The Location Consistency Memory Model and Cache Protocol:
Specification and Verification

Charles Wallace!, Guy Tremblay?, and José N. Amaral?

1 Computer Science Dept., Michigan Technological University, Houghton, MI, USA
2 Dépt. d’informatique, Université du Québec & Montréal, Montréal, QC, Canada
8 Computing Science Dept., University of Alberta, Edmonton, AB, Canada

Abstract. We use the Abstract State Machine methodology to give formal operational semantics for
the Location Consistency memory model and cache protocol. With these formal models, we prove that
the cache protocol satisfies the memory model, but in a way that is strictly stronger than necessary,
disallowing certain behavior allowed by the memory model.

1 Introduction

A shared memory multiprocessor machine is characterized by a collection of processors that exchange infor-
mation with one another through a global address space [1,6]. In such a machine, processors access memory
locations concurrently through standard read and write instructions. Shared memory machines have various
buffers where data written by a processor can be stored before it is shared with other processors. Thus,
multiple values written to a single memory location may coexist in the system. For instance, the caches of
various processors might contain different values written to the same location.

The programs running on a shared memory machine are affected by the order in which memory operations
are made visible to processors (which previous write operations are currently visible). A memory consistency
model is a contract between a program and the underlying machine architecture that constrains the order
in which memory operations appear to be performed with respect to one another (i.e., become visible to
processors) [6]. By constraining the order of operations, a memory consistency model determines which
values can legally be returned by each read operation. The implementation of a memory consistency model
in a shared memory machine with caches requires a cache protocol, that invalidates or updates cached values
when they no longer represent legal readable values.

The most common memory consistency model, sequential consistency (SC) [13], ensures that memory
operations performed by the various processors are serialized (i.e., seen in the same order by all processors).
This results in a model similar to the familiar uniprocessor model. A simple way to implement SC on a shared
memory multiprocessor is to define a notion of ownership of a memory location and to require a processor
to become the owner of a location before it can update its value. The serialization of memory operations is
obtained by restricting ownership of a location to one processor at a time.

In the SC model, at any time there is a unique most recent write to a location, and any other values stored
in the system for that location are not legally readable; they must either be invalidated or updated. Thus
a major drawback of SC is the high level of interprocessor communication required by the cache protocol.
Because of the requirement that all write memory operations be serialized, the SC model is quite restrictive
and is thus said to be a strong memory model. Weaker memory models have been proposed to relax the
requirements imposed by SC. Examples include release consistency [10], lazy release consistency [12], entry
consistency [2], DAG consistency [3], and commit, reconcile and fences (CRF) [14]. Relaxed memory models
place fewer constraints on the memory system than SC, which permits more parallelism and requires less
interprocessor communication but complicates reasoning about program behavior.

All these models have the coherence property. In a coherent memory model, all writes become visible to
other processors, and all the writes in the system are seen in the same order by all processors. In 1994, Gao
and Sarkar proposed the Location Consistency (LC) memory model [8], one of the weakest memory models
proposed to date. LC is the only model that does not ensure coherence. Under LC, memory operations
performed by multiple processors need not be seen in the same order by all processors. Instead, the content
of a memory location is seen as a partially ordered set of values. Because LC allows the coexistence of

multiple legal values to the same location, there is no need to invalidate or update remote cached values.
Hence the LC model has the potential to reduce the consistency-related traffic in the network.

In their more recent paper [9], Gao and Sarkar describe both the LC memory model and a cache protocol,
the LC cache protocol, that implements the LC model. They describe the LC model in terms of an “abstract
interpreter” that maintains the state of each memory location as a partially ordered set of values, thus
defining the set of legal values for a read operation. The LC cache protocol is designed for a machine in
which each memory location has a single value stored in main memory and each processor may cache values
for multiple locations.

An important requirement of a cache protocol is that the resulting machine behavior be allowed by
the corresponding memory model. Gao and Sarkar present a proof that the cache protocol satisfies the
memory model. However, their description of the memory model is based on an ad hoc operational semantics
notation that is not rigorously defined. The description of the cache protocol is entirely informal and leaves
some important assumptions unstated.

