To appear in the 19th IEEE International Performance,
Computing and Communication Conference-IPCCC2000, Feb.
20-22, 2000, Phoenix, Arizona, USA

Performance Analysis of the I-Structure Software Cache on

Multi-Threading Systems

Wen-Yen Lin and Jean-Luc Gaudiot
Dept. of Electrical Engineering - Systems
University of Southern California

Los Angeles, CA 90089-2563

Abstract

Non-Blocking Multithreaded execution models have
been proposed as an effective means to overlap compu-
tation and communication in distributed memory sys-
tems without any hardware support. Fven with the
capability of latency tolerance in these execution mod-
els, each remote memory request still incurs the cost
of communication wnterface overhead. We therefore
designed and implemented our I-Structure Software
Cache system to further reduce communication over-
head for non-blocking multithreaded execution.

In this paper, we present analytical models for the
performances of a multithreading system with and
without I-Structure Software Cache support. We com-
pare our model’s prediction with our experimental re-
sults on an existing multithreaded architecture plat-
form. The analytical models allow us to predict at
what ratio of communication latency/processing speed
the tmplementation of I-Structure Software Cache be-
comes profitable for applications with different charac-
teristics.

Keywords: Software Caches, Communication
Interface Overhead, Multithreading Architecture,
EARTH, ISSC.

1 Introduction

Multithreaded architectures have been proposed as
a means to overlap computation and communication
in distributed memory systems. By switching to the
execution of other ready threads, the communication
latency can be hidden from useful computations as
long as there is enough parallelism in an application.
Split-phased transaction [7, 16] schemes have been
used in some multithreaded models, like TAM [4], P-
RISC [13], and EARTH [5], to achieve communication
latency tolerance. By splitting the remote memory
access into two phases, requesting and consuming, the

*This research is supported in part by NSF grant # MIP-
9707125 and INT-9815742

*

José Nelson Amaral and Guang R. Gao

Dept. of Electrical and Computer Engineering

University of Delaware
Newark, Delaware

processor can continue executing other useful compu-
tations without waiting for the requested data to ar-
rive after sending out the request. Along with other
outstanding remote requests, the execution of the cur-
rent thread or of other threads overlaps the communi-
cation latencies with useful computation.

In these models, a thread is activated when all the
data elements it needs are available locally. There-
fore, once a thread starts to execute, it executes to the
end. In such a “Non-Blocking Multithreaded” model,
once the execution of a thread terminates, no thread
context needs to be saved before switching the execu-
tion to another active thread. The absence of context
saving in the middle of a thread makes it possible to
implement this kind of system with off-the-shelf pro-
cessors [14]. Some examples of this kind of implemen-
tations are the TAM on CM-5 [2] and the EARTH on
MANNA, Beowulf, and TBM SP2 [17].

However, a drawback of the non-blocking multi-
threaded execution model is that the locality of re-
mote data is not fully exploited. If all remote re-
quests are translated into split-phased transactions
and the fetched data is not saved between usages,
excessive inter-processor traffic will be generated. !
The problem is compounded by the cost of sending
and receiving network packets. Fach packet may take
from dozens to thousands of cycles to put on net-
work depending on the design of the network interface
and communicating protocols [3]. Even though multi-
threaded execution could tolerate the communication
latency, processors still need to spend the time to is-
sue the request and retrieve the data from network. In
most platforms without dedicated processors to han-
dle the network messages, this communication inter-
face overhead cannot be overlapped with useful com-

'To be fair, in most explicitly multi-threaded code, the pro-
grammer does save remotely fetched data in the local memory
for future use. However, the code complexity to do so might be
taxing on the programmer and the spatial data locality still can
not be exploited.

putations. In some machines, a parallel environment
is built on top of the TCP protocol and the communi-
cation interface overhead may be as high as hundreds
of micro-seconds [9]. Even with some improved proto-
cols, like Fast Sockets [15] and Active Messages [16], it
still costs 40~60 micro-seconds to send a message to
the network. For instance, in the multi-packet deliv-
ery implementation of Active Messages in the CM-5
machine, it costs 6221 instructions for sending a 1024-
word message in the finite sequence [18]. Since all
requests are actually sent to remote hosts through the
network, all the sending and receiving requests incur
the communication interface overhead and will result
in high network traffic.

