Speculative Prefetching of Induction Pointers

Artour Stoutchinin', José Nelson Amaral?, Guang R. Gao®, James C.
Dehnert?, Suneel Jain®, and Alban Douillet?

L STMicroelectronics, Grenoble, France
2 Department of Computing Science, University of Alberta,
Edmonton, AB, T6G-2E8, Canada

amaral@cs.ualberta.ca, http://www.cs.ualberta.ca/ amaral

8 Computer Architecture and Parallel System Laboratory,

University of Delaware, Newark, DE, USA
{ggao, douillet}@capsl.udel.edu, http://www.capsl.udel.edu
* Transmeta Co., Santa Clara, CA, USA, dehnert@transmeta.com
® Hewlett-Packard Co., Cupertino, CA, USA, sjain@cup.hp.com
6 Stoutchinin, Dehnert, and Jain were at SGI when most of this research was
conducted.

Abstract. We present an automatic approach for prefetching data for
linked list data structures. The main idea is based on the observation
that linked list elements are frequently allocated at constant distance
from one another in the heap. When linked lists are traversed, a regular
pattern of memory accesses with constant stride emerges. This regularity
in the memory footprint of linked lists enables the development of a
prefetching framework where the address of the element accessed in one
of the future iterations of the loop is dynamically predicted based on its
previous regular behavior.

We automatically identify pointer-chasing recurrences in loops that ac-
cess linked lists. This identification uses a surprisingly simple method
that looks for induction pointers — pointers that are updated in each
loop iteration by a load with a constant offset. We integrate induction
pointer prefetching with loop scheduling. A key intuition incorporated
in our framework is to insert prefetches only if there are processor re-
sources and memory bandwidth available. In order to estimate available
memory bandwidth we calculate the number of potential cache misses in
one loop iteration. Our estimation algorithm is based on an application
of graph coloring on a memory access interference graph derived from
the control flow graph. We implemented the prefetching framework in
an industry-strength production compiler, and performed experiments
on ten benchmark programs with linked lists. We observed performance
improvements between 15% and 35% in three of them.

1 Introduction

Modern computers feature a deep memory hierarchy. The data move from main
memory to processor register files through a number of levels of caches. Prefetch

1 max = 0; 1 max = 0;

2 current = head; 2 current = head;

3 while(current != NULL) { tmp = current;

4 if (current -> key > max) 3 while(current != NULL) {

5 max = current -> key; 4 if (current -> key > max)

6 current = current —-> next; 5 max = current —-> key;

7 %} 6 current = current -> next;
stride = current - tmp;
prefetch(current + stridexk);
tmp = current;

7 %

Fig. 1. A pointer-chasing loop that scans a linked list without and with prefetching.

mechanisms can bring data into the caches before it is referenced. These mecha-
nisms rely on the spatial and temporal locality of data that naturally occurs in
regular programs. However, for irregular, pointer-based applications, prefetch-
ing tends to be less effective. Some critical issues that make the prefetching of
pointer-based data more difficult include:

1. Pointer-based applications display poor spatial and temporal locality. Unlike
array elements, consecutive data elements of a pointer-linked data structure
do not necessarily reside in adjacent memory locations. Also, references to
many unrelated data locations often intervene between reuses of linked list
elements.

2. In general, the address of a data element accessed in iteration i is not known
until iteration 7 — 1 is executed, and thus cannot be prefetched in advance.
This address dependence is known as the pointer-chasing problem.

3. Most pointer-based data structures are allocated in heap memory. Because
the heap is typically a large memory space, and these structures can be
anywhere in that space, heap allocation makes it difficult for compilers to
reliably predict cache misses or perform reuse analysis. Ad-hoc generation of
prefetches may result in performance degradation due to increased memory
traffic and cache pollution.

Prefetching in conjunction with software pipelining has been successfully
used in optimization of numerical loops [11]. In this work we perform induction
pointer prefetching to optimize pointer chasing loops. Our objective is to use in-
duction pointer prefetching to improve the software pipelining initiation interval
and to prevent the software pipeline from being disrupted because of primary
cache misses. Usually, the scheduler builds the software pipeline optimistically
assuming cache hit load latencies. If a load misses in the cache, the pipeline is
disrupted and loses its efficiency.

