraints among the descendents
of . Such sequencing constraints are explicitly represented in the augmented DDG by means of
directed sequencing edges from each descendant node to the selected heir. For instance, the DDG for
the motivating example is shown in Figure 2(a). The definition of the lineage creates
scheduling constraints between the descendents of . These sequencing edges are shown as dotted
arrows in Figure 2(b). In Section 3 we introduce a simple but efficient heuristic to select heirs. We will
also show that the introduction of sequencing edges does not introduce cycles in the DDG.

It is clear that all the nodes in a lineage share the same register. But can two lineages share the
same register? To determine the interference between two lineages, we have to determine whether the

4A node of the DDG without descendents must either be a store instruction or else it produces a value that is live-out of
the basic block. For simplicity, we do not consider live-out registers in the presentation of our solution. A simple extension
of our solution would insert a dummy sink node to capture live-out registers as in [27].

7

live ranges of the lineages overlap in all legal instruction sequences. The live range of an instruction
lineage is the concatenation of the live ranges of all the values defined by the instructions in the
lineage. If the live ranges of two lineages overlap in all legal sequences, then the lineages cannot
share the same register. However if they do not overlap in at least one of the legal sequences, then we
may be able to sequence the lineages in such a way that they share a register. Based on the overlap
relation we construct a Lineage Interference Graph (LIG). Figure 2(c) shows the LIG for our example.
This lineage interference graph is colored using traditional graph coloring algorithms to compute the
number of registers required for the DDG [10, 11]. We refer to this number as the Heuristic Register
Bound (HRB). Once we color the lineage interference graph, we apply a sequencing method that uses
this coloring as a guideline to generate an instruction sequence that uses the minimum number of
registers. Our heuristic-based algorithm produces a near-optimal solution for the MRIS problem.

As formulated, MRIS optimizes an instruction sequence based only on the number of registers
used in the sequence. MRIS does not takes into consideration the size of the instruction window in
a superscalar processor. Therefore an optimal solution to MRIS may be an instruction sequence that
minimizes the register pressure, but result in sub-optimal schedule at runtime because instructions that
could execute in parallel are not in the same instruction windows.

3 Heuristic Approach to the MRIS Problem

In this section, we present our heuristic approach to find a good approximation to the minimum register
sequence for an acyclic DDG. First, we formally introduce the concept of lineage and describe our
lineage formation algorithm. Further, we establish a condition for lineage overlapping, introduce the
lineage interference graph (LIG) and compute the HRB. In Section 3.3, we introduce the concept of
lineage fusion to simplify the LIG and improve register sharing. Finally we describe the sequencing
algorithm for instruction sequence generation based on the coloring of the LIG.

3.1 Lineage Formation

We use the notion of instruction lineage to identify sequences of operations that can share registers.

Definition 3.1 An instruction lineage is a set of nodes such that there exist flow
arcs , , , in the DDG. We say that is the heir of in lineage , is
the heir of in , and so on.

8

Although a node can have many descendants in the DDG, only one of these descendants can be
the node’s heir. The heir of a node is a node that inherits the destination register of to store
its own result. As a consequence the formation of a lineage imposes sequencing constraints among
the descendants of a node : the chosen heir must be the last among all descendants of to be
executed because is the last use of the value produced by .

The last node in a lineage is the last one to use the value in the register (defined by) assigned
to that lineage. The last node might belong to another lineage or might be a store instruction that
does not need a register. Therefore the last node does not use the same register as the other nodes in the
lineage. We emphasize this property of the last node by denoting a lineage with semi-open intervals
as . Thus, in the DDG of Figure 2, the four lineages that cover all the def-last use
relations are , , , and .

Our lineage formation algorithm attempts to form as long a lineage as possible, in the sense that
if is a lineage then either is a node with no descendants or is already associated
with some other lineage. Because the heir is always the last descendant to be executed in an acyclic
sequencing, the live range of the nodes in a lineage will definitely not overlap with each other and
hence all the nodes in the lineage can share the same register. In order to ensure that the heir is the last
use of the value produced by its parent node, we introduce sequencing edges in the DDG, from each
descendant of a node to the chosen heir, as shown in Figure 2(b). A sequencing edge from a node
to a node imposes the constraint that node must be listed before node is listed. This constraint
implies that all nodes that can reach must be listed before any node that can be reached from is
listed.

If the introduction of sequencing edges were to make the graph cyclic, then it would be impossible
to obtain a sequence for the instructions represented in the DDG. Hence some care should be taken in
the selection of a heir. During the formation of the instruction lineages, we use a simple height priority
to choose the heir of each node. The height of a node is defined as follows:

if has no descendants
otherwise

where is the set of all the immediate descendants of . In the DDG of Figure 2(a) in Section 2,
the heights of the nodes are:

9

During the lineage formation, if a node has multiple descendants, then we chose a descendant node
with the smallest height to be the heir of . If multiple descendants have the same lowest height,
then the tie is broken arbitrarily. In order to ensure that cycles are not introduced in the lineage
formation process, we recompute the height of each node after introducing sequencing edges between
the descendants of a node.

Each flow arc in a DDG corresponds to a true data dependency, and hence, to a definition-use
(def-use) relationship between the nodes and . Hence each dependence edge is associated with a
register. Later we will assign registers to lineages of nodes of the DDG. Therefore it is important that
the live range of each node of the DDG (except for sink nodes) be associated with exactly one lineage.
The lineages are formed by the arcs between a node and its chosen heir, i.e., each arc that form a
lineage is a def-last use arc in the DDG. By using a greedy algorithm to form lineages, our algorithm
is conservative in the number of lineages formed, thus reducing the size of the lineage interference
graph and the complexity of coloring that graph.

The Lineage Formation algorithm is essentially a depth-first graph traversal greedy algorithm by
identifying a heir for each node using the height priority. If a node has multiple descendants, se-
quencing edges are introduced after the heir is selected, and the heights of all nodes in the DDG are
recomputed. The detailed algorithm is presented in Figure 3. The application of the lineage formation
algorithm to the DDG of Figure 2(a) results in four lineages as shown in Figure 2(c). We refer to the
DDG with the additional sequencing edges as the augmented DDG (refer to Figure 2(b)). Notice that
in steps 8 and 10 of the algorithm, we distinguish flow edges from sequencing edges. That is, if there
is a sequencing edge from node to node , is not considered a descendant of for the purpose of
lineage formation. Only arcs that represent data dependences are considered for the lineage formation.

Next we show that the introduction of sequencing edges does not introduce any cycle. Formally,

Lemma 3.1 The introduction of sequencing edges during lineage formation does not introduce any
cycle in the augmented DDG.

Proof: Since only the lowest descendant of a node is chosen as the heir, all sequencing edges inserted
will be from nodes with higher heights to nodes with lower heights. Also, if the lowest descendant is
already in a different lineage, then the current lineage ends. Furthermore, the heights of all the nodes in
the graph are recomputed (in Steps 23 and 24) at the start of each new lineage5. Thus in the augmented

5Although one may think that the re-computation of the heights of all nodes is needed every time after choosing a
heir in a lineage, the heights of descendants of the chosen heir will not be affected by the sequencing edge. Hence the
re-computation of heights is performed, if necessary, when a new lineage is started.

10

LINEAGEFORMATION
1. mark all nodes in the DDG as not in any lineage
2. compute the height of every node in the DDG
3. while there is a node not in any lineage do
4. recompute height false
5. highest node not in lineage
6. start a new lineage containing
7. mark as in a lineage
8. while has a descendant do
9. lowest descendant of
10. if has multiple descendants
11. recompute height true
12. for each descendant of do
13. add sequencing edge from to
14. endfor
15. endif
16. add to lineage
17. if is already marked as in a lineage
18. // end lineage with as the last node
19. break;
20. endif
21. mark as in a lineage
22.
23. end while
24. if recompute height = true
25. recompute the height of every node in the DDG
26. endif
27. end while

Figure 3: Lineage Formation Algorithm.