In this paper, we specify the LC memory model and the LC cache protocol using the ASM approach [11].
We use the original descriptions by Gao and Sarkar as the basis for our models, making explicit some of
the assumptions present in the original descriptions. We then prove that the LC cache protocol correctly
implements the LC memory model, i.e., for a machine that implements the cache protocol, every read
operation returns a legal value according to the memory model. In addition, we show that the LC cache
protocol is strictly stronger than the LC memory model, i.e., there are legal values according to the memory
model that cannot be returned under the cache protocol.

Our specifications of the LC memory model and of the LC cache protocol are similar in that they refine
a common (top-level) specification. In §2 we define the common portions of the two models, producing a
model LCy. In §3 we refine this model to arrive at a model LC,,, of the LC memory model. In §4 we make
different refinements, resulting in a model LC,, of the LC cache protocol. In §5 we prove that LC,, is an
implementation of LCy,,. In §6, we prove that LC, is in fact strictly stronger than LC,,,. We conclude in
87 with directions for future work.

2 Shared Memory System and Memory Operations

In a shared memory machine, processors can reference a shared set of memory locations, organized in a
global shared address space, using the same operations they use to access their local memory. Although
it may appear intuitive to think that each shared memory location holds a single value at any given time,
cache memories provide multiple places to store values for a single location. Thus, at any given time, multiple
values may be simultaneously associated with the same memory location.

A processor can perform four types of operation on a memory location:

— A read retrieves a value associated with a location, possibly storing it in some area local to the processor.

— A write adds a value to the set of values associated with the location. In any real systems, the number of
places available to store the values associated with a location is finite. Therefore, a side effect of a read
or write operation is that a value previously associated with a given location may no longer be available
in the system.

— An acquire grants exclusive ownership of a location to a processor.! The exclusive ownership of a location
imposes a sequential order on processor operations. Hence when it is useful to have a unique global “most
recent write” to a location, such write can be defined as the most recent write by a processor that owned
the location at the time of the write. When acquiring a location, a processor updates its own state by
discarding any old value it has stored for the location.

— A release operation takes exclusive ownership away from a processor. Any processor attempting to acquire
a location currently owned by another processor must wait until the location is released by its current
owner. If the releasing processor has written to the location, the release operation has the additional
effect of making the value of its most recent write available to other processors. In this way, a processor
that subsequently acquires the location will have access to the value of the global “most recent write”.

1 In SC, only a processor that owns a location may perform a read or write on it. On the other hand, although LC
has a notion of exclusive ownership, it allows processors without ownership to perform reads and writes.

Gao and Sarkar do not speak of acquire and release operations separately; rather, they speak of acquire-
release pairs of operations. Thus it is assumed that a processor must gain ownership of a location through
an acquire before releasing that location.

The model of the LC memory model (LC,,,) in §3 and the model of the LC cache protocol (LC.p) in §4
both require formalizations of the notions discussed above. In the rest of this section, we define a higher-level
model LCj to represent these notions in a generic way. LCy models only the general control flow associated
with the execution of the memory operations, including the waiting associated with an acquire operation. In
this initial model, the flow of data is ignored. Later, we refine LC) to the models LC,,,, and LC¢,, adding
details appropriate to each of these models (partial order of operations vs. cache information).

LCp: Universes and Agents

In this section, we present the universes used in all our ASM models. We assume that the multiprocessor
system has a fixed set of processors, a fixed set of memory locations, and a fixed set of data values. These
sets are represented in LCj as the Processor, Location and Value universes, respectively. We also define an
OpType universe, comprising the four types of operation: read, write, acquire, and release.

A distributed computation in ASM is modeled as a multi-agent computation in which agents execute
concurrently and where each agent performs a sequence of state transformations. In modern multiprocessors,
a single processor may perform operations on different locations concurrently. Multiple processors may also
perform concurrent memory operations, either on the same location or on different locations. On the other
hand, a given processor cannot perform multiple concurrent memory operations on a given location. There-
fore, in our abstract model, for each processor P and for each location £ there is a unique agent whose task
is to perform operations on £ on behalf of P. We call such agents processor agents and we define a universe
ProcAgent accordingly. Later, we complete the definition of LCyby introducing two more universes of agents:
InitAgent (initializer agent) and OwnAgent (ownership agent).

LCjy: Processor Agents

Function Profile

p.loc ProcAgent — Location
p.proc ProcAgent — Processor
p.opType ProcAgent — OpType
p.nextOpType ProcAgent — OpType
p.waiting? ProcAgent — Boolean
p.writeVal ProcAgent — Value

Fig. 1. Attributes of ProcAgents.