The induction pointer prefetching identifies induction pointers in pointer-
chasing loops and generates code to compute their memory access stride and to

prefetch data. A loop contains a recurrence if an operation in the loop has a
direct or indirect dependence upon the same operation from some previous iter-
ation. The existence of a recurrence manifests itself as a cycle in the dependence
graph. A pointer-chasing recurrence is a recurrence that only involves loads with
constant offset and copy operations. We call the addresses used by loads involved
in the pointer-chasing recurrences induction pointers. For instance, in the exam-
ple in Figure 1, current is an induction pointer. The term comes from the fact
that such loads are similar to induction variables in that the address for the
load in the next iteration is provided by the execution of the load in the current
iteration.

Our prefetch method is motivated by the observation that, although the el-
ements of a linked list are not necessarily stored contiguously in memory, there
tends to be a regularity in the allocation of memory for linked lists. If the com-
piler is able to detect a linked list scanning loop, it can assume that the accesses
to the list elements generate a regular memory reference pattern. In this case,
the address of an element accessed in iteration ¢ + k is likely to be the effective
address of the element accessed in iteration ¢ plus kxS, where S is the constant
address stride. The compiler can then insert code that dynamically computes
the stride S for induction pointers. Figure 1 shows a pointer chasing loop that
scans a linked list before and after prefetch insertion. See [18] for the actual
intermediate code used for prefetching.

Once the memory access stride of induction pointers is identified, data whose
addresses are computed relative to the induction pointers are speculatively pre-
fetched. The prefetch instructions issued do not cause exceptions and even if
their address is misspredicted the program correctness is preserved. We perform a
profitability analysis to establish whether prefetching is beneficial. Prefetching is
only performed if the analysis indicates that there are unused processor resources
and memory bandwidth for it. Our profitability analysis compares the upper
bounds on the initiation rate imposed by data dependency constraints and by
processor resource constraints. To prevent processor stalls due to prefetching,
we also estimate the number of outstanding cache misses in any iteration of the
loop. We avoid prefetching when this number exceeds the maximum number
supported by the processor.

This paper addresses the set of open questions listed below. Although the
problem of prefetching induction pointers, with and without hardware support,
has been studied before (see Section 5), to the best of our knowledge the frame-
work presented in this paper is the first that relies exclusively on compiler tech-
nology:

— How to identify pointer-chasing recurrences using a low complexity algo-
rithm? (see Section 2.1)

— How to decide when there are enough processor resources and available mem-
ory bandwidth to profitably prefetch an induction pointer? (see Section 2.5)

— How to efficiently integrate induction pointer prefetching with loop schedul-
ing based on the above profitability analysis? Such integration becomes com-
plex for pointer chasing loops with arbitrary control flow. (see Section 3)

— How to formulate, algorithmically, the problem of maximizing the use of
cache-memory bandwidth in non-blocking cache systems that support mul-
tiple outstanding cache misses? (see Section 2.4)

— How well does speculative prefetching of induction pointers work on an
industry-strength state-of-the-art optimizing compiler? (see Section 4)

We describe our profitability analysis in section 2 and the prefetch algorithm
in section 3. We present the wall-clock execution time measurements and the
variation in the number of cache misses and TLB misses incurred with and
without prefetching in section 4. Finally we discuss related research in section 5.

2 Induction Pointer Identification and Profitability
Analysis

Ideally, we would like speculative prefetching to never cause any performance
degradation. Induction pointer prefetching may lead to performance degradation
as a result of one of the following: increased processor resource requirements
(computation units, issue slots, register file ports, etc); increased memory traffic
due to potential fetching of useless data; increased instruction cache misses; and
potential displacement of useful data from the cache.

Our profitability analysis addresses the problems of not degrading perfor-
mance due to the increase in required processor resources and in the memory
traffic. In our experience, pointer chasing loops are short, therefore instruction
cache misses are not an important concern. In our current implementation, the
profitability analysis does not take into account the cache pollution problem.
Nonetheless the effects of cache pollution are reflected in the results presented
in Section 4.

The execution time of a loop is determined by the rate at which iterations can
be initiated. We attempt to avoid performance degradation by estimating the
constraints imposed by processor resources and by recurrent data dependencies
on the initiation rate of each loop. Based on these constraints we decide when
we should prefetch for a given induction pointer.