DDG, there can be no path from a lower to a higher node, and therefore no cycle can be formed.

3.2 Lineage Interference Graph and Heuristic Register Bound

In this section we discuss how to determine whether the live ranges of two lineages always overlap
and how to compute the heuristic register bound.

11

3.2.1 Overlapping of Live Ranges

In order to determine whether two lineages can share a register, we need to verify if the live ranges of
these lineages overlap. To define the live range of a lineage we use the fact that each instruction has a
unique position in the sequence of instructions.

Definition 3.2 If the first instruction of a lineage , is in position , and the last
instruction is in position in the instruction sequence, then the live range of the lineage starts
at and ends at .

Our goal is to find an instruction sequence that results in a minimal register usage over all legal instruc-
tion sequences. Therefore we must identify lineages that can share the same register, i.e. lineages with
non-overlapping live ranges. Moreover we must identify such lineages before a complete instruction
sequence is produced. While we are identifying these lineages, the instructions within each lineage are
totally ordered, but instructions from multiple lineages will be interleaved in a yet to be determined
way to form the final instruction sequence. Thus we can think that the position of instructions in the
sequence, and as a consequence, the live ranges of different lineages are floating. The live range of a
lineage is always contiguous, irrespective of interleavings of instructions from multiple lineages. Thus
once the first instruction in a lineage is listed, its live range is active until the last instruction of the
lineage is listed into the sequence.

In order to determine whether the live ranges of two lineages must necessarily overlap, we define
a condition based on the existence of paths between the lineages. First, we define two set of nodes:
is the set of nodes that start lineages, and is the set of nodes that end lineages. Next we define the
reach relation .

Definition 3.3 The reach relation maps to . For all and , node
reaches node , , if there is a path in the augmented DDG from to , otherwise

.

The reach relation is used to determine whether the live ranges of two lineages must necessarily overlap
in all legal instruction sequences for the augmented DDG.

Definition 3.4 Let represent the position of instruction in an instruction sequence. Two lineages
and overlap in an instruction sequence if

or .

12

Definition 3.5 Two lineages and definitely overlap if
they overlap for all possible instruction sequences.

Theorem 3.1 The live ranges of two lineages and defi-
nitely overlap if reaches and reaches .

Proof: Since there exists a directed path (consisting of flow and sequencing edges) from to , in
any instruction sequence must be listed before , . Similarly, since there exist a directed
path from to , . Further since is a lineage, and similarly . If
is listed before , , we obtain that and the lineages overlap. Likewise if
is listed before , , we obtain and the two lineages also overlap.Thus we
proved that whether the starts before , or starts before , the two lineages overlap. Hence
the live ranges of and definitely overlap.

Consider the lineages and in our motivating example in Figure 2(b).
Node can reach node through the path , and node can reach node through the path

. Therefore, the live ranges of these two lineages must overlap. Similarly the live range
of lineage must overlap with , must overlap with , must overlap with , and must
overlap with .

3.2.2 Constructing and Coloring the Lineage Interference Graph

Next we construct a lineage interference graph (LIG), an undirected graph whose vertices’s represent
the lineages. Two vertices are connected by an interference edge if and only if the live ranges of the
lineages represented by them definitely overlap. Using Theorem 3.1, the lineage interference graph
can be computed from the transitive closure of the augmented DDG. Fortunately the reach relation
defined earlier significantly reduces the cost of generating the LIG by requiring only the verification
of the paths between nodes that start and nodes that end lineages.

There is an edge in the LIG between two lineages and
if and only if and . In our motivating example the set of start nodes is

, and the set of end nodes is . For the presentation of our algorithm,
the reach relation can be represented by a binary matrix where each row is associated with a node in
and each column is associated with a node in . The reach relation for this example is shown in

Figure 4(a). The LIG for this example is shown in Figure 2(c).

13

h

a

gf

b d ec

L1

L3L4−2

1 1 1

1 1 1

1 1

1 1 1

e

d

c

a
f g h

0

1

1

1

1

e

d

1 1a
f h

(c) DDG After Fusion (d) LIG After Lineage Fusion

L4−2 = [d , g) U [c , f);
L3 = [e, g , h);

L1 = [a , b , f, h);

(a) Rec heab ility
 Before Fusion

(b) Rec heab ility
 After Fusion

Figure 4: Reach Relation. DDG and LIG after lineage fusion for Motivating Example.

The lineage interference graph can be colored using a heuristic graph coloring algorithm [10, 11].
We refer to the number of colors required to color the interference graph as the Heuristic Register
Bound (HRB). It should be noted that due to the heuristics involved in coloring the interference graph
and due to the sequencing order of descendant nodes in the DDG, the HRB computed is a near-optimal
solution. For our motivating example, shown in Figure 1(a), the lineage interference graph is depicted
in Figure 2(c). This interference graph can be colored using 3 colors resulting in a HRB of 3 for our
motivating example.

3.3 Lineage Fusion

Before we proceed to describe our instruction sequence generation method, in this section, we present
an optimization that fuses two lineages into a single one. Lineage fusion increases the success of the
instruction sequence generation algorithm on finding an instruction sequence that requires no more
than HRB registers.

3.3.1 Conditions for Lineage Fusion

Let and . If reaches but does not reach , then
the live ranges of and do not necessarily interfere with each other, i.e., it is possible to generate
a legal sequence where these two live ranges do not overlap. In this case, it is possible to use the same
register for both lineages. However if we start listing nodes of in the instruction sequence before we
finish listing all the nodes of , the two lineages will interfere and we will not be able to use the same
register for both lineages. An instruction sequencer with a fixed number of registers will deadlock in

14

such a situation because it will not be able to release the register used for nodes of for usage by .
This lineage interference, and consequent sequencing deadlock, is avoidable.

A simple solution that prevents this interference and the consequent sequencing deadlock involves
introducing a new sequencing constraint in the DDG that forces all the nodes of to be listed before
any node of is listed. We call this operation a lineage fusion because it treats lineages and as
if they were a single lineage. An additional advantage of lineage fusion is a reduction in the number of
nodes in the lineage interference graph and a consequent reduction in the cost of coloring that graph.
After the lineages are formed as described in Section 3.1, pairs of lineages that satisfy the Lineage
Fusion Condition can be fused into a single lineage. Formally,

Definition 3.6 Two instruction lineages and can be fused
into a single lineage if:

i. reaches , i.e., ;

ii. does not reach , i.e., ;

When the lineages and are fused together, a sequencing edge from to is inserted
in the DDG, the lineages and are removed from the lineage set and a new lineage

is inserted in the lineage set. Note that the last node of the first
lineage, , does not necessarily use the same registers as the other nodes in the new lineage.
Thus it is important to represent the lineage resulting from the fusion as a union of semi-open se-
quences as we did in this paragraph. Fusing two lineages and causes the respective nodes and
in the interference graph to be combined into a single node, say . Every edge incident on or

is now incident on . In fusing lineages, the reach relation should be updated after each fusion. We
discuss how to update the reach relation in the following subsection. Before that we establish that the
sequencing edges introduced by lineage fusion do not result in cycles.

Lemma 3.2 The fusion of lineages does not introduce any cycle in the augmented DDG.

Proof: We use proof by contradiction. Let and be two
lineages such that (1) reaches , and (2) does not reach . Let us assume that when we fuse
and , the inclusion of the sequencing edge from to causes the formation of a cycle in the

DDG. If this edge forms a cycle, this cycle must include a path from to . But that contradicts

15

condition 2 for fusion. Hence, the fusion of two lineages under the conditions of definition 3.6 cannot
introduce a cycle in the DDG.

Lineage fusion helps to reduce the number of partially overlapping live range pairs, and thereby
reduces the register requirements. It accomplishes this by fusing the two lineages corresponding to the
partially overlapping live ranges into one, and forcing an instruction sequence order on them. Lineage
fusion is applied after lineage formation and before the coloring of the lineage graph. Therefore the
interference graph to be colored after lineage fusion has fewer vertices. It would be also legal to fuse
the two lineages and when . However such fusions would impose an
unnecessary constraint in the sequencing order of and restricting the freedom of the sequencing
algorithm. The sharing of registers by completely independent lineages is indicated by the coloring of
the LIG.