To overcome these problems, we designed and im-
plemented an I-Structure Software Cache (ISSC) [10,
11, 12] to cache the split-phase transactions in a single-
assignment memory system, like I-Structures [1]. By
caching those split-phase transactions, the ISSC re-
duces the number of remote requests significantly, and
hence, the amount of communication overhead in-
curred by remote requests is reduced. Indeed, with
the capability of communication latency tolerance in
multithreaded execution, the major benefit of ISSC
comes from the saving from communication interface
overhead. Our ISSC 1s a pure software approach to
exploit the global data locality in non-blocking multi-
threaded execution without adding any hardware com-
plexity. Therefore, in order for ISSC to deliver perfor-
mance gains in non-blocking multithreaded systems,
the overhead incurred by ISSC operations must be less
than the amount of communication interface overhead
saved by ISSC.

In this paper, we present an analytical model for
the performance of a multithreading system with and
without ISSC support. From this model, we could
analyze the lower bound of communication interface
overhead from which ISSC starts to yield performance
gain in different benchmarks and platforms. The re-
mainder of the paper is organized as follows. In the
next section, we will introduce the design of our ISSC.
In section 3.1, the analytical model and detailed per-
formance analysis is described and we conclude this
work in section 4.

2 The I-Structure
(ISSC)

In 1994 Dennis and Gao proposed the caching of
elements of single-assignment data structures [6]. We
designed and implemented an I-Structure Software
Cache (ISSC) [10, 11, 12] to cache I-Structure elements
on multi-threaded systems that support split-phased
transactions. The ISSC takes advantage of the spa-

Software Cache

tial and temporal localities of memory operations in
[-Structure memory systems. The ISSC system works
as an interface between user applications and the net-
work interface. It intercepts all the read operations
to the I-Structure. A remote memory request is sent
out to the remote host only if the requested data is
not available on the software cache of the local host.
We explore the spatial locality in the references to the
I-structure through a blocking mechanism. Instead of
requesting a single element of the structure, an en-
tire block of data including the requested element is
requested to the node that hosts the I-structure.

2.1 Features of ISSC

The detailed design of ISSC and its implementation
are described in [12, 20]. The most relevant features
of our I-Structure software cache can be summarized
as follows:

e Write-direct policy. A simple write direct pol-
icy is adopted in our design and therefore, there
is no caching for write operations. It ensures the
legality of write operations for a single assignment
memory.

e Cache advance. In our design, a cache line is
allocated in the software cache before the new
request for the block of data containing the re-
quested element is sent to the remote host. The
original request and subsequent requests for data
elements in the same cache block can be de-
ferred in the pre-allocated cache line before the
requested data block is brought back from remote
host.

¢ Deferred read sharing. To ensure the requests
which have been deferred in local software cache
to receive their data, the new request for block
of data is shared by all the empty data elements
of the requested data block in the I-Structure
by appending the request to all empty locations.
Therefore, the data could be forwarded to the re-
questers as soon as they are generated.

e Centralized deferred requests and dis-
tributed deferred reads. A simple “central-
ized” method is used for the implementation of
the queues of deferred requests in the I-Structure.
In fact, the length of the queue of deferred re-
quests for each element in the I-Structures is
bounded by the number of nodes in the system.
This 1s because only one request is sent from each
node to the host node. Future deferred reads are
kept locally in the node.

|| Operation | Local | Remote ||
Get_Sync 141 348
Fun. Call 250 451
I_-READ_F 317 492
ISSC hit 479 —
ISSC miss 2693 —
ISSC deferred | 1354 —

Table 1: Latency of EARTH and ISSC operations on
EARTH-MANNA-SPN, measured in number of cycles
(1 cycle = 20 ns).

2.2 ISSC implementation on EARTH-
MANNA

We implemented 1SSC [20] in the Threaded-C [8]
language for EARTH systems. The EARTH [17,
5], Efficient Architecture for Running Threads, is
an architecture and program execution environment
that defines a fine-grain non-blocking multi-threading
model.