The initiation interval (IT) of a loop with a single control path is defined as
the number of clock cycles that separate initiations of consecutive iterations of
the loop. The minimum initiation interval (MII) defines an upper bound on the
initiation rate of instructions in a loop. The MII is computed as the maximum
of recurrence MII and the resource MII [14].

In loops with multiple control paths, the interval between consecutive execu-
tions of any given operation depends on the control path executed in each iter-
ation, and may change from iteration to iteration. A conservative upper bound
on the initiation rate of an operation L corresponds to the maximal MII of all
control paths that execute L.

We base our decision to prefetch data for a load instruction that belongs
to an induction pointer recurrence on three estimates: (1) an estimate of the
conservative upper bound on its initiation rate; (2) an estimate of the potential

node = ptr->next; rl <- load r2, offset_mext
ptr = node->ptr; r2 <- load rl, offset_ptr
(a) (b)
father = father->pred r2 <- ri
rl <- load r2, offset_pred
(c) (d)

Fig. 2. Examples of code occurring in pointer-chasing loops.

increase in cache misses; and (3) an estimate of the potential resource usage
increase. Prefetching is deemed profitable if (i) it does not decrease the conser-
vative upper bound on load’s initiation rate, and (ii) a potential extra cache miss
caused by the prefetch does not result in a stall of the cache fetching mechanism.

2.1 Identification of List Traversing Circuits

We identify circuits in the data dependence graph of a loop that are indicative
of a linked list being traversed. Consider the code statements shown on Figure 2
(a) and (c) that are often used to traverse linked lists. These statements are
translated by the SGI compiler into the corresponding assembly sequences shown
on Figure 2 (b) and (d). Our key observation is that a circuit formed exclusively
by loads (with some offset) and copy instructions is likely to be a pointer-chasing
circuit.

We used the two patterns shown in Figure 2 for identification of the pointer-
chasing circuits. Conceptually our algorithm finds all the elementary circuits
in the loop’s data dependence graph using Tarjan’s algorithm [19] and then
finds those circuits consisting exclusively of loads with constant offsets and copy
instructions. Enumerating all circuits can be exponential in a general graph.
Our implementation avoids enumeration by identifying only the pointer-chasing
circuits. This has one important implication for the efficiency of our implemen-
tation: Tarjan’s algorithm’s complexity is O(N * E x C), where N and E are
respectively the number of nodes and the number of edges in the data depen-
dence graph, and C' is the number of elementary circuits. Since in practice loops
tend to have very few pointer-chasing circuits (one in most cases), our imple-
mentation practically achieves O(N * E) complexity.

The initiation rate of operations in list traversing circuits is bounded by
induction pointer recurrences and the resource usage. A precise determination of
the such bound should match each control path with recurrences that it executes.
However, such matching is expensive. Instead, we consider that the initiation rate
of an operation is limited by the most resource constrained control path in which
this operation executes, and by the most constraining recurrence to which this
operation belongs.

2.2 Recurrence Bound on the Initiation Rate

The recurrence minimum initiation interval (recMII) of a loop is a lower bound
imposed on the MII by recurrences (cyclic data dependences) among operations
from multiple iterations of the loop. In classical software pipelining the recMII for
a recurrence c is given by the quotient of the sum of the latencies of the operations
in ¢, latency(c) and the sum of the iteration distances of the operations in ¢,
iteration distance(c) [14]. The iteration distance of each dependence in c¢ is equal
to the number of iterations separating the dependent operations.

latency(c)
iteration distance(c)

recMII(c) = [

When a loop L has a single control path, the recMII for the loop is computed
by taking the maximum of the recMII(c) over all the elementary circuits in the
data dependence graph of the loop.

In this framework we are also interested in prefetching in loops that have
multiple control paths. Therefore we must extend the concept of recMII to suit
our purposes. To this end we define the recMII associated with each instruction
L in the loop, recMTI(L). Instead of all recurrences in the loop, the recMII(L)
considers only the recurrences in which L participates. Therefore recMII(L) is
the maximum of recM II(c) among all recurrences that execute L, and defines
a conservative bound on the initiation rate of instruction L.

recMII(L) = r‘nLax{recMII(c)}
clLec

When computing latency(c) we assume that the loads in a pointer chasing re-
currence incur cache misses. As prefetches are added, the prefetched loads are
optimistically upgraded to cache hits, and the value of latency(c) is recomputed.
Therefore prefetching a load L reduces the recMI1(c) for all the recurrences that
contain the load L.

