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Abstract

We present the design, implementation, and eval-
uation of single assignment data structures and of a
software controlled cache in an existing multi-threaded
architecture platform — the FEfficient Architecture for
Running Threads (FARTH). The software-controlled
cache (ISSC) exploits temporal and spatial locality of
EARTH split-phased memory transactions for single-
assignment memory references. Qur experimental eval-
uation indicates that the caching mechanism for single-
assignment storage makes the EARTH memory system
more robust to variations in the latency of memory op-
erations. As a consequence the system can be ported to
a wider range of machine platforms and deliver speedup
for both reqular and irreqular application.

Keywords: Single Assignment, Split-Phase Trans-
actions, Software Cache, Fine-Grain Multi- Threading,
EARTH.

1. Introduction

The design of a fine grain multi-threading system
can be evaluated with many different metrics. What
is the cost of switching between threads? How many
instructions must a thread run, on average, in order to
enable the implementation of an efficient latency hid-
ing mechanism, and keep the processing units usefully
busy? How can the system automatically balance the
computation load across many processing nodes? How
much latency can the system tolerate without signifi-
cant performance penalty?

The Efficient Architecture for Running Threads
(EARTH) [8, 15] is an architecture and program ex-
ecution environment that defines a fine-grain multi-
threading model. Multi-threading programs for
EARTH are written in Threaded-C, an explicitly multi-

José Nelson Amaral and Guang R. Gao

Dept. of Electrical and Computer Engineering

University of Delaware

Newark, DE 19716

threaded extension of the C language. In this pa-
per, we demonstrate that the addition of both a
single-assignment structure (I-Structure) and a tem-
porary storage for these structures (I-Structure Soft-
ware Cache) to the EARTH fine-grain multi-threading
system improves the robustness of the system both in
relation to latency tolerance and application demands
on the memory system. This robustness is reflected in
better speedup curves for machines with higher latency
for remote operations.

The remainder of the paper is organized as follows.
Sections 2 discuss modern multi-threading system and
their split-phase transactions. Section 3 presents our
implementation of I-structures and I-Structure Soft-
ware Caches (ISSC). Section 4 is a detailed perfor-
mance study based on a set of real benchmarks. Sec-
tion 5 presents related work and we conclude this work
in Section 6.

2 Fine Grain Multi-Threading

Modern multi-threaded systems can be classified
into two broad classes according to the granular-
ity of the threads that they can efficiently support
while yielding good performance: coarse grain multi-
threading and fine grain multi-threading. Typically
in a coarse grain multi-threading system, the thread
switching mechanism involves interactions with the op-
erating system, and there is a limited number of light-
weighted processes to which threads must be bound. In
a coarse grain multi-threading system, a thread can be
viewed as a refinement of an operating system process.
In contrast, in a fine grain multi-threading system: (1)
the unit of computation i1s a collection of instructions
grouped in a code block; (2) the system does not im-
pose limits on the number of threads that can be active
at a given time; (3) the system does not require bind-
ing to any sort of limited resources; and (4) the thread



switching mechanism is quite efficient and does not in-
volve the operating system, the switching mechanism
typically requires that only a small amount of state in-
formation be saved in each switching. In a fine grain
multi-threading system, a thread can be viewed as the
coarsening of an instruction.

EARTH, the fine grain multi-threading system stud-
ied in this paper, is derived from the data-flow model
of computation. In the classical strict data-flow model
an instruction is enabled for execution when all its
operands are available [6, 7]. To enforce this enabling
condition, the instructions that produce operands must
be able to send a synchronization signal to all the in-
structions that will consume their results. This model
proved unwieldy for the implementation of machines
based on current standard off-the-shelf hardware and
compiler technology. In EARTH, the unit of compu-
tation is not an instruction, but a code-block formed
by many instructions. An instantiation of the code-
block running on a processing node is called a fiber, and
multiple code-blocks are grouped into threaded func-
tions. A successful program written in Threaded-C,
the programming language for EARTH, will produce
enough fibers to keep the local processor busy while
remote computations and data fetching operations are
performed.

A cornerstone of the EARTH model is the mech-
anism that enables the superposition of local compu-
tation and remote operations: the split-phase trans-
action. A remote operation usually involves a long
and/or unpredictable latency. Whenever a remote op-
eration is requested, the statement requesting that the
operation be performed is issued in one fiber, the re-
questing fiber, and the statement that depends on the
result of the remote operation is 1ssued on a different
fiber, the consuming fiber. The issue of remote oper-
ation contains the storage address for the result and
the synchronization slot for the consuming fiber. After
issuing the remote operation, the requesting fiber may
continue with other operations or it may terminate if
there are no more operations to be executed by the the
requesting fiber.