Our studies are based on an implementation of
EARTH on the MANNA machine. MANNA [19] is
a 20 node, 40 processor machine. Each node has two
Intel 1860 XP processor running at 50 MHz with 32
MB memory and is interconnected with other nodes
through a crossbar switch network. The MANNA
machine is a research platform of which only a few
were constructed. With the full control of network
interface in MANNA machine, the implementations
of inter-node communication and synchronizations are
very efficient as demonstrated by the measurements
presented in this section. We measure the latency of
some EARTH and ISSC operations for the EARTH-
MANNA-SPN machine. EARTH-MANNA-SPN is an
implementation of the EARTH model on the MANNA
machine in which only one processor is used in each
node [17].

Table 1 lists the latency of some EARTH and ISSC
operations in the MANNA platform used in the ana-
lytical model. In a local measurement all operations
are within a processor, while in a remote measure-
ment, all operations are issued to other nodes through
network. The EARTH operations measured in Ta-
ble 1 include a get_sync operation in which thread 1
requests a word of data from thread 2 and thread 2
synchronizes thread 1 when the data arrives; and func-
tion calls which represent the invocation of a threaded
function either in the same node or in a remote node.

At the bottom of Table 1 are the measured la-
tency of ISSC operations and of the basic I-Structure
read function, I READF. The measurement starts

from thread 1 invoking the I_TREAD_F function in I-
Structure node either in the same node or in a re-
mote node until the I_READ_F function finished and
synchronizing thread 1 when the data arrives. ISSC
hit measures the invoking of an I_READ_F for a re-
mote data, finding the requesting data in local soft-
ware cache and synchronizing the requesting thread
with the data found in software cache. ISSC miss is
the case that the entire surrounding data block 1s not
found in the software cache and a new request for the
whole block is issued to a remote node, and finally the
requested data along with the whole data block are
sent back from remote node and the synchronization
is done. Notes that, this measurement is made by issu-
ing multiple requests in a pipeline fashion. Therefore
the time spent on the remote node is overlapped with
other issues of requests and only the time spent in lo-
cal node is measured. ISSC deferred is the case that
the surrounding data block already allocated in the
local software cache however the requested data ele-
ment 1s not there yet. The original request is therefore
deferred in the software cache until the requested data
is available along with entire data block or sent back
individually from remote I-Structure node. The same
measurement as [55C miss is done to ensure that no
idle time and remote operation time is measured.

The difference between local and remote cases of
I_LREAD_F denotes four times of the communication
interface overhead. It includes one for the requester
sending the request, one for the I-Structure node re-
ceiving the request, one for I-Structure node sending
the data back and finally one for the requester receiv-
ing the data. The one-way communication interface
overhead takes only 175/4 processor cycles (0.825 ps).
This measurement indicates that the inter-node com-
munication in MANNA machines is very efficient when
compared with network of workstations.

3 The Analytical Models
3.1 Performance modeling

The execution time of benchmarks in a non-
blocking multithreaded multiprocessor system writ-
ten in plain Threaded-C [8], Tinreaded—c, System with
I-Structure support, Trs, and system with both I-
Structure and I-Structure Software Cache support,
Trssc could be modeled in the following equations:

Ehreaded—c = TB + (NL + NR)OT + NRQ(CO + Coa)
Trs = Tp + NOr + NRrO, + Nr2(C, + Cyq)
Trssc = Tp + NpOr + NrRpit(1 — Ra—pit)Onie
+NrRhitRi—hitOdes + Nr(1 — Rait)Omiss

+Nr(1 = Rpit)2(Co + Coa)

Where Tg 1s the base for our analytical model which
is the execution time of the benchmark on a fine grain
multi-threaded machine without I-Structures and the
cost of split-phase memory accesses 1s deducted. We
could classify the parameters used in our models
into two category, benchmark-related parameters and
platform-related parameters:

Benchmark-related parameters:

Np: Number of local reads
Ng: Number of remote reads
Ryt Cache hit ratio on remote reads