A processor agent is characterized by the attributes loc and proc: loc is the location on which the agent
performs actions, and proc is the processor on behalf of which the agent acts. Both attributes have fixed
values; thus they are modeled as static functions.

Associated with each ProcAgent are some attributes whose values may change during an execution, thus
are modeled as dynamic functions. For instance, the attribute opType indicates the type of operation that the
agent is to perform in the current step. Some operations may take multiple steps; for instance, a processor
agent performing an acquire operation may need to wait for another processor agent to release ownership of
its location. When the current operation is completed, the processor agent updates its opType attribute.

The type of the next operation that the agent is to perform is given by the attribute nextOpType, an
external (a.k.a. monitored) function, whose interpretation is determined by the environment. In contrast,

the attribute opType is updated by agents (and never by the environment), so it is called a dynamic internal
function (or controlled) function.

The attribute waiting? (a controlled function) determines whether a processor agent is waiting for own-
ership of its location (as the result of an acquire operation). If a processor agent is unable to gain ownership
immediately, it sets its waiting? attribute to true. Finally, the monitored function writeVal, provides the value
written by a write operation. This function is not used in LCy but is used in both LC),,, and LC,,.

In Fig. 1, we present the attributes for the processor agents with their profile.

LCy: Initializer Agents

A question arises regarding the initial status of each location: If a processor agent reads from a location that
has never been written to, it is not clear what the result should be. We avoid this complication by ensuring
that each location is properly initialized before the processor agents start to perform operations on it. For
each specific location, this task is handled by an InitAgent (“initializer agent”). Since the details (attributes
and transition rules) of these agents are straightforward, we omit them. Note that we assume that each
location has an initialized? attribute that is set to true once the appropriate InitAgent has completed.

LCy: Ownership Agents

Function Profile

o.loc OwnAgent — Location
£.owner Location — ProcAgent
£.nextOwner Location — ProcAgent

Fig. 2. Attributes of OwnAgents and Locations.

A processor agent can gain ownership only if there are no other processor agent that currently owns
the location. If another agent does own the location, the agent wishing to acquire must wait. There may
be multiple processor agents waiting for ownership of the same location. The decision as to which agent is
granted ownership is beyond the control of any processor agent and the arbitration policy is not of interest
to our specification. Therefore we define the OwnAgent universe whose members have the responsibility of
arbitrating ownership of locations and we associate a unique OwnAgent with each memory location.

Since each ownership agent deals with a single location, each OwnAgent has a (static) loc attribute. Each
location also has an owner attribute, indicating which processor agent (if any) currently owns the location.
When a processor agent releases a location, there may be other processor agents waiting to gain ownership.
The monitored (oracle) function nextOwner indicates the next processor agent selected to receive ownership
of the location. This monitored function is consulted by the OwnAgent. The profile for these attributes are
presented in Fig. 2.

Terminology

We introduce the following terminology for agents and actions in runs of any of the model.

Definition If a ProcAgent p makes a move Rd at which p.opType = read, we say that p performs a read
(or simply reads) at Rd. (Similarly for write.)

Definition If a ProcAgent p makes a move A at which p.opType = acquire and
p.loc.owner = p, we say that p performs an acquire (or simply acquires) at A. (Similarly for
release.)

LCy: Conditions on Runs

Some aspects of our models LCy, LC,,,, and LC,, are outside the control of the ASM transition rules.
First, our static functions must have certain properties. We restrict attention to runs in which the following
conditions are true of the static functions loc and proc:

Static condition 1 For every Processor P and for every Location £, there is a unique ProcAgent p for which
p.proc = P and p.loc = /.

Static condition 2 For every Location /¢, there is a unique InitAgent i for which i.loc = /.

Static condition 3 For every Location /¢, there is a unique OwnAgent o for which o.loc = £.

Second, certain conditions must be true in the initial state of any run. We restrict our attention to runs in
which the following conditions are true initially:

Init condition 1 For every Location £, £.owner.undef? and not Z.initialized?.

Init condition 2 For every ProcAgent p, not p.waiting?.