3.3.2 Implementing Lineage Fusion

While it may seem at first that it would be necessary to recompute the transitive closure of the aug-
mented DDG after each lineage fusion, we can obtain all possible lineage fusions from the reach
relation already computed for the construction of the lineage interference graph.

To find candidates for fusion, we search for a pair of lineages and
such that and . The fusion condition says that we can

create the new lineage . The creation of this new lineage will require the addition of a
scheduling edge from to . The algorithm updates the reach relation in such a way that all nodes
that could reach before the fusion now can also reach . In other words, , for some

, if either before the lineage fusion, or . After the fusion can
no longer be in the set of nodes that start lineages, . Notice that is no longer the start node of the
fused lineage , and that each node can start at most one lineage in the lineage formation algorithm.
Therefore the row corresponding to should be eliminated from the reach relation. Furthermore, if

does not terminate any other lineage, its column can also be eliminated from the reach relation.6

Further, node is removed from . Likewise, node can be removed from , the set of nodes that
end a lineage, if does not end any other lineage other than .

When there are multiple candidates for lineage fusion, we arbitrarily select a pair of lineages to
be fused. The fusion results in the updating of the sets and , and of the reach relation. We keep

6A node might end multiple lineages because the last node of the lineage does not share a register with the other nodes
in the lineage. For instance, in our motivating example node ends lineages and .

16

searching the reach relation representation for new pairs of lineages that can be fused until none is
found. For instance, a lineage may be first fused with a lineage to create a new lineage ,
and then this compound lineage may be fused with a third lineage to form .

In our motivating example the initial analysis of the reach relation finds that lineage
can be merged with lineage because and . The new lineage is

and the new sequencing edge in the DDG is . The updated reach relation is
shown in Figure 4(b). Because there are no more zeros in the reach relation, no more lineage fusions
are possible. The DDG and the LIG after fusion are shown in Figures 4(c) and 4(d).

In the following subsection, we present an heuristic method to derive an instruction sequence for
the augmented DDG.

3.4 Instruction Sequence Generation

The coloring of the lineage interference graph associates a register with each lineage. For example, a
register assignment with 3 colors for the nodes in our motivating example is:

where , , and are general purpose registers. Our solution assumes that registers that are live-
in and live-out in the DDG will be assigned by a global register allocation procedure. However, as
discussed in Section 2, our method can account for live-in and live-out registers through the addition
of dummy source and sink nodes.

Our sequencing method is based on the list scheduling algorithm. It uses the register allocation
information obtained by coloring the lineage interference graph. The sequencing method lists nodes
from a ready list based on height priority and on the availability of registers assigned to them.

The instruction sequence generation method is shown in Figure 5. The sequencing algorithm takes
as inputs , the DDG augmented with sequencing edges; , a list of lineages obtained from the
lineage formation algorithm with lineage fusion applied; and , the register assignment for the nodes
from the coloring of the lineage interference graph. The availability of register needs to be checked
only if the node is the first node in its lineage. Otherwise, the predecessor of will pass the register
assigned to it, which will be free when is ready to be listed. The algorithm uses the augmented
DDG with the sequencing edges, which ensures that is the last use of its predecessor. When two

17

SEQUENCING
1. ReadyList such that has no predecessors
2. RegAvailable
3. while ReadyList do
4. for each node in the ReadyList in decreasing height order do
5. if () or ((and (RegAvailable))

// either is not the start node of a lineage or
// the register assigned to in is available

6. Remove from RegAvailable
7. Remove from ReadyList
8. List
9. Add to the ReadyList all successors of

that have all its predecessors listed
10. if () and

// node ends a lineage which
// is assigned register

11. Return to RegAvailable
12. endif
13. endif
14. endfor
15. end while

Figure 5: Sequencing Algorithm.

lineages and are fused together, they are represented
by a single lineage in the lineage interference graph and a single register is assigned to the nodes

. Because the fusion algorithm introduced a sequencing edge from
to , and removed nodes and from and respectively, there is no need to check for the
availability of a register when is listed.

Unfortunately, the above sequencing algorithm could result in a deadlock due to two reasons [19].
First, the order of listing two nodes belonging to two different lineages that are assigned the same
color may result in a deadlock. We refer to these deadlocks caused by wrong ordering of nodes as
avoidable deadlocks, as they often can be avoided through the lineage fusion process. We illustrate
this with the help of an example in the following discussion. The second kind of deadlocks referred to
as unavoidable deadlocks are caused due to the underestimation of HRB. This could happen because
the condition used to test if two live ranges definitely overlap (stated in Theorem 3.1) is sufficient but

18

not necessary. As illustrated below, lineage fusion helps to reduce the occurrences of both avoidable
and unavoidable deadlocks.

Applying the sequencing algorithm to our motivating example, first we list node . If lineage
fusion is not used, the listing of node causes nodes , , and to be added to the Ready List. Since
register is available, either node or node can be listed next. There is no criterion to choose
or and therefore the tie is broken arbitrarily. Unfortunately, if node is listed before , a cycle of
dependences is created because node cannot be listed before node (listing node will release the
register currently used by to). On the other hand, in order to list we must first list , but
cannot be listed before because must be the last use of assigned to . This is an avoidable

deadlock that can be solved by lineage fusion.

If lineage fusion is employed, lineages and are fused together and a sequencing edge from
node to node is added to the graph. Thus after node is listed (using), only nodes and can
be listed. Suppose that node is listed next (using). Now the only available register is . Hence
we have to list node . The nodes , , , , and are listed subsequently in that order. The instruction
sequence requires only three registers as shown in Figure 1(c).

Unfortunately even with the application of lineage fusion, unavoidable deadlocks occur when the
heuristic register bound (HRB) computed from coloring the lineage interference graph is lower than
the actual number needed. In this case there does not exist a legal instruction sequence that uses HRB
or fewer registers. To overcome the deadlock problem (both avoidable and unavoidable deadlocks) we
follow a simple heuristic that increases the HRB by 1. The algorithm then picks one of the nodes (the
one with the maximum height) in the Ready List and change its register assignment (as well as that
of the remaining nodes in that lineage) to a new register and list the node. This strategy overcomes
a deadlock by gradually increasing the HRB and trying to obtain a sequence that uses as few extra
register as possible. We measure the performance of our heuristic approach in Section 5.

4 Exact Approach to the MRIS Problem

In this section we formulate the MRIS problem as an integer linear programming (ILP) problem. Our
ILP formulation must obtain an ordering of the DDG nodes such that each node is assigned a unique
integer that represents its position in the instruction sequence. If there are nodes in the DDG, then
can assume values from 1 to . That is,

(1)

19

Further since we are interested only in a sequential ordering of the nodes, no two nodes can have the
same position, i.e., for all . We represent this relation as an integer linear constraint
using the technique proposed by Hu [22]. We use a 0-1 integer variable and write the condition

as a pair of constraints:

(2)

(3)

where is the number of nodes in the DDG. Intuitively represents the sign of , and
is 1 if the sign is positive and 0 otherwise.

Next we derive conditions that ensure that the instruction sequence obeys true data dependences.
If there exists a flow dependence arc in the DDG, then clearly node must be listed ahead of
node . That is

for all in the DDG (4)

Assume that node has successors: , , , . The live range of the value produced by node
is the interval [, max(, , ,)]. Thus the value produced by node is live at position
iff (i) and (ii) . For ranging from 1 to , the value
of the 0-1 integer variable represents whether is true (see inequalities 5 and 6). Similarly,
the value of the 0-1 integer variable indicates whether (see inequalities 7 and 8). The
constraints in the position of all nodes that have true dependences on node , i.e., nodes , , are
represented in the similar way.

(5)

(6)

(7)

(8)

The 0-1 integer variable is 1 if and only if any of the variables is 1. This condition
is imposed by the following two constrains.