Rg_pitr: Cache deferred hit ratio

Platform-related parameters:

C,: One-way communication interface
overhead (original)

Coa: One-way communication interface
overhead (add-on)

Or: Local I-Structure read service time

O,: Read request invoking time

Onit: ISSC hit service time
Omiss: ISSC miss service time
Ogey: ISSC deferred hit service time

Where Rg4_p; is the ratio between the cache hits
that have been deferred and the total number of cache
hits. The higher Rg_p;i is, the poor temporal data
locality is in the application. The C, and C,, are de-
fined as one-way communication interface overheads
which are only incurred in either sending or receiving
network data, but not both. O, is the overhead of
invoking a split-phased read request. The others are
the overheads of [-Structure and ISSC operations. No-
tice that the request invoking time is already included
in Or, Ohit, Omiss, and Ogep. Also, in these models
Opmiss does not include communication interface over-
head.

In the development of the analytical model, we
assume owner computation rule. Therefore, all the
write operations are performed locally and incur no
communication overhead. We also assume that the
I-structure arrays are evenly distributed across the
nodes. Therefore that the jobs are also evenly dis-
tributed. We assume the same basic execution time,
Tg for all three versions of the system. In fact, Tg in
Trssc should be smaller than the ones in Tipreqded—ec
and Trs because caching remote memory requests de-
creases the average turn-around time for all the re-
quests and as a result, it increases parallelism and pro-
cessor utilization. However, this assumption in Trgg¢
provides the upper-bound of the execution time for

the system with ISSC. In our implementation, only
remote reads are cached in ISSC. Hence, those local
I-Structure reads in Trssc still need the I-Structure
read service in local node. In these models, the re-
mote costs for Tipreaded—c and Trg are Nr2(Ch 4 Coq)
and for Trsge is Nr(1 — Rpit)2(Cy + Coq) which only
include the communication overhead incurred in the
local node. The overheads in remote node are actu-
ally hidden by the multithreaded execution.
3.2 Model verification

Indeed, with the capability of communication la-
tency tolerance in multithreaded execution, the major
benefit of ISSC comes from the saving from communi-
cation interface overhead. To find out when the sav-
ing of communication interface overhead compensates
the ISSC operation overhead and hence ISSC starts
to yield performance improvement, this critical point
could be derived from Trssc < Tihreaded—ec,

(N 4+ Nr)O, + Nr2(Cyo 4+ Cos) > NLO;
+NgRuit(1 — Ra—pnit)Onit + Nr(1 — Rhit)2(Cy + Coq)
+NrRhitRi—hitOdes + Nr(1 — Rait)Omiss

= NLJ_;—RMRhit(QCO + 200(1) > J\,ij_—LMO[
+NLLRhit((1 — Ra—nit)Onit + Ra—pitOley)

W
2 (1= Ruit)Omiss — O (1)

The meaning of Equation 1 is quite straight for-
ward. The condition for ISSC starts to improve the
system 1s that the communication interface overhead
saved by ISSC (left hand side of the equation) should
be greater than the I-Structure read service time re-
quired for local access plus ISSC operation overhead
minus the read request handling time in the original
system (right hand side of the equation).

In our ISSC implementation [20] on EARTH-
MANNA systems, we measured the system perfor-
mance when both I-Structures and ISSC are used
in Threaded-C language on a set of selected bench-
marks: dense matrix multiplication, Conjugate Gra-
dient, Hopfield network, and sparse matrix multipli-
cation. To compare the performance of the soft-
ware cache with the original system, we implemented
three versions of codes for each benchmark: A plamn
Threaded-C code, a Threaded-C code using the I-
Structure library, Threaded-C+I1S and a Threaded-
C code using both the I-structure library and the I-
Structure Software Cache (ISSC), Threaded-C+I1SSC.