Also, the monitored function nextOwner must produce “reasonable” values at every move of any run: Only
a processor agent currently waiting to obtain ownership on the location should be granted ownership. Thus
we restrict attention to runs in which the following condition is met at every move:

Run condition 1 For every Location ¢, if £.nextOwner.def?, then £.nextOwner.loc = ¢ and
£.nextOwner.waiting?.

Finally, in order to remain faithful to Gao and Sarkar’s description, we restrict our attention to runs in which
acquires and releases come in matching pairs.

Run condition 2 If a ProcAgent p acquires at a move A, and releases after A,, then there is a move R,
after A, at which p releases such that p does not acquire in (Ap, Rp).

Run condition 3 If a ProcAgent p releases at a move R,, then there is a move Ay, before Ry, at which p
acquires such that p does not release in (Ap, Rp).

LCy: Processor Agent Module

The behavior of a processor agent is presented as an ASM module in Fig. 3, where the general behavior is
as follows: based on the current opType, the actions specified by an appropriate abstract rule (Read, Write,
Acquire, or Release) are performed. Note that these rules are redefined in §3, giving us a complete ASM
model LC),.,,- A different set of definitions for these same rules then appears in §4, resulting in a distinct
ASM model LC,p.

A ProcAgent may begin performing operations only when its associated location has been initialized.
While an operation is executed, the operation to be performed in the next step is obtained through the rule
Get next operation, which simply consults the environment to determine what should be done next. Note
that a processor agent may update its op Type attribute to undef. In this case, it temporarily stops performing
memory operations but continues to execute its program, executing Get next operation until the resulting
opType is “well-defined” (non-undef).

The acquire case is slightly different because a processor agent must first wait for ownership of the location.
Thus, execution of the ProcAgent module with opType = acquire does not change opType until the location
has been acquired (i.e., Self.loc.owner = Self). As for the release case, it is Run Condition 3 that ensures that
the releasing agent indeed has ownership of the location, so it is correct to release ownership (i.e., update
Self.loc.owner to undef).

module ProcAgent:
if Self.loc.initialized? then
case Self.opType of
read: Read
write: Write
acquire: Acquire
release: Release
undef: Get nezt operation

rule Read:
Get nezt operation

rule Write:
Get nezt operation

rule Acquire:
if Self.loc.owner # Self then Self.waiting? := true
else Get next operation

rule Release:
Self.loc.owner := undef
Get nezt operation

rule Get next operation:
Self.opType := Self.nextOpType

Fig. 3. Module for processor agents (ProcAgent).

LCy: Ownership Agent Module

module OwnAgent:

if Self.loc.owner.undef? and Self.loc.nextOwner.def? then
Self.loc.nextOwner.waiting? := false
Self.loc.owner := Self.loc.nextOwner

Fig. 4. Module for ownership agents (OwnAgent).

Figure 4 contains the module for ownership agents. If the location associated with the agent currently
has no owner and nextOwner is defined, then according to Run Condition 1, the processor agent indicated
by nextOwner is currently waiting to gain ownership of the location. Therefore the ownership agent grants
ownership to the processor agent, updating its waiting? status to false and making it the owner. Note that
the waiting? attribute’s only role is to allow this interaction with the OwnAgent: once a ProcAgent updates
its waiting? attribute to true, only the appropriate OwnAgent can update it to false. The same is true of the
owner attribute: once an OwnAgent updates it to a particular ProcAgent p, only that ProcAgent can change
it (when releasing the location).

3 The LC Memory Model

In the previous section, we described a generic framework — in terms of abstract Read, Write, Acquire
and Release rules — that provides the top-level description of both the memory consistency model (LC)1m,)

and the cache protocol model (LC.p). In this section we present a complete specification for the LC model,
LC,m, by defining the transition rules according to the memory model specifications.

The state of a memory system is determined entirely by the operations that have been performed upon
the system. Following Gao and Sarkar [9], we view the state of a memory system as a history of events (i.e.,
instances of operations) that modify the memory system state. These events are organized according to a
partial order relation. The following information is recorded for each event: its type (read, write, acquire,
release), the agent that generated it (its issuer), and the location on which it was performed.

Events are temporally ordered by a relation <. Each processor must act as if it observed the events in
an order compatible with <. When a processor performs an operation, an event is added to the history, and
< is updated accordingly. In practice, the memory system does not maintain such a history, but this view is
useful for thinking of consistency models in an implementation-independent way. How < is updated depends
on the consistency model adopted. For instance, SC would require a total order of events, common to all
processors. On the other hand, in a relaxed model like LC, a partial order is sufficient.