2.3 Resource Bound on the Initiation Rate

The resource usage of the operations along a control path of a loop imposes an-
other upper bound on the rate at which operations in that path can be initiated,
the resource minimal initiation interval (resMII). The usage of each resource in
a control path is calculated by adding the resource usage of all operations in
that path. A conservative bound on the initiation rate of operation L in basic
block B is the maximum over lower bounds imposed by resource usage in each
control path that executes B:

resMII(L) = resMII(B) = max resMII(p)}, L€B
p|Bep

where resM II(p) is the lower bound on instruction initiation rate in the control
path p.

The resM1I(B) for each basic block is computed using the DAG longest
path algorithm [4] on the control flow graph (CFG).! Each vertex in the CFG
represents a basic block B. We associate a vector of weights, w(B) to each basic
block. Each element of w(B) represents the usage of a processor resource by the
basic block B. The longest path for a given processor resource r is the one that
uses 7 the most. The resM II(B) is given by the maximum longest path over all
Processor resources.

2.4 Cache/Memory Available Bandwidth

We define the available memory bandwidth of a basic block B, M (B), as the num-
ber of additional memory references that can be issued in B without decreasing
the initiation rate of operations in the loop. As with processor resources, we use
a conservative estimate of available memory bandwidth. M (B) is defined as the
minimum available bandwidth over all control paths that execute B:

M(B) = min {M(p)}

To compute the available memory bandwidth of a control path p, M (p), we
estimate the number of potential cache misses, m(p), in each path p of the loop.
The available memory bandwidth of p is a function of m(p) and the number
of outstanding misses that the processor can have before it stalls, k. In our
experiments we defined the available memory bandwidth of a control path p as
the difference between the two: M (p) = k — m(p).

2.5 Prefetch Profitability Condition

Given a basic block B that contains a memory reference L that is part of a
pointer-chasing recurrence, the decision to prefetch for L is based on the prefetch
profitability condition below:

Condition 1 (Prefetch Profitability) Prefetching for a load L in a basic
block B is profitable if the following condition holds:

(resMII”(L) < recMII”(L)) A (M(B) > 0)

where resM IT¥ (L) and recM IIF (L) are the resource and recurrence conserva-
tive lower bounds on initiation interval for the load L after the prefetch sequence
is inserted in the code, and M (B) is the available memory bandwidth of the basic
block B before the prefetch sequence is inserted in the code.

Condition 1 states that prefetching for a load L in a basic block B is prof-
itable only if the initiation rate of L is still limited by recurrences in the data
dependence graph and the potential cache miss introduced by the prefetch will

! We do not consider the loop’s back edge when applying the longest path algorithm to
the CFG. As a consequence, our current implementation of the profitability analysis
ignores the use of processor resources carried over iterations.

DOPREFETCH(P, E, V)
C <+ pointer-chasing recurrences;
R <+ Prioritized list of induction pointer loads in C;
N « Prioritized list of field loads (not in C);
O+<R+N
Mark each o in O as a cache miss;
for each Lin O, L € B
do if recMIIT (L) > resMII”(B) and S(B) > 0
then add prefetch for L to B;
mark L as cache hit;
endif

endfor

EES© 0N otk W

—_ o

Fig. 3. Prefetch algorithm.

not block memory fetching from the cache. This is a conservative approach be-
cause, even when there is no available bandwidth between the cache and the
main memory, prefetching at the correct address could improve performance by
starting memory accesses earlier.

2.6 Prefetching Field Loads

Prefetching for an induction pointer load enables prefetching of field loads. Field
loads access memory through induction pointers but are not part of the recur-
rence cycles. Prefetching for a field load does not require additional address
computations. Although prefetching of fields does not affect recurrences, it may
still be beneficial to prefetch data for field loads because such prefetches will
allow for the overlapping between memory accesses to fields and other compu-
tations performed by the loop. Prefetching of field loads is considered profitable
if there are enough unused processor and memory resources for such prefetching
in every affected control flow path. A field load prefetch is issued only if the
field is not expected to lay in the same cache line as its induction pointer (see
Section 3.1).