We ran our experiments on a 16 node EARTH-
MANNA system with adding a variable synthetic com-
munication interface overhead on top of existing over-
head. In Table 2, we list the benchmark-related pa-
rameters which are collected from our experiments and

H Parameters || Benchmarks i
[Dense MM. [C.G. [Hopfield | Sparse M.M ||
Ny, 139328 614 512 19140
Nr 123840 9210 7680 234784
Rpit (%) 98.35 93.65 99.22 99.55
Ra_nit (%) 20.00 51.80 100.00 21.20

Table 2: Benchmark-related Parameters

Parameters [Co [Or | O, | Oni
micro-second |[0.875 | 6.34 | 2.82 | 9.58

[Omiss | Oaey ||
| 5154 | 97.08 |

Table 3: Platform-related Parameters Measured from

MANNA machine

the platform-related parameters of MANNA machine,
measured in Section 2.2, are listed in terms of us in
Table 3. The critical points, where ISSC starts to de-
liver performance gains for the selected benchmarks,
measured from the experiments are listed in the top
row of Table 4.

In order to verify the analytical models, we plug
in the benchmark-related parameters listed in Table 2
and the platform-related parameters listed in Table 3
to Equation(1) to derive the critical point for each
benchmark from our models. The derived critical
points are listed in the bottom row of Table 4. Our
analytical model for Trssc defines the upper bound of
the execution time. Therefore, the cross-point derived
from Equation 1 is the lower-bound of communication
interface overhead from which ISSC starts to improve
system performance. For example, if the point derived
from our models is 10us, for this upper-bound estima-
tion of Trggc, we could say that as long as the com-
munication interface overhead is larger than 10us, our
ISSC is going to improve the performance. Values of
these cross-points derived from our analytical models
are greater than but close to the values we measured in
our experiments shown in Table 4 except in Hopfield.
This is because the synchronization of the activation
updates after each time stamp yields partial sequen-
tial behavior. In this case, the basic execution time in
Trssc 1s much smaller than in T} preqded—e. Therefore
the cross-point we predicted is much larger than what
we measured.

Benchmarks Dense M.M. C.G. Hopfield Sparse M.M
Measured 6.3 9.2 6 3.2
Derived 6.7 9.4 11.5 4.6

Table 4: Critical Points (in mus) of selected bench-

marks

3.3 Performance Predictions

In this section, we introduced our analytical mod-
els for the multithreading system with and without I-
Structure software cache support and we verified these
models with our experiment results based on EARTH-
MANNA machine. With these models, we could pre-
dict the lower bound of communication interface over-
head from which ISSC starts to yield performance gain
in different kind of benchmarks and platforms.

Performance prediction for different benchmarks (with Nr/(Nr+NI) = 0.5)
45 T T T T T T T

. .
~5- Rd-hit=0.0
% Rd-hit=0.2

40 + Rd-hit=0.4 []
£ —# Rd-hit=0.6

350 N ~5- Rd-hit=0.8 ||
SN Rd-hit=1.0

/
X+ §0

Communication interface overhead (us)
x+ 40

X+ ¥0

.
05 055 06 065 07 075 08 08 09 095 1
ISSC hit ratio (%)

Figure 1: Performance prediction for different bench-
marks

By using these models, for a fixed platform pa-
rameters (like plug in the parameters measured from
EARTH-MANNA) and varied benchmark-related pa-
rameters, we could estimate the value of communica-
tion overhead where Threaded-C+ISSC starts to out-
perform pure Threaded-C for the benchmarks with
different characteristics. Figure 1 shows these cross-
points of different kinds of benchmarks by varying the
cache hit ratio and deferred hit ratio while assuming
only half of memory requests are issued to remote
nodes. From this figure, we could see that even in
those benchmarks with poor locality (Rp;; = 0.5 and
Ra—pit = 1.0), ISSC still yield performance gain for
communication interface overhead greater than 40us,
which is still faster than most of the network im-
plementation in network of workstations. For those
benchmarks with extremely good locality, i.e. more
than 98% of cache hit ratio with 0 deferred hit, ISSC
starts to improve the system for the communication
overhead as low as bus.