(9)

(10)

Finally, the 0-1 integer variable indicates if variable is live at time . Thus is 1 if and only if
both and are nonzero. This relation is represented in the following two constraints.

(11)

20

(12)

The interference relations between the live ranges within a basic block form an acyclic interval graph.
Therefore it is optimally colorable with the same number of colors as the maximum width of the
interval graph [21]. The width of the interval graph at position can be represented by

. Hence the objective function is tominimize where

for all (13)

Thus the ILP problem is to minimize subject to inequalities 1 to 13.

5 Experimental Results

We present results from two sets of experiments designed to evaluate the performance of our lineage
based algorithm. In the first set of experiments (see Section 5.1) we compare the register requirement
of the instruction sequence generated by our lineage-based sequencing algorithm with the minimum
register requirement computed by the ILP formulation presented in Section 4. Because of the time
complexity of the ILP algorithm, the ILP method only can find a solution in a reasonable time for
DDGs with a limited number of nodes (in spite of the use of an efficient commercial ILP solver, viz.,
CPLEX). Therefore instead of SPEC benchmarks, we use a set of loops extracted from a collection
of benchmark programs for this comparison. We were able to compare the results for 675 DDGs and
determined that in 99.2% of them our sequencing method found a sequence that uses the minimum
number of registers.

For our second set of experiments, we implemented our method in the SGIMIPSpro compiler suite,
a set of highly-optimizing compilers for Fortran, C, and C++ onMIPS processors. We report both static
and dynamic performance measures for four different versions of the compiler on SPEC-95 Floating
Point suite 7. The static performance measures include the number of basic blocks that required register
spilling, the average spills per basic block as well as the total number of spill instructions inserted in
the code. We report execution time of the compiled program on a MIPS R10000, and the number
of dynamic loads and stores that graduate from the pipeline as dynamic performance measures. The
static and dynamic performance measures are reported in Section 5.2

7Our experiments with the SPEC Int suite resulted in no measurable differences in execution time between the MRIS
and the optimized compiler. This is possibly because of the facts that the basic blocks in the Spec Int benchmarks are
smaller in size and our implementation of the MRIS approach performs instruction sequencing only within the basic block.

21

Estimate’s Relation Register Requirement Number of DDGs
ILP HRB Sequence DDGs Total Percentage

ILP = HRB = Sequence 1-8 1-8 1-8 650 650 96.3%
ILP = Sequence HRB 3 2 3 10

4 3 4 5
5 4 5 1
7 3 7 1
8 7 8 2 19 2.8%

ILP = HRB Sequence 4 4 5 2
6 6 7 1 3 0.4%

ILP HRB = Sequence 2 3 3 1
3 4 4 2 3 0.4%

Table 1: Comparison between the number of register required for MOSTDDGs from ILP (exact), HRB
(estimation), and an actual sequence. We present the number of DDGs and the register requirements
for each estimate relation.

5.1 Comparing the Heuristic with the Exact Results

In order to compare the heuristic register bound (HRB) found by our method with the exact register
requirement obtained with the ILP approach, we use a set of loops from Erik Altman’s MOST frame-
work [2]. The MOST framework is a collection of 1200 loops extracted from SPEC92 (integer and
floating point), linpack, livermore, and the NAS kernels benchmarks. These DDGs were extracted
with an optimizing research compiler. However many of these DDGs had a large number of nodes and
edges; when the exact solution was tried for these DDGs, the ILP solver couldn’t get a solution even
after a reasonably long execution time. In the interest of time, we eliminated such DDGs and used a
set of 675 DDGs in our experiments. The DDGs considered in our experiments vary widely in size
with a median of 10 nodes, a geometric mean of 12 nodes, and an arithmetic mean of 19 nodes per
DDG.

Out of the 675 DDGs, in 650 (96.3% of the total) the estimated HRB is exact and our sequencing
algorithm obtains an instruction sequence that uses the minimum number of registers. In Table 1 we
present the exact minimum register requirement found by the ILP formulation, the estimated regis-
ter requirement found by the HRB approach, and the number of registers used by our lineage-based
sequencing algorithm. We separate the loops in which these estimates are identical to the minimum

22

register requirement (the 650 loops in the first row of the table) from those in which they are not (the
last three rows in the table). In 19 loops (2.8% of total) although the HRB is an underestimation of the
number of registers required, the sequencing algorithm based on lineage coloring used the minimum
number of registers required. In three DDGs (0.4% of total) although the HRB is a correct estimation
of the minimum number of registers, the sequencing algorithm used one extra register. And in other
three loops, both the HRB estimate and the number of registers required by our heuristic sequencing
algorithm are one more than the optimal value. Thus, out of the 675 DDG tested, only in 6 of them
(0.8%) the heuristic sequencing used one more register than the minimum required. These results give
us confidence in the quality of the instruction sequence produced by the lineage algorithm.

5.2 Comparison with a Production Compiler

In a second set of experiments we implemented our heuristic instruction sequencing method in the SGI
MIPSpro compiler. This compiler performs extensive optimizations including copy propagation, dead-
code elimination, if-conversion, loop unrolling, cross-iteration optimization, recurrence breaking, in-
struction scheduling, and register allocation. The compiler also implements an integrated global-local
scheduling algorithm [26] that is invoked before and after register allocation. The global register
allocation, based on graph coloring [12, 8], is followed by local register allocation. After register
allocation, the data dependence graph is rebuilt and a post-pass scheduling is invoked. During local
register allocation, the MIPSpro compiler inserts spill code according to a cost function that estimates
the number of load/store spill instructions that each spill candidate will incur. This estimation only
takes into consideration uses within the same basic block.

In our implementation, the algorithm described in Section 3 is used to optimize the instruction
sequence at the basic block level. This local optimization is applied only to basic blocks that require
spill code under the initial local register allocation. After the instruction sequence is optimized, the
local register allocation is invoked again on the new instruction sequence. The goal of the instruction
sequencing algorithm is to reduce the amount of spill code executed by reducing the register pressure
of the generated code. We refer to this version of the compiler as HRB-based sequencing, or simply
as the HRB approach8.

8It should be noted that although the original objective of the MRIS problem is to arrive at an instruction sequence that
uses a minimal number of registers for a basic block, in our implementation the HRB-based sequencing is applied only to
those basic blocks whose register requirement is greater than the available number of registers. Thus, the HRB sequencing
approach is only used to reduce the register pressure for basic blocks which do incur register spills.

23

The performance of the HRB optimized version is evaluated against a baseline version of the
MIPSpro compiler. We also measure the HRB approach against an optimized version of the MIPSpro
compiler which includes a combined instruction scheduling and register allocation algorithm. Thus,
in the experimental results presented in this section we compare four versions of the compiler:

Baseline The baseline compiler includes several traditional optimizations, such as copy propagation,
dead-code elimination, etc., listed earlier in this subsection. In fact all four compiler versions
apply these optimizations. In addition, the baseline compiler traverses the instructions of a
basic block in reverse order to perform local register allocation, but does not try to optimize the
instruction sequencing when the local register allocator requires spill code.

Optimized In this version of the compiler, in addition to the traditional optimizations, there is a
combined instruction scheduling and register allocation algorithm that is implemented in the
MIPSpro compiler. The instruction sequencing algorithm used for this optimization is a depth-
first traversal algorithm that takes resource constraints into consideration.

HRB The HRB compiler version also includes traditional optimizations, but when the local register
allocator detects the need to spill code in a basic block, the instruction sequencing and register
allocation algorithm based on the formation of lineages and on the heuristic register bound de-
scribed in this paper is applied. Register allocation is performed in the new instruction sequence.

HRB (No Fusion) Identical to HRB, except that the lineage fusion algorithm is not implemented.

The baseline compiler is an optimized implementation including the integrated global and local
scheduling, global and local register allocation and optimized spilling. However, when register pres-
sure is high (which is the case for some of the SPEC FP benchmarks), a more sophisticated instruction
scheduling geared toward reducing register pressure is needed. The optimized version of the compiler
uses this additional instruction scheduling, while the baseline does not.