For any memory model, a key question is: what value should be returned when a processor performs a
read? For a strong memory model, there is a unique value to be returned, the value written by the most
recent write operation. However, when a weaker memory model is used, there may be more than one value
associated with a single location at a given time. In such models, a read operation is thus associated with a
set of values.

A specification of a memory consistency model can thus be characterized by two main features:

— What is the precedence relation between a new event and other events already recorded in the history?

In the case of LC, this question is answered as follows. A new write, acquire, or release event e by a
processor agent p on a location £ is ordered so that it succeeds any event already issued by p on £. In
other words, the set of events by p on £ is linearly ordered. Furthermore, since the history is a partial
order and < is transitive, the new event also succeeds any event e’ < e, including events issued by other
processor agents.
In the case of a new acquire event a, the partial order is updated further. The latest release event issued
on ¢ (by any processor agent)? precedes a, along with any events that precede that release. This release
could have been issued by any processor agent, not necessarily the issuer of the new acquire. Hence, it
is through acquires that events issued by different processor agents are ordered.

— Which values are associated with a new read event?

In LC, when a processor agent p issues a read on a location £, any write event on ¢ that has not been
“overwritten” by another write event has its value associated with the new read event. We formalize this
notion as follows. Let e be the last event issued by p; then according to the LC model, write event w is
readable by p if and only if there is no write event w’ such that w < w’ < e. This can be true of a write
event w in either of the following ways:

e If w precedes e and w is “recent” in the sense that there is no intervening write event between w

and e, w’s value is readable.
e Alternatively, if w is simply unordered with respect to e, w’s value is also readable.?

Our specification differs from Gao and Sarkar’s description in a few respects. First, we model a read as a
single-step operation and we do not place read events in the history. Second, our rules ensure that < remains
a transitive relation throughout the course of the system’s execution.

LC,,m: Universes, Attributes, and Relations

We define universes ReadEvent, WriteEvent, AcquireEvent and ReleaseEvent to represent the sets of events of
various types, and the universe Event to refer to the union of these various sets. Each Event has an issuer
attribute (the agent that issued the event). A WriteEvent also has a val attribute indicating the value written.

% Note that there is at most one latest release for £ at any given time, since (as pointed out in §2 and as formalized by
Run Condition 3) a processor agent only releases £ if it has (exclusive) ownership of £. Moreover, for each location
the initializer agent issues a release.

3 Note that if w is unordered with respect to e, then the associated write has been performed by another processor
agent ¢, and p and ¢ have not synchronized with proper acquire/release operations. Thus the value of w could have
been written to memory at an arbitrary moment, which is why it must be considered readable by p.

Function Profile

e.issuer Event — ProcAgent U InitAgent
w.val WeriteEvent — Value
p.latestEvent ProcAgent — Event
{.latestRelease Location — ReleaseEvent

i.initWrite InitAgent — WriteEvent
reads?(rd,v) ReadEvent x Value — Boolean
e<e Event x Event — Boolean

Fig. 5. Additional attributes and relations for LC,m, .

We introduce attributes to maintain the most recent events issued. Each processor agent has a latestEvent
attribute (the most recent event issued by the agent) and each location has a latestRelease attribute (the
most recent release issued on the location).

Finally, we define two key relations, which are both empty initially:

— reads?(rd, v) indicates whether value v can be read at ReadEvent rd. The set of values that can be read
by rd is thus {v|reads?(rd,v)}.
— e < ¢’ represents the partial order among memory events.

Attributes and relations associated with events and with locations are presented in Fig. 5.

Terminology

The following terms refer to the issuing of events in a run of LC),,.

Definition An event e with e.issuer = p (for some ProcAgent p) is a p-event.

Definition If a ProcAgent p makes a move Rd that creates a ReadEvent rd, we say that p issues a read
event rd at Rd. (Similarly for write, acquire, and release.)

Definition If a ProcAgent p reads at a move Rd and readOK?(w,p) for a WriteEvent w, we say that p
reads w at Rd. We also say that p reads value w.val at Rd.

LC,,m: Conditions on Runs

We restrict attention to runs in which the following conditions are true in the initial state of LC,,:

Init condition 3 For every Location £, {.latestRelease.undef?.