3 Prefetch Algorithm

The goal of the prefetch algorithm is to introduce prefetching whenever the extra
usage of resources does not reduce the initiation rate of operations in the loop
beyond the constraint imposed by loop recurrences.

We prioritize the loads in pointer-chasing recurrences (step 2-4 in Figure 3)
according to the frequency of execution of the basic blocks to which they belong.
In step 5 we mark the loads in the list O as cache misses. Observe that once a

pointer-chasing recurrence is identified, it is reasonable to predict that without
prefetching the loads of such pointers will result in cold cache misses.>

For each load operation L in the priority list, compute the available memory
bandwidth of basic block B to which L belongs, M (B). If M (B) is greater than
zero, it means that a new cache miss caused by the prefetch instruction will
not cause the processor to stall. Therefore there is unused memory bandwidth
available for a prefetch instruction. In this case insert the prefetch operations in
B and compute recM [T (L) and resM ITF (L). If reeM TP (L) > resMII¥ (L),
whenever the loop executes L, its initiation rate is still constrained by the recur-
rences and not by resource usage. In this case mark L as a cache hit for future
memory bandwidth availability estimates, otherwise remove prefetch operations
from B.

Inserting prefetch operations for a load L in a basic block B may change the
resource usage and the memory bandwidth availability for all basic blocks that
share a control path with B. It also changes the recM I of recurrences to which
L belongs. Therefore these quantities must be recomputed for each operation
that we consider for prefetching.

3.1 Computation of the Memory Bandwidth Availability

The available memory bandwidth of a basic block B of a loop, M(B), is a
function of the maximum number of cache misses that may occur on any of the
control paths that execute B. Observe that the available memory bandwidth of
all operations that lie on the same control path changes when a prefetch sequence
is inserted in the path. We estimate the number of cache misses that can occur
in one iteration of the loop based on the coloring of the cache miss interference
graph.

Definition 1. The miss interference graph is an undirected graph G(V, E)
formed by a set of vertices, V', representing the memory operations in the loop,
and a set of edges, E, representing the interference relationship between the
memory operations. Two memory operations interfere if they may both cause a
cache miss in the same loop iteration.

When the cache miss interference graph is colored, memory operations that in-
terfere with each other are assigned distinct colors. Thus, the minimum number
of colors necessary to color the miss interference graph corresponds to the max-
imum number of misses that may occur in one iteration of the loop, regardless
of the control path executed by that iteration.

We use the following set of heuristic interference rules to build the miss
interference graph:

— memory references that are relative to a global pointer do not interfere with
any other memory references (we assume that they hit in the cache);

2 Some exceptions to this rule include inner loops traversing short linked lists, or
circular pointer chasing structures. Our framework does not attempt to identify
such situations.

— memory references that are relative to the stack pointer do not interfere with
any other memory references (we assume that they hit in the cache);

— memory references where the memory address is loop invariant do not inter-
fere with any other memory references;

— two memory references at address base 4+ constant offset do not interfere
if the bases are the same and the difference in their offsets is less than K,
where K is a parameter in our algorithm (we used K = 32, i.e. the cache line
size).

— two memory references that are executed in mutually exclusive control paths
do not interfere with each other.

The available memory bandwidth for a basic block B, is M(B) = k — N,
where N is the number of distinct colors necessary to color the set of loads in
B and all its adjacent nodes in the cache miss interference graph, and k is the
number of outstanding cache misses that the processor can support before it
stalls.

4 Performance Evaluation

In order to evaluate our prefetch technique, we have collected 10 programs that
spend a significant portion of its execution time executing loops that traverse
linked lists. Our test suite includes two SPEC CINT95 benchmarks (126.gcc
and 130.1i), seven SPEC CINT2000 (181.mcf, 197.parser, 300.twolf, 175.vpr,
253.perlbmk, and 254.gap) and two applications (mlp is a perceptron simula-
tor and ft is a minimum spanning tree algorithm). For the benchmarks in the
SPEC benchmark suite we used the reference input. Table 1 shows the execution
time of each program using three prefetch strategies: no prefetching, prefetching
without profitability analysis (all induction pointers in all pointer chasing loops
are prefetched), and induction pointer prefetching with the profitability analysis.
Preliminary evaluation results show that (1) identification of the induction
pointers is a good basis for prefetching; (2) the prefetching technique presented
in this paper achieves good speedups for programs that spend significant time
in pointer chasing loops; and that (3) balancing the loop recurrences and the
processor resource usage is necessary in order for prefetching to be effective.