We present our performance results for a machine with 32 integer and 32 floating point architected
registers. Because the HRB algorithm is more effective in application with high register pressure, we
will also present the performance results for a machine with 32 integer and 16 floating point architected
registers. This is the same target processor, but in the machine description file in the compiler we
restrict the available registers to 16, so that the compiler cannot use half of the FP register file. This in
effect increases the register pressure and, hence, spills.

24

5.2.1 Static Measurements

First we report static performance measures such as the number of spill instructions inserted statically
in each benchmark by different versions of the compiler. Columns 2, 4, and 7 in Table 2 reports the
number of basic blocks in which spill code was introduced by the different versions of the compilers.9

We report the total number of spill instructions introduced by the different versions of the compiler in
each application in columns 3, 5, 8, and 11. Lastly, columns 6, 9, and 12 represent, respectively, the
percentage reduction in the number of (static) spill instructions introduced by the Optimized, HRB (No
Fusion), and HRB versions of the compiler compared to the baseline version. We report the percentage
reduction in the spill instructions compared to the baseline version of the compiler. For instance, for
the HRB version of the compiler, the percentage reduction is defined as:

(14)

where , for example, refers to the number of spills in benchmark under the HRB
version of the compiler. The top or bottom section of the table reports the performance for a target
machine with 32 or 16 FP registers. In each section, the last row reports the average number of basic
blocks that incurred spill, the average number of spill instructions per benchmark, and the percentage
reduction in the average spill instructions compared to the baseline version. The average percentage
reductions in this row are computed as the percentage reduction in the average number of spills inserted
in all the benchmarks, and not as the average of the percentage reduction for the different benchmarks.

In Table 2, the total number of basic blocks that require spilling for a specific version of the com-
piler can be obtained by adding the entries in the column “Blocks with Spill”. For a machine with 16
FP registers, the total number of blocks that require any spilling is reduced from 210 in the Baseline
compiler to 94 in the HRB compiler, i.e.,55% of the blocks that required spill operations before no
longer do. Compared to this, the Optimized MIPSpro inserts spill code in 152 blocks (a reduction of
only 28%). In a machine with 32 FP registers, the baseline compiler inserts spills in 88 blocks com-
pared with 32 in the HRB (a reduction of 63.6%) and 51 blocks in the optimized compiler (a reduction
of 42.1%).

A comparison of the average number of spills in each benchmark, reveals that the HRB version
reduces the spills by 63.1% and 55.89%, respectively, in the 32 FP and 16 FP register machines,

9Besides the SPEC-95 FP benchmarks reported in the paper, we also conducted our experiments for swim, mgrid, and
hydro2d; but for these benchmarks there are no basic blocks with spills even under the baseline version of the compiler.
Hence we do not include them in our results.

25

Benchmark

Compiler Version
Baseline Optimized HRB(No Fusion) HRB

Blocks Total Blocks Total % reduc. Blocks Total % reduc. Blocks Total % reduc.
w/spills Spills w/spills Spills w/spills Spills w/spills Spills

AMachine with 32 INT and 32 FP Registers
tomcatv 1 1 0 0 100.00 0 0 100.00 0 0 100.00
su2cor 8 36 1 6 83.33 1 5 86.11 1 5 86.11
applu 22 1080 14 454 57.96 11 337 68.80 10 340 68.52
turb3d 10 67 7 69 -2.99 1 28 58.21 0 0 100.00
apsi 20 287 11 135 52.96 9 119 58.54 9 113 60.63
fpppp 17 1180 13 782 33.73 12 818 30.68 12 560 52.54
wave5 10 111 5 50 54.95 1 1 99.10 0 0 100.00
Average 12.57 394.57 7.29 213.71 45.84 5.00 186.86 52.64 4.57 145.43 63.14

A Machine with 32 INT and 16 FP Registers
tomcatv 2 38 1 22 42.11 2 16 57.89 1 13 65.79
su2cor 13 80 2 22 72.50 5 44 45.00 1 5 93.75
applu 63 1678 51 1130 32.66 43 945 43.68 35 819 51.19
turb3d 23 530 18 342 35.47 14 325 38.68 10 169 68.11
apsi 42 694 30 332 52.16 25 213 69.31 17 146 78.96
fpppp 23 1939 18 1391 28.26 16 1540 20.58 14 1276 34.19
wave5 44 827 32 492 40.51 26 223 73.04 16 124 85.01
Average 30.00 826.57 21.71 533.00 35.52 18.71 472.29 42.86 13.43 364.57 55.89

Table 2: Static count of the total number of spill operations inserted (32 INT and 16 FP registers).

compared to the baseline compiler. More specifically, for a machine with 16 FP registers, in terms
of the total number of spills, the reduction due to HRB ranges from 34% to 94%. For a machine
with 32 FP register, the percentage reduction varies from 52.5% to 100%. In comparison, MIPSpro’s
optimizing compiler reduces the average of number of spills by only 45.8% and 35.5% respectively
for the two machines. The most dramatic improvement when comparing the HRB with the optimized
compiler is observed for fpppp, applu, and wave5 benchmarks, for a machine with 32 and 16
FP registers, where the optimized version incurs 200 or more static spill instructions compared to the
HRB approach. Thus even compared to the optimized compiler, the HRB approach produces code that
significantly reduces number of spills.

26

The fusion of lineages reduces the number of spill operations inserted in the code in relation to
a version of the HRB algorithm that does not perform lineage fusion. Compared to the HRB ver-
sion which reduced the average spills by 63.1% and 55.9%, respectively, for machines 32 and 16 FP
registers, the HRB version without lineage fusion, resulted in a reduction of only 52.6% and 42.9%.

Lastly, notice that the reduced percentage improvement in average spills for the 32 FP register
machine is less than that for the 16 FP register machine. This result may seem to be counter-intuitive,
given that the HRB algorithm should perform well for programs with higher register pressure. Note,
however, that in the 16 FP machine, on average 462 spills were eliminated, while for the 32 FP machine
this number was 249. Thus, the lower percentage reduction is only due to the large denominator value
(average spills in the baseline version).

5.2.2 Dynamic Measurements

To report dynamic performance, we conducted our experiments on a Silicon Graphics machine with a
194 MHz MIPS R10000 processor, 32 KB instruction cache, 32 KB data cache, 1 MB of secondary
unified instruction/data cache, and 1 GB of main memory. We measured the wall clock time for the
execution of each benchmark under the IRIX 6.5 operating system with the machine running in a
single user mode. As the emphasis of our work is on sequencing the instructions to reduce the register
requirements and spill code, we used the R10000 hardware counters and the perfex tool to measure
the number of loads and stores graduated in each benchmark under each version of the compiler. Since
the baseline and HRB versions of the compiler are identical except for the instruction reordering at the
basic block level, the reduction in the number of loads/stores executed in each benchmark program
corresponds to the number of spill loads/stores reduced by the HRB approach.

First we report the dynamic measurements for spill instructions. The number of loads and stores
graduated from the pipeline for each benchmark in each version of the compiler are shown in Tables 3
and 4. Each table shows the number of operations (in billions) as well as the percentage reductions
in relation to the baseline compiler. The percentage reduction is computed using an equation similar
to 14. The average number of loads reported in the last row of each section of a table is simply the
arithmetic mean of the number of graduated loads in each of the benchmarks. However, the percentage
reductions in these rows is the percentage reduction of the average number of loads. In other words,
the average reported under the “% reduction” column is not the average of the percentage reductions.
The same averaging method is used for reporting the graduated stores (see Table 4) and the execution
time (see Table 5).

27

Benchmark

Compiler Version
Baseline Optimized HRB(No Fusion) HRB
Loads Loads % reduc. Loads % reduc. Loads % reduc.