Init condition 4 For every ProcAgent p, p.latestEvent.undef?.

LC,,m: Terms and Transition Rules

The rules for the non-read operations by processor agents in LC,,, are given in Fig. 6, where in each case
a new event of the appropriate type is created whose issuer is Self, i.e., the agent that executes the rule and
generates the event.

The rule for read operations is given in Fig. 7. The term readOK?(w, p), also defined in Fig. 7, determines
whether the write value of WriteEvent w is readable for ProcAgent p. For the value of WriteEvent w to be
readable by processor agent p, w must be a write to the appropriate location, and there must be no WriteEvent
w' that intervenes between w and the last event issued by p.

The set of values that can be read by a new ReadEvent is specified by updating the reads? relation. Any
write event whose value is considered readable (according to readOK?) is in the set. For all non-read events,
< is updated to account for the newly created event:

rule Write:
extend WriteEvent with w
w.issuer := Self
w.val := Self.writeVal
Order w after Self.latestEvent and its predecessors
Self.latestEvent := w
Get next operation

rule Acquire:
if Self.loc.owner # Self then Self.waiting? := true
else
extend AcquireEvent with a
a.issuer := Self
Order a after Self.latestEvent and its predecessors
Order a after Self.loc.latestRelease and its predecessors
Self.latestEvent := a
Get next operation

rule Release:
extend ReleaseEvent with r
r.issuer := Self
Order r after Self.latestEvent and its predecessors
Self.latestEvent := r
Self.loc.latestRelease := r
Self.loc.owner := undef
Get next operation

rule Order e after d and its predecessors:
if d.def? then
d < e = true
do-forall c: Event: ¢ < d
c<e:= true

Fig. 6. LC,,., rules for write, acquire and release operations.

rule Read:
extend ReadEvent with rd
rd.issuer := Self
do-forall w: WriteEvent: readOK?(w, Self)
reads?(rd, w.val) := true
Get nezt operation

term readOK?(w, p):
w.issuer.loc = p.loc and not (Jw’: WriteEvent) w < w' < p.latestEvent

Fig. 7. Rule and auxiliary term for read operation in LCp,.

— The new event succeeds its issuer’s latest event (as well as all predecessors of that event).

— Synchronization between processors imposes additional ordering constraints. In LC, these synchroniza-
tions occur exclusively through acquire and release operations. Thus a new AcquireEvent succeeds the
latest release event on the location being acquired — which, by Run Conditions 2 and 3, is sure to exist
and is sure to have been performed by the appropriate ProcAgent — as well as all predecessors of the
latest release.

The rules presented in Figs. 6-7 refine the processor agent modules of LCj. Along with the ownership
agent module in Fig. 4, they complete LC},.,,, the ASM representation of the LC model.

4 The LC Cache Protocol

We now present LC,,, a formal model of the LC cache protocol, in which we make various (abstract)
assumptions about how values can be stored. In particular, we assume that each processor is equipped with
its own cache, and that there is a set of memory areas collectively called main memory, distinct from any
processor’s cache. Each location has a unique value stored in main memory. Processors store values for
reading and writing in their caches. When a processor writes to a location, the new value is written to the
processor’s cache. Eventually this value is also written back to the main memory. Thus, in this model, agents
update cache entries and main memory locations instead of a history of events.

At any time, each cache entry is either valid or invalid, and a valid entry is either clean or dirty. A valid
entry has a readable value, while an invalid one does not. A clean entry has a value from main memory
that has not been overwritten; a dirty entry has a value written by the local processor that has not been
written back to the main memory. When all the cache entries are occupied, a write or read of a location
with no entry in the cache requires the removal (or ejection) of an existing location from the cache. A cache
replacement policy is used to select which location should be removed from the cache.

A writeback to main memory is not a single-step action. There is some delay between the initiation of a
writeback (when the value stored in the cache is sent to the memory) and the completion of the writeback
(when the value is finally recorded in memory). Writebacks may be completed concurrently with actions by
processor agents. To represent the process of writing back values to main memory, we introduce a universe
of writeback agents. Such a writeback is initiated by generating a writeback agent and by copying the dirty
cached value to the writeback agent. The writeback is completed when the writeback agent copies this value
to main memory.