In the mean time, when the operation is completed
in the remote node, the results are sent back to a pre-
specified storage address in the local node and a sig-
nal to a pre-specified synchronization slot informs the
consuming fiber about the arrival of the remote opera-
tion result. When all the data needed by the consum-
ing fiber is available locally and all the synchronization
events are matched, the consuming fiber becomes ready
for execution. Using this kind of split-phased transac-
tions, the long latencies of remote operations can be
overlapped with useful local computation.

3 Implementing I-Structure and its
caching scheme on EARTH systems

Our motivation to introduce a single assignment
structure, such as I-Structures [1], in Threaded-C stems
from the observation that the use of such structures
significantly reduces the number of synchronization
operations required by some programs. The single-
assignment characteristic of I-structures eliminates the
need for consistency related network operations when
these structures are enhanced with temporary storage
buffers. The former makes it easier to code problem
solutions in Threaded-C, and the latter makes it easier
to implement software caches for I-structures.
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Figure 1. State Transition Diagram for the I-
Structure Implementation

An I-structure is defined as an array of elements
where the elements could be any type of data, such
as integers, floating points, characters, or even data
structures as in our implementation. Each element of
the array can be in one of three states: empty, full,
and deferred, and it can only be written once, but read
many times. Figure 1 shows the state diagram of an
I-structure. When the I-structure is created, it is al-
located from heap memory and all the elements of the
array are empty. If a read occurs before the write, the
element goes into the deferred state and the read oper-
ation is kept in a queue associated with that element.
Subsequent reads are also queued. When a write to an
empty element occurs, the value is written and the el-
ement becomes full. If the element was in the deferred
state, all the reads that were queued for that element
are serviced before the writing operation is completed,
and the element goes into the full state. A read to a
full element returns immediately with the value previ-
ously written. A write to a full element is considered
a fatal error and causes the program to terminate.



3.1 I-Structure Software Cache implementation

Split-phased transactions for remote data memory
accesses provide the ability to tolerate communication
latency in a multi-threaded system. The data obtained
through a split phase transaction is managed by the
programmer, and is not automatically cached by the
system. Therefore if repeated requests for the same
data are issued, they will be sent through the network
to the source of the data requested.

In 1994 Dennis and Gao proposed caching the ele-
ments of single-assignment data structures [5]. We de-
signed and implemented an I-Structure Software Cache
(TSSC) [12] to cache I-Structure elements on multi-
threaded systems that support split-phased transac-
tions. The ISSC takes advantage of the spatial and
temporal localities of memory operations in I-Structure
memory systems.

The single assignment property of the I-Structure
memory system enables the implementation of the
ISSC as a software cache without any hardware sup-
port. The ISSC intercepts all the read operations to
the I-Structure. A remote memory request is sent out
to the remote host only if the requested data is not
available on the software cache of the local host. We
explore the spatial locality in the references to elements
of the I-structure through a blocking mechanism. In-
stead of requesting a single element of the structure,
an entire block of data including the requested element
is requested to the node that hosts the I-structure.

We implement 7SS5C' in the Threaded-C language
for EARTH [8, 15] systems. The layout of our soft-
ware cache is the one of a set-associative cache. Set-
assoclative software caches have faster cache entry
searching time than fully associative caches and bet-
ter cache utilization than direct mapped caches. The
caching address consists of the node number of the host
node, the I-Structure I.D. and the index of the element
for which a read is requested. Upon receiving a read re-
quest, the caching address is mapped to a set by a hash
function, and a software search is performed to see if
there is a match for the address in the set. In our simu-
lation studies [11], we determined that a cache block of
8 data elements would yield reasonable cache hit ratio.
Therefore, in our experiments, discussed in section 4,
we use a cache block size of 8 and implemented the
software cache with 256 sets and 8 cache blocks within
each set. That would be 16 K elements in the cache.

4 Performance Measurements

Before we study the effectiveness of our implementa-
tions of both I-structures and ISSC on selected bench-

Operation | Local | Remote ||

Get_Sync 141 348
Fun. Call (1) 250 451
Fun. Call (18) 410 628

I_.READ 317 492
ISSC hit — 479
ISSC miss — 2693
ISSC deferred — 1354

Table 1. Latency of EARTH and ISSC oper-
ations on EARTH-MANNA-SPN, measured in
number of cycles (1 cycle = 20 ns).

marks, we measured the latency of some basic EARTH,
I-Structure, and ISSC operations. Our experimental
results were obtained on a 20-node MANNA machine.
The MANNA [16] machine is a research platform of
which only a few were constructed. Each node has two
Intel 1860 XP processor running at 50 Mhz with 32
MB memory and is interconnected with other nodes
through a crossbar switch network. In order to obtain
a fair comparison with other existing parallel machines
that only have a single processor in each node, we per-
formed our experiment on the EARTH-MANNA-SPN
configuration. EARTH-MANNA-SPN is an implemen-
tation of the EARTH model on the MANNA machine
in which all the functions are performed by a single
processor [15].