A Machine with 32 INT and 32 FP Registers
tomcatv 6.51 6.37 2.1 6.07 6.7 6.19 5.0
su2cor 5.83 5.82 0.1 5.83 0.1 5.82 0.1
applu 8.07 7.56 6.3 7.51 7.0 7.51 7.0
turb3d 11.63 11.63 0.0 11.58 0.4 11.59 0.3
apsi 4.96 4.83 2.5 4.73 4.6 4.67 5.7
fpppp 28.40 24.65 13.2 23.13 18.6 22.45 20.9
wave5 3.72 3.72 -0.2 3.69 0.8 3.69 0.7
Average 9.87 9.23 6.53 8.93 9.53 8.85 10.4

A Machine with 32 INT and 16 FP Registers
tomcatv 8.42 7.84 6.9 7.25 13.9 6.88 18.3
su2cor 6.29 5.92 5.9 6.48 -3.0 5.68 9.7
applu 8.77 8.42 3.9 8.19 6.5 8.12 7.4
turb3d 14.75 13.30 9.8 12.02 18.5 12.65 14.2
apsi 5.38 5.15 4.4 5.02 6.8 4.70 12.7
fpppp 35.04 28.00 20.2 30.52 12.9 26.81 23.5
wave5 3.88 3.75 3.3 3.69 5.0 3.73 3.9
Average 11.79 10.34 12.3 10.45 11.33 9.8 16.9

Table 3: Total number of graduated loads (in billions) for each benchmark, and percentage reduction
in relation to the baseline Compiler (32 INT and 16 FP registers).

The HRB compiler reduces the average number of loads and stores executed, respectively, by
10.4% and 3.7% for a machine with 32 FP registers. These numbers for a machine with 16 registers
are 16.9% and 3.5%, respectively. Even when compared with the optimized MIPSpro compiler, the
reduction in the average number of loads and stores is significant (almost 400 and 200 Million in-
structions). Thus reducing the number of static spill instructions, results in a reduction in the number
of dynamic spill instructions executed. The drastic improvement in a single benchmark is observed
for fpppp, where 8.2 and 5.95 Billion loads are eliminated (compared to the baseline version), for
machines with 16 and 32 FP registers respectively.

28

Benchmark

Compiler Version
Baseline Optimized HRB(No Fusion) HRB
Stores Stores % reduc. Stores % reduc. Stores % reduc.

A Machine with 32 INT and 32 FP Registers
tomcatv 2.34 2.34 0.0 2.34 0.0 2.34 0.0
su2cor 2.84 2.84 0.0 2.84 0.0 2.84 0.0
applu 5.24 4.75 9.3 4.65 11.3 4.65 11.2
turb3d 13.33 13.34 0.0 13.24 0.6 13.24 0.6
apsi 3.17 3.17 0.0 3.17 0.0 3.17 0.0
fpppp 20.78 20.68 0.5 19.67 5.3 19.55 5.9
wave5 3.76 3.76 0.0 3.76 0.0 3.76 0.0
Average 7.35 7.27 1.1 7.1 3.5 7.08 3.7

A Machine with 32 INT and 16 FP Registers
tomcatv 3.22 2.63 18.2 2.54 21.2 2.73 15.2
su2cor 2.86 2.86 0.0 2.86 0.0 2.86 0.0
applu 5.88 5.37 8.6 5.31 9.7 5.16 12.3
turb3d 14.03 13.81 1.5 13.86 1.2 13.82 1.4
apsi 3.52 3.39 3.7 3.29 6.6 3.19 9.4
fpppp 21.37 22.09 -3.4 20.60 3.6 21.26 0.5
wave5 3.90 3.88 0.7 3.85 1.3 3.83 1.8
Average 7.83 7.72 1.4 7.47 4.5 7.55 3.5

Table 4: Total number of graduated stores (in billions) for each benchmark, and percentage reduction
in relation to the baseline Compiler(32 INT and 16 FP registers).

Next we report whether the reduction in the number of loads and stores executed corresponds to
a reduction in the execution time of the benchmarks. Table 5 presents the execution time for each
benchmark under different versions of the compiler. This is the wall-clock time, measured in seconds,
required to execute each benchmark. We also present the percentage reduction in the execution time.
First, we notice that, by and large, there is a correlation between the improvement in execution time in
Table 5 and the reduction in the number of loads and stores graduated. The drastic improvements in
the number of loads and stores seen in fpppp, do translate into a significant improvement in execution
time: 14.2% and 11.4%, respectively, for machines with 32 or 16 FP registers. Once again, although

29

Benchmark

Compiler Version
Baseline Optimized HRB(No Fusion) HRB
Time Time % reduc. Time % reduc. Time % reduc.

A Machine with 32 INT and 32 FP Registers
tomcatv 358.99 354.67 1.20 360.38 -0.39 354.17 1.34
su2cor 230.12 229.99 0.06 230.37 -0.11 229.76 0.16
applu 397.41 392.16 1.32 388.59 2.22 385.92 2.89
turb3d 393.94 394.06 -0.03 393.62 0.08 395.17 -0.31
apsi 248.22 249.79 -0.63 249.53 -0.53 248.31 -0.04
fpppp 391.82 361.39 7.77 365.46 6.73 336.11 14.22
wave5 198.84 199.28 -0.22 198.50 0.17 198.81 0.01
Average 317.05 311.62 1.71 312.35 1.48 306.89 3.20

A Machine with 32 INT and 16 FP Registers
tomcatv 375.00 363.31 3.12 362.55 3.32 358.58 4.38
su2cor 232.22 229.29 1.26 232.42 -0.09 231.73 0.21
applu 402.41 404.22 -0.45 397.28 1.27 393.65 2.18
turb3d 415.63 411.09 1.09 409.44 1.49 404.41 2.70
apsi 253.25 253.18 0.03 252.48 0.31 249.81 1.36
fpppp 447.98 411.82 8.07 414.27 7.53 396.79 11.43
wave5 200.43 198.79 0.82 200.55 -0.06 200.10 0.16
Average 332.42 324.53 2.37 324.14 2.49 319.30 3.95

Table 5: Execution time (in seconds) and reductions in the execution time in relation to the baseline
compiler.

the reduction in execution time compared to the respective baseline version is the same for different
target machine configurations for which they were compiled, the lower percentage reduction in the 16
FP register case is due to the larger execution time of the baseline version.

From Table 5, it can be seen that the code produced by the HRB version of the compiler does,
in fact, reduce the execution time, although the percentage reduction is somewhat low. However,
we remark that one should not be discouraged by the somewhat low improvement in execution time
due to the HRB approach. The HRB approach performs instruction sequencing solely with the ob-
jective of reducing the register requirements. Our implementation of the HRB algorithm does not

30

take into account the resource constraints of the architecture, often sacrificing some instruction-level
parallelism. The average execution time under the HRB version is comparable or better than that
under the Optimized version in each of the benchmarks. Our arguments to support this approach is
that modern superscalar processors with their out-of-order issue hardware should be able to uncover
the instruction-level parallelism that is obscured by false register dependences. Compared to this,
the MIPSpro Optimized version uses an integrated register allocation and instruction scheduler. Our
experiments, in fact, demonstrate that the HRB sequencing approach minimizes the register require-
ments. At the same time, the execution of these programs resulted in a performance that is on par
or better than the Baseline or Optimized MIPSpro version in terms of execution time. We have also
witnessed a significant reduction (a few billions) in the number of loads and stores. This reduction is
primarily due to the savings in spill code. As indicated by Cooper and Harvey [13], reducing the spill
load/store operations results in less cache pollution and hence higher cache performance. Further re-
ducing memory operations can significantly reduce the power dissipated. These are other advantages
of the HRB approach in addition to achieving a reasonable performance improvement in execution
time.

6 Related Work

Instruction scheduling [16, 28] and register allocation [1, 8, 10, 11, 15, 28, 30, 32, 39] are impor-
tant phases in a high performance compiler. The ordering of these phases and its implications on the
performance of the code generated have been studied extensively for in-order issue superscalar pro-
cessors and Very Long Instruction Word (VLIW) processors. In such processors it is often necessary
to expose enough instruction-level parallelism even at the expense of increasing the register pressure
and, to some extent, the amount of spill code generated. Integrated techniques that try to minimize
register spills while focusing on exposing parallelism were found to perform well [6, 5, 27, 29, 31].
All these approaches work on a given instruction sequence and attempt to improve register allocation
and/or instruction scheduling. In contrast, our MRIS approach generates an instruction sequence from
a DDG where the precise order of instructions is not yet fixed.