Our view of writebacks as multi-step actions requires us to clarify the meaning of a release operation. One
effect of a release is to make the last write by the releaser available to other processor agents. This is why a
release initiates a writeback in the case of a dirty cache entry. But since a writeback cannot be performed
in a single step, the following question arises: is it sufficient to initiate the writeback before completion
of the release (i.e., give up ownership and proceed to the next operation), or must the writeback also be
completed? Gao and Sarkar [9] indicate the latter. This implies that a releasing processor agent has to wait
for a writeback to complete before proceeding to the next operation [9].

The actions for each operation are as follows. When a processor agent issues a read to a location that
has no entry in the cache, the read will add a value to the cache. If the location’s most recent writeback
agent has a value whose write back operation has not yet completed, the value of that writeback is added
to the cache. Otherwise the valued stored in main memory is added to the cache. A write generates a value,
caches it, and updates the status of the cache entry to dirty. An acquire of a location invalidates the cache
entry for the location, unless the entry is dirty (in which case the last value written by the processor remains
in the cache because it is a legal value for subsequent read operations). A release of a dirty location initiates
a writeback of the value stored in the cache, then waits until the value is transferred to main memory. Only
when that writeback and all previous ones are completed does the release terminate.

Note that the LC cache protocol only requires two inexpensive operations to enable synchronization
between multiple processors: the self-invalidation of cache entries that are not dirty for the Acquire rule,
and the writeback of a dirty cache entry for the Release rule. Therefore no expensive invalidation or update
requests need to be sent across the network under the LC cache protocol.

LC,p: Attributes

In LC.p, a processor agent p is also associated with a processor P and a location £. For each processor agent
p, the attribute cacheVal gives the value in p’s cache for location ¢ (if any such value exists), and cacheValid?
and cacheDirty? give the valid/invalid status and dirty /non-dirty status of the cache entry.

In order not to tie our model to any specific cache replacement policy, the cache entry to be ejected (if
any) is determined by a monitored function, the attribute ejectee. For each processor agent p, ejectee selects

10

Function Profile

p.cacheVal ProcAgent — Value
p.cacheValid? ProcAgent — Boolean
p.cacheDirty? ProcAgent — Boolean
p.ejectee ProcAgent — ProcAgent
p.latestWB ProcAgent — WritebackAgent
£.MMVal Location — Value

wb.issuer WritebackAgent — ProcAgent
wb.val WritebackAgent — Value
wb.active? WritebackAgent — Boolean

Fig. 8. Additional attributes for LC¢,.

another processor agent for the same processor which also has a cache entry; the cache entry of p.ejectee is
then to be ejected in order to make room for p’s entry.

The attribute MMVal is associated with each location ¢ and represents the value currently stored in the
main memory for £. The new universe WritebackAgent represents the agents charged with writing values
to main memory. The attribute latestWB associated with each ProcAgent p gives the writeback agent most
recently generated by p. We associate three attributes with the WritebackAgent universe: issuer, which gives
the processor agent that generated the writeback agent; val, which gives the value to write to main memory;
and active?, which determines whether a given writeback agent has yet to write its value to main memory.
Figure 8 summarizes the attributes used to model caches, writeback agents, and the main memory.

Terminology

In LC,.p, releases generally are multi-step actions. Therefore, we must reformulate what it means for a
processor agent to perform a release. In our terms, a processor agent first prepares to perform a release by
initiating a writeback of its dirty cache entry and waiting for the writeback to complete. It only performs
the release (relinquishing ownership) after these actions have completed. We formalize this as follows.

Definition If a ProcAgent p makes a move PR, at which p.opType = release and
(p.cacheDirty? or p.wb.active?), we say that p prepares to release at PR,,.

Definition If a ProcAgent p makes a move R, at which p.opType = release and
not (p.cacheDirty? or p.wb.active?), we say that p releases at R,.

We use the following terms to characterize read actions and cache maintenance actions in pcp.

Definition If a ProcAgent p reads at a move Rd,, we say that p reads value v at Rd,, where v = p.cacheVal
if p.cacheValid? and v = p.loc. MMVal otherwise.

Definition Let p be a ProcAgent that reads at a move Rd,,.
— Ifnot p.cacheValid? and not p.latestWB.active?, we say that p performs a miss read at Rd,;
— Otherwise, if p.cacheDirty? or p.latestWB.active?, we say that p performs a dirty read at
Rd,;
— Otherwise, we say that p performs a clean read at Rd,.
Definition Let p be a ProcAgent, and let wb, be a WritebackAgent for which wb,, .issuer = p.