Table 1 displays the latency of basic operations in
number of cycles measured on the MANNA platform.
The EARTH operations measured include a Get_sync
operation in which a word of data (local or remote) is
requested through split-phased transaction and func-
tion calls with 1 and with 18 parameters, that repre-
sent the invocation of a threaded function either in the
same node or in a remote node. I_LREAD is a basic I-
Structure read function for an element. At the bottom
of Table 1 are the measured latency of ISSC opera-
tions. Note that ISSC deferred is the case in which a
read hits the cache block that has been requested and
for which no data is available at the moment. Notice
that ISSC operations will only be performed when re-
mote data are requested, therefore, no latency for local
operations were measured.

The difference between local and remote cases of
the I_READ operation represents the communication
interface overhead. With the full control of network
interface in MANNA machine, the implementations
of inter-node communication and synchronizations are
very efficient. The remote operation takes only 175
processor cycles (3.5 us) more than the local one to



Number [ Benchmarks I
of Nodes || Dense MMM. [ C.G. | Hopfield | Sparse MM ||
2 99.71 93.70 99.90 99.92
4 99.52 93.69 99.80 99.87
8 99.13 93.52 99.61 99.76
16 98.35 92.92 99.22 99.53

Table 2. ISSC cache hit ratios(%)

Number [ Benchmarks I
of Nodes || Dense MMM. [ C.G. | Hopfield | Sparse MM ||
2 99.71 93.70 99.90 99.92
4 99.52 93.69 99.81 99.87
8 99.13 93.53 99.61 99.76
16 98.35 92.98 99.22 99.53

Table 3. Percentage of reduced remote mem-
ory requests by ISSC(%)

be completed, and the one-way network interface over-
head takes only 175/4 processor cycles (0.825 us). This
measure indicates that the inter-node communication
in MANNA machines is very efficient when compared
with networks of workstations which may be as high as
hundreds of micro-seconds [9].

4.1 Cache Performance

To measure the performance of I-Structures and
ISSC, we selected four different benchmarks: Dense
matriz multiplication, Conjugate Gradient, Hopfield
network, and Sparse matriz multiplication. Dense ma-
triz multiplication is a simple minded, nonblocking al-
gorithm that multiply two 128x128 dense matrices.
Conjugate Gradient from the NAS benchmark suite [2]
solves 256 linear equations with 256 unknown variables.
Hopfield Network is a kernel benchmark based on the
Hopfield Network often used in combinatorial optimiza-
tion problems. Sparse matriz multiplication is an ap-
plication with irregular data access pattern. The size
of sparse matrices is 256x256.

Table 2 shows the cache hit ratios of the four bench-
marks in our experiments. For three of the four bench-
marks (except conjugate gradient), more than 99% of
cache hit ratios could be achieved, and even in the con-
jugate gradient algorithm, that has poor temporal data
locality, 93% of cache hit ratio could be achieved. Ta-
ble 3 shows the percentage of remote memory requests
been reduced by ISSC. In all the cases, at least 93%
of the original remote memory requests are eliminated
out by the I-Structure Software Cache.
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Figure 2. Speedup in the MANNA machine.
4.2 Robustness to Latency Variation

To compare the performance of the software cache
with the original system, we implemented three ver-
sions of codes for each benchmark: A plain Threaded-C
code, a Threaded-C code using the I-Structure library,
Threaded-C+15 and a Threaded-C code using both the
I-structure library and the I-Structure Software Cache
(ISSC), Threaded-C+I1SSC.

The speedups reported in Figures 2, 3, and 4 are
computed in relation to the plain Threaded-C version
on a single processing node. We performed two sets of
experiments. The first set, shown in Figure 2 measures
the performance on the original MANNA machine. In
this set of experiments, we observe that adding the sup-
port of I-Structures ( Threaded-C+IS version) and 1SSC
(Threaded- C+1SSC version), in fact, degrades the sys-
tem performance. This is because that when the cost
to execute split-phase operations is very low (0.875 ps
as in MANNA machine), the communication interface
overhead saved by caching does not compensate the op-
eration overhead of I-Structures and I-Structure Soft-
ware Cache.