4.1 Experimental Framework

We implemented our prefetch framework in the SGI MIPSpro Compiler suite.
This suite consists of highly-optimizing compilers for Fortran, C, and C++
on MIPS processors. It implements a broad range of optimizations, including
inter-procedural analysis and optimization, loop nest rearrangement and paral-
lelization, SSA-based global optimization, software pipelining, global and local
scheduling, and global register allocation [3,9, 16].

We performed our experiments on an SGI Onyx machine with a 195 MHz
MIPS R10000 processor, 32 KB, two-way associative, non-blocking, primary

Execution Time Performance Improvement

Benchmark No No Prof. |With Prof.|No Prof. With Prof.

Prefetch | Analysis | Analysis |Analysis Analysis
181.mcf {3,396 sec.|2,854 sec.| 2,699 sec. | 16.0 % 20.5 %
ft 517 sec. | 436 sec. | 333 sec. | 15.6 % 35.5 %
mlp 632 sec. | 580 sec. | 538 sec. | 8.3 % 14.9 %
175.vpr |1,771 sec.|1,765 sec.| 1,761 sec. | 0.3 % 0.6 %
130.twolf [2,540 sec.|2,657 sec.| 2,531 sec. | -4.6 % 04 %
254.gap |1,174 sec.|1,226 sec.| 1,207 sec. | -4.4 % 28 %
130.1i 285 sec. | 293 sec. | 292 sec. | -2.8 % -2.5 %
253.perlbmk|(2,062 sec.|2,131 sec.| 2,104 sec. | -3.3 % -2.0 %
197.parser (2,180 sec.|2,245 sec.| 2,189 sec. | -3.0 % -0.5 %
126.gcc | 122 sec. | 123 sec. | 122 sec. | -0.7 % -0.1 %

Table 1. Execution time in seconds with and without prefetching.

cache and 1MB secondary cache. We measured wall-clock time for each bench-
mark under the IRIX 6.5 operating system with the machine running in a single
user mode. The results reported are an average of three runs, and there was no
noticeable difference on the measurements obtained in each of the three separate
runs of the benchmarks.

Implementing our prefetch technique for an out-of-order processor such as
the MIPS R10000 processor has advantages and disadvantages. The out-of-
order scheduler of the MIPS R10000 dynamically pipelines loops that cannot
be pipelined by existing compilers. Pipelining these loops is essential in order for
the improved iteration rate with prefetching to be reflected in the performance
of the code. On the other hand, the out-of-order issuing of instructions makes
the measurement of performance difficult for two reasons: first, the dynamic
scheduler may move prefetches closer to their target loads reducing prefetch
efficiency; second, an out-of-order processor can reorder memory accesses, and
therefore affect the cache miss behavior.

Finally, the prefetch distance in our experiments has been set to prefetch
2 iteration in advance. We found that this distance is the most effective for
improving the L1 cache performance. Prefetching 1 iteration in advance, on the
other hand, reduces performance penalty when prefetching is counterproductive.

4.2 When Pointer Prefetching Works

The prefetching algorithm presented in this paper achieved significant (over 15%)
improvement in performance of the mcf, ft, and mlp (with a remarkable 35% for
ft) on top of all the standard optimizations of an industry-strength compiler.
We noticed that a very small number of loops are responsible for most of
the performance gain in those programs. For example, in the mcf, a single loop
accounts for 40% of the program execution time. This loop has two induction
pointers and both of them access memory locations at regular intervals that
exceed the cache line size. The iteration count of this loop is comparatively large,

up to 400 iterations, and the control path taken most often is constrained by
the pointer chasing recurrence. Prefetching is very effective in hiding this loop’s
primary cache miss latencies and has a significant impact on its performance.
ft spends about 80% of its time in a loop that traverses a linked list of vertices
of a graph. No other computation is done in that loop and the loop’s initiation
rate is constrained only by the pointer-chasing recurrence. The milp program has
two linked list loops where the majority of the execution time is spent. One
of these loops updates the weights of the synapses of neurons in a multi-layer
perceptron, while the other updates the gradient used to back-propagate the
output error. The initiation rate of these loops is constrained by the pointer
chasing recurrences. The trip count is moderate, 25 iterations on average, but
large enough that prefetching makes a significant difference.