Modern out-of-order issue superscalar processors, which have the capabilities to perform instruc-
tion scheduling and register renaming at runtime, shift the focus of the instruction-level compilation
techniques. Studies on out-of-order issue processors indicate that reducing the register pressure, and
hence the number of memory spill instructions executed is more crucial to the performance than in-
creasing the instruction level parallelism [36, 40].

31

The Minimum Register Instruction Sequence (MRIS) problem studied in this paper is different
from the traditional register allocation problem [1, 8, 10, 11, 15, 28, 30]. Recently, there have also
been a few proposals on register allocation based on integer linear programming [3, 18, 25]. The input
to the MRIS problem is the partial order specified by a DDG instead of a totally ordered sequence of
instructions. Although the absence of a total order of instructions makes the MRIS problem harder, it
also enables the generation of an instruction sequence that requires less registers. The MRIS problem
is also quite different from the traditional instruction scheduling problem [1, 16, 17, 28, 41]. In the
traditional instruction scheduling problem, the main objective is to minimize the total time (length) of
the schedule, taking into account the execution latencies of each operation (instruction) in the DDG and
the availability of function unit resources. This is in contrast to the MRIS problem, where only the true
dependence constraints are observed. The MRIS problem is also closely related to the optimal code
generation (OCG) problem [1, 34, 33]. An important difference between traditional code generation
methods and our MRIS problem is that the former emphasizes reducing the code length (or schedule
length) for a fixed number of registers, while the latter minimizes the number of registers.

The unified resource allocator (URSA) method deals with function unit and register allocation
simultaneously [4]. The method uses a three-phase measure–reduce–assign approach, where resource
requirements are measured and regions of excess requirements are identified in the first phase. The
second phase reduces the requirements to what is available in the architecture, and the final phase
carries out resource assignment. More recently, Berson, Gupta, and Soffa used register reuse dags
for measuring the register pressure [5]. A register reuse dag is similar to the lineage discussed in this
paper. They have evaluated register spilling and register splitting methods for reducing the register
requirements in the URSA method for individual loops, rather than the whole application. Our work,
in contrast, reports static and dynamic performance measures on SPEC-95 floating point benchmark
suite.

In the experiments presented in Section 5, our lineage formation method was applied only to basic
blocks for which an heuristic-based local register allocator could not perform the allocation using the
number of registers available for the basic block. In other words, we only apply the lineage based
algorithm for basic blocks that incur in spills. Thus the aggressive sequentialization in our algorithm
does not prevent parallelismwhen an allocation is found that does not incur in spills. In an independent
work, Touati proposes an approach to perform register allocation and code scheduling in a single pass
by generating a schedule that maximizes the number of values live at the same time [38]. His reasoning
is that when more values are simultaneously live the scheduler will find more opportunities to explore
parallelism. Thus instead of creating long chains (lineages in our case), he attempts to create maximal

32

anti-chains. When maximal anti-chains result in a register requirement that is greater than the number
of available registers, Touati uses an approximate algorithm to find a quasi-optimal set of serialization
arcs to reduce the number of registers used. In the few examples that we examined, his register satu-
ration reduction algorithm and our lineage fusion algorithm created the same set of sequentialization
edges. It is interesting to note that these two algorithms use quite contrasting approaches (maximizing
vs. minimizing the register requirements) to achieve the same objective of minimizing the register
spills.

Lastly, the lineage formation and the heuristic list scheduling methods proposed in this paper are
major improvements over, respectively, the chain formation and the modified list scheduling method
discussed in [19]. The chain formation method allocates, at least conceptually, one register for each
arc in the DDG, and must cover all arcs. That is, it must include each def-use, not just def-last use,
in a chain. Hence, the instruction lineage approach more accurately models the register requirement.
Secondly, the lineage formation overcomes an important weakness of instruction chains, namely allo-
cating more than one register for a node. Further, a number of heuristics have been incorporated into
the sequencing method to make it more efficient and obtain near-optimal solutions.

7 Conclusions

In this paper we address the problem of generating an instruction sequence for a computation that
is optimal in terms of the number of registers used by the computation. This problem is motivated
by requirements of modern out-of-order issue processors. In out-of-order issue processors, excessive
register spills can potentially degrade the performance, and hence must be avoided even at the expense
of reducing the parallelism exposed at compile time. Another motivation for the MRIS problem stems
from the fact that register spills lead to memory accesses which are expensive in terms of power
dissipation.

We proposed two solutions to the MRIS problem. First, an heuristic solution that uses lineage
formation, lineage interference graph, and a modified and efficient list scheduling method to obtain ef-
ficient near-optimal solution to the MRIS problem. The second approach is based on an elegant integer
linear programming formulation. Compared to the exact ILP-based approach for MRIS, the heuristic
approach results in optimal solution for 99.2% of the DDGs used for our experiments, although these
DDGs are small in size and have low register requirements.

We evaluated the performance of our heuristic method by implementing it in the MIPSpro produc-

33

tion compiler, and running SPEC95 floating point benchmarks. Our experimental results demonstrate
that our instruction reordering method, which attempts to minimize the register requirements, reduces
the average number of basic blocks that require spilling by 62.5% and the average spill operations in
the (static) code by 63.1%. As a consequence, the HRB approach also reduces the average number of
loads and stores executed by 10.4% and 3.7% respectively for a machine with 32 integer and 32 float-
ing point registers. This reduction in loads and stores also results in an improvement in the average
execution time by 3.2%.

The MRIS approach to register allocation and instruction sequencing might allow a smaller cache,
and reduce the traffic of data between the processor and the memory structure, thus contributing to the
reduction of power consumption. It might also reduce the need for spilling from the register stack in an
IA-64 machine. An experimental study to test these hypothesis will be welcomed by the community.

Acknowledgments

This research is supported by the National Science Foundation (NSF) and by the Natural Sciences and
Engineering Research Council (NSERC) of Canada. We would also like to acknowledge current and
former members of CAPSL for valuable discussions, and Jim Dehnert and Sun Chan, formerly with
SGI, for discussions about the organization of the MIPSpro compiler. Special thanks to the anonymous
reviewers whose comments helped us improve the quality of this manuscript.

References

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers — Principles, Techniques, and Tools. Addison-
Wesley Publishing Co., Reading, MA, corrected edition, 1988.

[2] E. R. Altman. Optimal Software Pipelining with Function Unit and Register Constraints. PhD
thesis, McGill Univ., Montréal, Québec, Oct. 1995.

[3] A. W. Appel, L. George. Optimal spilling for CISC machines with few registers. In Proc. of
the ACM SIGPLAN 2001 Conf. on Programming Language Design and Implementation, pages
243–253, Snowbird, UT, June 2001.

34

[4] D. Berson, R. Gupta, and M. L. Soffa. URSA: A Unified ReSource Allocator for registers and
functional units in VLIW architectures. In Proc. of the Conf. on Parallel Architectures and
Compilation Techniques, PACT ’98, Paris, France, June 27–29, 1998.

[5] D. Berson, R. Gupta, and M. L. Soffa. Integrated instruction scheduling and register allocation
techniques. In Proc. of the Eleventh International Workshop on Languages and Compilers for
Parallel Computing, LNCS, Springer Verlag, Chapel Hill, NC, Aug. 1998.

[6] D. G. Bradlee, S. J. Eggers, and R. R. Henry. Integrating register allocation and instruction
scheduling for RISCs. In Proc. of the Fourth Intl. Conf. on Architectural Support for Program-
ming Languages and Operating Systems, pages 122–131, Santa Clara, CA, Apr. 8–11, 1991.