Some researcher dedicate their work on communi-
cation optimizations to reduce the number of remote
memory accesses. This kind of optimizations are based
on the static analysis of the program behavior which
is different from exploiting the data locality during
the run-time by the caches. However, ISSC could still
yield performance gain in the benchmarks compiled

Performance prediction for communication optimization (with Rd-hit=0.5 and Rhit=0.8)
35 T T T T T T T T

)

@
S
T

n
o
T

n
=]
T

5L

Communication interface overhead (us

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Ratio of remote accesses (Nr/(Nr+NI))

Figure 2: Performance prediction for communication
optimization

with the communication optimization techniques. In
Figure 2, we vary the ratio of remote memory requests
to the total number of memory requests. We find out
that even in an application with only 10% of mem-
ory accesses are remote and moderate cache hit ratio
(Rpit = 0.8 and Rg—pir = 0.5) ISSC still improves the

system at 33.5us of communication overhead.

Performance prediction for technology improvement

o ® o b B

I

Communication interface overhead (us)

[N

.
50 100 150 200 250 300 350 400 450 500
Processor speed (MHz)

Figure 3: Performance prediction for technology im-
provement

As the speed of processors becomes faster and
faster, the gap between the computation and com-
munication latencies become larger and larger. Be-
cause, our ISSC is a pure software implementation,
the ISSC operation overhead decreases proportional
to the increase of processor speed. In Figure 3 we
vary the platform-related parameters based on 50MHz
MANNA processor by increasing the speed of proces-
sors for an application with 50 % of remote memory
accesses, 80% cache hit ratio, and 50% deferred hit ra-
tio. From this curve, we could predict that if we have
a B0OMHz processor available, which is already there
on the market, the cross-point drops to less than 2us.
In this case, ISSC could almost yield performance gain

on any parallel machine.

4 Conclusions

Do software caches really work? 1In this paper,
we demonstrated a software implementation of I-
Structure cache, i.e. 155C, can deliver performance
gains for most distributed memory systems which
don’t have extremely fast inter-node communications,
such as network of workstations [3, 9, 15, 18].

ISSC caches values obtained through split-phase
transactions in the operation of an I-Structure. It
also exploit spatial data locality by clustering indi-
vidual element requests into block. Qur experiment
results show that the inclusion of ISSC in a parallel
system that provides split-phase transactions reduces
the number of remote memory requests dramatically
and reduces the traffic in the network. The most sig-
nificant effect to the system performance is the elimi-
nation of the large amount of communication interface
overhead which is incurred by remote requests.

We developed analytical models for the perfor-
mance of a distributed memory multithreading sys-
tem with and without I-Structure Software Cache
support. We verified these models with our ex-
periment results on an existing multithreaded archi-
tecture, EARTH-MANNA. These models consist of
two sets of factors, platform-related and benchmark-
related. Platform-related parameters are those laten-
cies incurred by remote memory requests and ISSC
operations.
characteristics of applications, such as number of re-

Benchmark-related parameters are the

mote and local memory accesses and data locality. By
finding the cross-point of two execution time curves,
which have the communication interface overhead as
variable, of the systems without and with ISSC, we
could find when ISSC starts to yield performance im-
provement for different benchmarks and platforms.
Through systematic analysis, we show that ISSC de-
livers performance gains for a wide range of applica-
tions in most of the parallel environments, especially
in network of workstations.

References
[1] Arvind, R. S. Nikhil, and K. K. Pingali. I-
Structures: Data Structures for Parallel Comput-
ing. ACM Transactions on Programming Lan-
guages and Systems, October 1989.

[2] David E. Culler, Seth Copen Goldstein,
Klaus Erik Schauser, and Thorsten von Eicken.
Empirical study of a dataflow language on the
CM-5. In G.R. Gao, L. Bic, and J-L. Gaudiot,
editors, Advanced Topics in Dataflow Computing

[10]

and Multithreading, pages 187-210. IEEE Press,
1994.

D. Culler, R. Karp, D. Patterson, A. Sahay, K.
Schauser, E. Santos, R. Subramonian, and T. von
Eicken. LogP: Towards a Realistic Model of Par-
allel Computation. In Proceedings of the Fourth
ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, May 1993.

D. E. Culler, A. Sah, K. E. Schauser, T. von
Eicken, and J. Wawrzynek. A compiler-controlled
threaded abstract machine. In Proceedings of

ASPLOS-TV, April 1991.