4.3 When Pointer Prefetching Does Not Help

On the other hand, speculative induction pointer prefetching is not as effective
in a number of programs. The two main reasons for this are: (1) short loop trip
counts, and (2) irregular memory access pattern caused by the control flow in
the loop. In such cases, our profitability analysis has been effective in keeping
the negative impact of prefetching reasonably small.

For example, although the gcc extensively uses linked lists, prefetching does
not have significant impact because those lists are short and rarely suffer primary
cache misses. /i spends much of its time in a number of pointer chasing loops
that operate on trees. Tree traversal using loops rather than recursive function
calls resembles the traversal of linked lists. Tree traversal does not have stride
regularity though, and speculative prefetching is counterproductive (we mea-
sured a 2.5% performance degradation and 20% increase in the number of cache
misses when prefetching is added). Another program, parser, has a number of
linked-list loops. However, these lists are either hash table lists (randomly placed
in memory), or their location in memory is randomized by the memory alloca-
tor. Thus prefetching is ineffective and results in moderately higher L1 cache
misses and TLB misses. Nonetheless, with profitability analysis the performance
degradation for parser is only 0.5%.

These results suggest an improvement to our method of identification of
memory references with potentially regular stride: complex control flow in a
loop is a good indication that the stride may be irregular and prefetching must
be avoided. This is subject for future work. On the other hand, use of profiling
information would also be helpful in identifying loops with irregular strides or
short trip counts.

5 Related Work

Compiler prefetching for array-based numeric applications takes advantage of
the data locality and of the compiler ability to analyze numerical loops [11].
Application of prefetching to dynamically allocated irregular data structures

is more difficult. Such data structures can not be efficiently analyzed by the
compiler with respect to locality. Therefore in order for prefetching to be effective
it is often necessary to speculatively predict addresses to drive prefetching. Many
prefetching techniques have been proposed that try to address these problems.

Mowry and Luk use profiling information to identify potential cache misses [12].
Ozawa et al. develop a compiler analysis combined with instruction scheduling
based on the observation that certain kinds of memory references that represent
a small fraction of static instructions tend to be responsible for the majority of
cache misses [13]. Finally, Lipasti et al. use the fact that often the data at an
address passed as a parameter to a function call suffers a cache miss to issue
prefetch for such cases [7].

Address speculation has been typically used in hardware prefetching schemes.
As in this work, they exploit the fact that often the addresses referenced by loads
and stores follow an arithmetic progression. By keeping track of the last effective
address and of the address stride, previously unseen addresses are speculatively
predicted [1, 5,6]. In particular, Selvidge [17] and Mehrotra [10] noticed the reg-
ularity in memory streams generated by linked list accesses. A similar hardware
approach is to reproduce the address generation process in hardware and to
perform it in advance of other computations [15].

Our approach is different from the one proposed by Luk and Mowry both in
the identification of pointer chasing loops and in the implementation of prefetch-
ing [8]. They use high level declarations to identify Recursive Data Structures
(RDS) records and points-to analysis to detect when a pointer to a record is
assigned a value that was obtained from the dereference of a pointer to the
same record. The implementation of such induction pointer identification re-
quires high-level information from compiler front-end, and expensive pointer
analysis for identifying a recursive data structure traversal. Their approach does
not allow the application of prefetching exclusively to linked list traversals. In
contrast our technique to identify induction pointers detects recurrence cycles
associated with pointer-chasing. The complexity of our induction pointer detec-
tion is O(n?) in the number of nodes in the DDG of a loop, and thus is not
nearly as complex as a points-to analysis. Notice that for the case of regular
strides, Luk and Mowry’s data linearization scheme requires that the data be
re-mapped to contiguous memory location in order to use pointer arithmetic to
compute the addresses. In our framework no data re-mapping is required.

Chilimbi, Hill, and Larus propose the use of cache-conscious data structures
to improve the caching of pointer-based data structures. They propose to improve
locality by re-engineering the allocation of such structures [2].