However, this kind of communication efficiency 1s
usually not available in affordable and widely available
networks of workstations. The sending and receiving
of network packages may take from hundreds to thou-
sands of cycles depending on the design of the network
interface [4]. In some machines, a parallel environment
is built on top of the TCP protocol and the communi-
cation interface overhead may be as high as hundreds
of micro-seconds [9]. Even with some improved proto-
cols, like Fast Sockets [13] and Active Messages [14], it
still costs 40~60 micro-seconds to send a message to
the network.
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Figure 3. Absolute speedup with 10 s com-
munication interface overhead

Thus, in our second set of experiments, shown in
Figure 3, we add 10 ps (500 processor cycles) to
the communication interface overhead of MANNA ma-
chine. In this set of experiments, we observe a sig-
nificant speedup of the Threaded-C+I15SC version over
the plain Threaded-C and Threaded-C'+15 versions for
all benchmarks. Notice that even with the addition of
10ps, the remote operation cost is far less than the com-
munication interface overhead of fast local area net-
work [13], which cost 40~60 micro-seconds. TIn this
experiment, we show that in spite of the overhead as-
sociated with the software implementation of caching
scheme for I-Structure, by taking advantage of the
global data locality in applications and reducing the
number of requests sent in the network, the I-Structure
Software Cache makes the system more robust to in-
creased remote cost operations.

From the results presented in Figure 2 and 3, we
observe that the communication interface overhead
is a determinant factor in the performance of the I-
Structure Software Caches. To have a better under-
standing of the relationship between the ISSC per-
formance and the cost of remote operations, we ran
our experiments on a 16 node system with a variable
synthetic communication overhead. Figure 4 shows
the execution time of applications as the communi-
cation overhead increases. For each benchmark, the
graph shows the point where the Threaded-C+I155C
version starts to out-perform the plain Threaded-C im-
plementation. ISSC starts to help the system when
the communication interface overhead is greater than
6.3us, 9.2us, 6us and 3.2us respectively in dense ma-
trix multiplication, conjugate gradient, Hopfield and
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Figure 4. Execution time with synthetically
variable communication interface overhead

sparse matrix multiplication. When the communica-
tion interface overhead exceeds 100us, the Threaded-
C+155C versions run almost 10 times faster than the
plain Threaded-C versions in our benchmarks. The ad-
dition of I-Structure and I-Structure Software Cache
make fine-grain multi-threading system more profitable
in network of workstation environment.

5 Related Work

Dennis and Gao discussed the implementation of
caching capabilities for single-assignment structures in
shared memory systems [5]. Culler et al. [3] imple-
mented software I-Structure caching in the 7d90 com-
piler for the Threaded Abstract Machine (TAM) imple-
mented on the CM-5. In their implementation, a cache
block is formed by a single I-Structure element. There-
fore, only temporal data locality could be exploited and
no deferred read sharing problem occurs. Qur exper-
iments show that exploiting spatial data locality sig-
nificantly improves performance. Kavi et al. [10] pro-
posed a hardware supported cache memories for the
Explicit Token Store (ETS) model of data-flow sys-
tems with an I-Structure memory system. A write-
back cache is adopted in their design. To implement
this mechanism, a missing table is maintained in the
producer’s IS-Cache to indicate the pending status of
the I-Structure elements and extra interrogation mes-
sages are passed on the network.



6 Concluding Remarks

EARTH is a fine-grain multi-threaded architecture
and execution environment. We presented the designs
and implementations of I-Structures and I-Structure
Software Cache (ISSC) using EARTH Threaded-C lan-
guage. ISSC caches values obtained through split-
phase transactions in the operation of an I-Structure.
It also exploits spatial data locality by clustering indi-
vidual element requests into blocks. Qur experimental
results show that the inclusion of ISSC in a parallel sys-
tem that provides split-phase transactions reduces the
number of remote memory requests and hence reduces
the traffic in the network. The resulting EARTH sys-
tem is more robust to variations in the latency incurred
by remote operations.

In this paper, we demonstrated that even a software
implementation of an I-structure cache can yield per-
formance improvements. We also demonstrated that
such performance gains will be even more evident in
machines with higher latencies, such as network of
workstations [9, 13]. The concept of I-Structure caches
is not limited to software implementation. While some
researchers concentrate on the development of faster
network interfaces, I-Structure caches can be imple-
mented with dedicated hardware, a decoupled general
purpose processor or even integrated into the design of
network interface.
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