[7] P. Briggs, K. D. Cooper, and L. Torczon. Rematerialization. In Proc. of the ACM SIGPLAN ’92
Conf. on Programming Language Design and Implementation, pages 311–321, San Francisco,
CA, June 17–19, 1992.

[8] Preston Briggs, Keith D. Cooper, and Linda Torczon. Improvements to graph coloring register
allocation. ACM Trans. on Programming Languages and Systems, 16(3):428–455, May 1994.

[9] J. L. Bruno and R. Sethi. Code generation for a one-register machine. J. of the ACM, 23(3):502–
510, Jul. 1976.

[10] G. J. Chaitin. Register allocation and spilling via graph coloring. In Proc. of the SIGPLAN ’82
Symp. on Compiler Construction, pages 98–105, Boston, MA, June 1982.

[11] G. J. Chaitin, M. A. Auslander, A. K. Chandra, J. Cocke, M. E. Hopkins, and P. W. Markstein.
Register allocation via coloring. Computer Languages, 6:47–57, Jan. 1981.

[12] F. C. Chow and J. L. Hennessy. The priority-based coloring approach to register allocation. ACM
Trans. on Programming Languages and Systems, 12(4):501–536, Oct. 1990.

[13] K. D. Cooper and T. J. Harvey. Compiler-Controlled Memory. In Architectural Support for
Programming Languages and Operating Systems, pages 2-11, San Jose, CA, Oct, 1998

[14] G. R. Gao, L. Bic, and J.-L. Gaudiot. Advanced Topics in Dataflow Computing and Multithread-
ing, IEEE Computer Society Press. Book contains papers presented at the Second International
Workshop on Dataflow Computers held in May 1992 in Hamilton Island, Australia, 1995.

35

[15] L. George and A. W. Appel. Iterated register coalescing. In Conf. Record of the 23rd ACM
SIGPLAN-SIGACT Symp. on Principles of Programming Languages, pages 208–218, St. Peters-
burg, FL, Jan. 21–24, 1996.

[16] P. B. Gibbons and S. S. Muchnick. Efficient instruction scheduling for a pipelined architecture.
In Proc. of the SIGPLAN ’86 Symp. on Compiler Construction, pages 11–16, Palo Alto, CA, June
25–27, 1986.

[17] J. R. Goodman and W-C. Hsu. Code scheduling and register allocation in large basic blocks. In
Conf. Proc., 1988 Intl. Conf. on Supercomputing, pages 442–452, St. Malo, France, July 4–8,
1988.

[18] D. W. Goodwin and K. D. Wilken Optimal and near-optimal global register allocation using 0–1
integer programming. Software—Practice and Experience 26(8):929– 965, August 1996.

[19] R. Govindarajan, C. Zhang, and G. R. Gao. Minimum register instruction scheduling: A new
approach for dynamic instruction issue processors. In Proc. of the Twelfth InternationalWorkshop
on Languages and Compilers for Parallel Computing, San Diego, CA, Aug. 1999. (available at
http://csa.iisc.ernet.in/ govind/lcpc99.ps)

[20] R. Govindarajan, H. Yang, J.Nelson Amaral, C. Zhang, and G.R. Gao. Minimum regis-
ter instruction sequence problem: Revisiting optimal code generation for DAGs In Pro-
ceedings of the International Parallel and Distributed Processing Symposium, (available
at http://www.capsl.udel.edu/COMPILER/IPDPS01 Govind.ps.gz), San Fran-
cisco, CA, April 2001.

[21] L. J. Hendren, G. R. Gao, E. R. Altman, and C. Mukerji. A register allocation framework based
on hierarchical cyclic interval graphs The Journal of Programming Languages, 1(3):155–185,
1993.

[22] T. C. Hu. Integer Programming and Network Flows, page 270. Addison-Wesley Pub. Co., 1969.

[23] W. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J. Warter, R. A. Bringmann, R. G. Ouel-
lette, R. E. Hank, T. Kiyohara, G. E. Haab, J. G. Holm, and D. M. Lavery. The superblock: An
effective technique for VLIW and superscalar compilation. Jl. of Supercomputing, 7:229–248,
1993.

[24] Intel. Intel IA-64 Architecture Software Developer’s Manual, Jan 2000.

36

[25] C.W. Kessler. Scheduling expression DAGs for minimal register need. In Proc. of 8th Intl. Symp.
on Programming Languages: Implementations, Logics, and Programs (PLILP’96), Springer
LNCS 1140, pp. 228-242, Aachen, Sept. 1996.

[26] S. Mantripragada, S. Jain, and J. Dehnert. A new framework for integrated global local schedul-
ing. In Proc. of the 1998 Intl. Conf. on Parallel Architectures and Compilation Techniques, pages
167–174, Paris, France, Oct. 12–18, 1998. IEEE Comp. Soc. Press.

[27] R. Motwani, K.V. Palem, V. Sarkar, and S. Reyan. Combining register allocation and instruction
scheduling. Technical Report, Courant Institute of Mathematical Sciences, New York University,
New York, NY, 1996.

[28] S. S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann Publishers,
Inc., San Francisco, CA, 1997.

[29] B. Natarajan andM. Schlansker. Spill-free parallel scheduling of basic blocks. In 28th Annual In-
ternational Symposium on Microarchitecture, pages 119-124, Ann Harbor, Michigan, December,
1995.

[30] C. Norris and L. L. Pollock. Register allocation over the Program Dependence Graph. In Proc.
of the ACM SIGPLAN ’94 Conf. on Programming Language Design and Implementation, pages
266–277, Orlando, FL, June 20–24, 1994.

[31] S. S. Pinter. Register allocation with instruction scheduling: A new approach. In Proc. of the
ACM SIGPLAN ’93 Conf. on Programming Language Design and Implementation, pages 248–
257, Albuquerque, NM, June 23–25, 1993.

[32] M. Poletto and V. Sarkar. Linear scan register allocation ACM Trans. of Programming Langauges
and Systems, 1998.

[33] T. A. Proebsting and C. N. Fischer. Linear-time, optimal code scheduling for delayed-load ar-
chitectures. In Proc. of the ACM SIGPLAN ’91 Conf. on Programming Language Design and
Implementation, pages 256–2671, Toronto, Canada, June 1991.

[34] R. Sethi. Complete register allocation problems. SIAM Jl. on Computing, 4(3):226–248, Sep.
1975.

[35] R. Sethi and J. D. Ullman. The generation of optimal code for arithmetic expressions. Jl. of the
ACM, 17(4):715–728, Oct. 1970.

37

[36] R. Silvera, J. Wang, G. R. Gao, and R. Govindarajan. A register pressure sensitive instruction
scheduler for dynamic issue processors. In Proc. of the Conf. on Parallel Architectures and
Compilation Techniques, PACT ’97, pages 78–89, .San Francisco, CA, Nov. 1997.

[37] J. E. Smith and G. Sohi. The microarchitecture of superscalar processors. Proc. of the IEEE,
83(12):1609–1624, Dec. 1995.

[38] S. A. A. Touati. Register Saturation in Superscalar and VLIW Codes In 10th International
Conference on Compiler Construction, pages 213-228, Genova, Italy, April 2001.

[39] O. Traub, G. Holloway, and M.D. Smith. Quality and speed in linear-scan register allocation. In
Proc. of the ACM SIGPLAN ’98 Conf. on Programming Language Design and Implementation,
pages 142–151, Montreal, Canada, June 1998.

[40] M. G. Valluri and R. Govindarajan. Evaluating register allocation and instruction scheduling
techniques in out-of-order issue processors. In Proc. of the Conf. on Parallel Architectures and
Compilation Techniques, PACT ’99, Newport Beach, CA, Oct. 1999.

[41] H. S. Warren, Jr. Instruction scheduling for the IBM RISC System/6000 processor. IBM Jl. of
Research and Development, 34(1):85–92, Jan. 1990.

[42] W. Wulf, R. K. Johnsson, C. B. Weinstock, S. O. Hobbs, and C. M. Geschke. The Design of
an Optimizing Compiler, Programming Languages Series. American Elsevier, New York, N. Y.,
1975.

38