6 Conclusion

Prefetching for pointer-based applications has been recognized as a difficult prob-
lem because the compiler does not know what to prefetch and when to do so.
In this paper we present a compiler prefetch method that is applicable to linked
lists. We identify candidates for prefetching as data accessed through induction

pointers and propose a profitability analysis which effectively determines when
such prefetching will be beneficial. The prefetch technique presented in this paper
is remarkably simple and quite effective for some benchmarks, resulting in gains
of performance of 15-35% over their performance after standard compiler opti-
mizations, while displaying minimal performance degradation for others. This
simplicity — a small set of extra instruction for dynamic address calculation,
no data remapping, and no hardware support — allowed for an effective imple-
mentation in an industry-strength compiler. Moreover, there was no noticeable
change in the time required to compile the benchmarks that we tested when
the prefetch analysis was executed. Thus using our framework, a compiler opti-
mization flag can be implemented in existing compilers. Such a flag would allow
existing processor architectures to deliver significant speedup for programs that
access regular strided data-structures.

References

1. T. F. Chen and J. L. Baer. Effective hardware-based data prefetching for high-
performance processors. IEEE Transactions on Computers, 44:609 — 623, May
1995.

2. T. M. Chilimbi, M. D. Hill, and J. R. Larus. Making pointer-based data structures
cache conscious. Computer, 33(12):67-74, December 2000.

3. F. Chow, S. Chan, R. Kennedy, S-M Liu, R. Lo, and Peng Tu. A new algorithm for
partial redundancy elimination based on SSA form. In International Conference
on Programming Languages Design and Implementation, pages 273 — 286, 1997.

4. T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT
Press; McGraw-Hill Book Company, Cambridge, Massachusetts; New York, New
York, 1990.

5. J. Fu and J. Patel. Stride directed prefetching in scalar processors. In International
Symposium on Microarchitecture, pages 102 — 110, 1992.

6. J. Gonzales and A. Gonzales. Speculative execution via address prediction and
data prefetching. In International Conference on Supercomputing, pages 196 —
203, 1997.

7. M. Lipasti, W. Schmidt, S. Kunkel, and R. Roediger. SPAID: Software prefetch-
ing in pointer- and call-intensive environments. In International Symposium on
Microarchitecture, pages 231 — 236, 1995.

8. C. K. Luk and T. Mowry. Compiler based prefetching for recursive data structures.
In International Conference on Architectural Support for Programming Languages
and Operating Systems, pages 222 — 233, 1996.

9. S. Mantripragada, S. Jain, and J. Dehnert. A new framework for integrated global
local scheduling. In Conference on Parallel Architectures and Compilation Tech-
niques, pages 167-174, Paris, France, October 1998.

10. S. Mehrotra. Data Prefetch Mechanisms for Accelerating Symbolic and Numeric
Computation. PhD thesis, University of Illinois at Urbana-Champaign, 1996.

11. T. Mowry. Tolerating Latency Through Software-Controlled Data Prefetching. PhD
thesis, Stanford University, 1994.

12. T. Mowry and C. K. Luk. Predicting data cache misses in non-numeric applications
through correlation profiling. In International Symposium on Microarchitecture,
pages 314 — 320, 1997.

13.

14.

15.

16.

17.

18.

19.

T. Ozawa, Y. Kimura, and S. Nishizaki. Cache miss heuristics and preloading
techniques for general-purpose programs. In International Symposium on Microar-
chitecture, pages 243 — 248, 1995.

B. Rau. Iterative modulo scheduling. Technical Report HPL-94-115, HP Labora-
tories, 1995.

A. Roth, A. Moshovos, and G. Sohi. Dependence based prefetching for linked data
structures. In International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 115 — 126, 1998.

J. Ruttenberg, G. R. Gao, A. Stouchinin, and W. Lichtenstein. Software pipelining
showdown: Optimal vs. heuristic methods in a production compiler. In Interna-
tional Conference on Programming Languages Design and Implementation, pages
1-11, Philadelphia, PA, May 1996.

C. Selvidge. Compilation-Based Prefetching for Memory Latency Tolerance. PhD
thesis, MIT, 1992.

A. Stoutchinin, J. N. Amaral, G. R. Gao, J. Dehnert, and S. Jain. Automatic
prefetching of induction pointers for software pipelining. Technical Report 37,
November 1999.

R. Tarjan. Enumeration of the elementary circuits of a directed graph. SIAM
Journal on Computing, 2(3):211 - 216, September 1973.