H. H.J. Hum, O. Maquelin, K. B. Theobald, X.
Tian, X. Tang, G. Gao, P. Cupryk, N. Elmasri,
L. J. Hendren, A. Jimenez, S. Krishnan, A. Mar-
quez, S. Merali, S. S. Nemawarkar, P. Panan-
gaden, X. Xue, and Y. Zhu. A Design Study of
the EARTH Multiprocessor. In PACT 95, June
1995.

J. B. Dennis and G. R. Gao. On Memory Mod-
els and Cache Management for Shared-Memory
Multiprocessors. CSG MEMO 363, Laboratory
for Computer Science, MIT., March 1995.

J. Hicks, D. Chiou, B. S. Ang, and Arvind. Per-
fornamce Studies of Id on Monsoon Dataflow Sys-
tem. Journal of Parallel and Distributed Comput-
ing, pages 273-300, 1993.

J.N. Amaral, Z. Ruiz, S. Ryan, A. Marques, C.
Morrone, and G.R. Gao. Portable Threaded-C
Release 1.1. Technical note 05, Computer Archi-
tecture and Parallel System Laboratory, Univer-
sity of Delaware, September 10 1998.

K. Keeton, T. Anderson, and D. Patterson. LogP
Quantified: The Case for Low-Overhead Local
Area Networks. In Hot Interconnects I11: A Sym-
postum on High Performance Interconnects, Au-

gust 1995.

W.Y. Lin and J-L. Gaudiot. I-structure Software
caches - A split-phase transaction runtime cache
system. In Proceedings of the 1996 Parallel Archi-
tectures and Compilation Techniques Conference,

Oct. 1996.

W.Y. Lin and J-L. Gaudiot. Exploiting Global
Data Locality in Non-Blocking Multithreaded Ar-
chitectures. In Proceedings of the Third Interna-
tional symposium on Parallel Architectures, Al-
gorithms and Networks, Dec. 1997.

[12]

[13]

[14]

[16]

[17]

[18]

[19]

[20]

W.Y. Lin and J-L. Gaudiot. The Design of An
I-Structure Software Cache System. In Work-
shop on Multithreaded Frecution, Architecture

and Compilation, 1998. Held in conjunction with
HPCA-4, Feb. 1998.

R. S. Nikhil and Arvind. Can dataflow sub-
sume von Neumann computer? In Proceedings

of ISCA-16, May-Jun 1989.

0. C. Maquelin, H. H.J. Hum, and G. R. Gao.
Costs and Benefits of Multithreading with Off-
the-Shelf RISC Processors. In Proceedings of
EURO-PAR’95, August 1995.

S. Rodrigues, T. Anderson, and D. Culler. High-
Performance Local Area Communication With
Fast Sockets. In USENIX 1997 Annual Technical
Conference, Jan 1997.

T. von Eicken, D. E. Culler, S. C. Goldstein
and K. E. Schauser. Active messages: a mech-
anism for integrated communication and compu-
tation. In Proceedings of the 19th Annual Inter-
national Symposium on Computer Architecture,

pages 256-266, May 19-21, 1992.

Kevin B. Theobald. EARTH - an Efficient Ar-
chitecture for Running THreads. Ph.d thesis,
School of Computer Science, McGill University,
Montreal, Québec, 1999.

V. Karamcheti and A. Chien. Software over-
head in messaging layers: Where does the time
go? In Proceedings of the 6th ACM Interna-
tional Conference on Architectural Support for
Programming Languages and Systems (ASPLOS
VI), Oct. 5-7, 1994.

W.K. Giloi, U. Bruning and W. Schroder-
Preikschat. MANNA: Prototype of a Distributed
memory Architecture With Maximized Sustained
Performance. In Proc. BEuromicro PDP96 Work-
shop, 1996.

W.Y. Lin, J. Nelson, J-L. Gaudiot, and G. Gao.
Caching Single- Assignment Structures to Build a
Robust Fine-Grain Multi-Threading System. In
International Parallel and Distributed Processing

Symposium (IPDPS2000), May 2000.