— If at a move I,, p.cacheDirty? is updated from true to false, we say that a writeback of p’s
cache entry is initiated at I,.*

* Note that a writeback may be initiated by p itself (through a release) or by another ProcAgent (through a read or
write that triggers an ejection of p’s cache entry).

11

— If at a move C),, wb,.active? is updated from true to false, we say that a writeback of p’s
cache entry is completed at Cp.

— Let I, be a move at which a writeback of p’s cache entry is initiated and wb,, is generated.
Let C}, be a move of wb,, at which a writeback of p’s cache is completed. Then we say that
the writeback initiated at I, is completed at C).

LC,p: Conditions on Runs

We put the following restrictions on initial states of LC.,.

Init condition 5 For every ProcAgent p, not (p.cacheValid? or p.cacheDirty?).

Init condition 6 The WritebackAgent universe is empty.

The attribute ejectee must take on reasonable values during a run. We restrict attention to runs that obey
the following conditions:

Run condition 4 For every ProcAgent p, if p.ejectee.def?, then p.ejectee.proc = p.proc and
p.ejectee.cacheValid?.

Run condition 5 For every ProcAgent p, if p.ejectee.def?, then p.ejectee.opType # read and
p.ejectee.opType # write.

LC,p: Transition Rules

rule Eject cache entry of p:
p.cacheValid? := false
if p.cacheDirty? then

Initiate writeback on cache entry of p

rule Initiate writeback on cache entry of p:
p.cacheDirty? := false
extend WritebackAgent with wb,

wby.val := p.cacheVal

wby.active? := true

p.latestWB := wb,

module WritebackAgent:

if Self.active? then
Self.loc.MMVal := Self.val
Self.active? := false

term p.allWritebacksCompleted?:
(Vwb,: WritebackAgent: wb,.proc = p) not wb,.active?

Fig. 9. LC., rules for cache maintenance.

The rules and terms associated with cache ejection and writeback are presented in Fig. 9. The ejection of
a cache entry requires an invalidation of the cache entry, and a writeback if the entry is dirty. The writeback

12

initiation updates the cache entry’s status to non-dirty, generates a writeback agent, and passes the cached
value to the writeback agent. The writeback agent module is simple: a writeback agent makes a single move
in which it copies its value to main memory.

rule Read:
if not Self.cacheValid? then
if Self.allWritebacksCompleted? then Self.cacheVal := Self.loc. MMVal
else Self.cacheVal := Self.latestWB.val
Self.cacheValid? := true
if Self.ejectee.def? then Eject cache entry of Self.ejectee
Get next operation

rule Write:

Self.cacheVal := Self.writeVal

Self.cacheValid? := true

Self.cacheDirty? := true

if Self.ejectee.def? then Eject cache entry of Self.ejectee
Get next operation

rule Acquire:

if Self.loc.owner # Self then Self.waiting? := true

else
if Self.cacheValid? and not Self.cacheDirty? then Self.cacheValid? := false
Get next operation

rule Release:
if Self.cacheDirty? then Initiate writeback on cache entry of Self
elseif Self.allWritebacksCompleted? then

Self.loc.owner := undef

Get next operation

Fig.10. LC., rules for read, write, acquire and release operations by processor agents.

The rules for read, write, acquire, and release operations by processor agents are presented in Fig. 10. If
there is no valid cache entry, reading involves fetching a value from the last writeback agent or from main
memory. Writing involves storing a new value in the cache.

In the case of a read or write, a new cache entry may be needed; therefore the attribute ejectee is checked
to determine whether a cache entry is to be ejected to make room for the new one. The rules for acquire
and release operations are simple. An acquire invalidates a clean cache entry. A release initiates a writeback
of the cache entry, if it is dirty. Only when all writebacks on the cache entry are completed does the release
terminate.

5 LC,., Obeys LC,,n,

In this section, we outline the proof that shows that the cache protocol described by LC,, implements the
abstract model described by LC),,. For a detailed proof, the reader should consult [15]. More precisely, our
goal is to show that any value read in an execution of LC,, is also a legal value in an equivalent execution
of LC, . In a run of LC,,,, for each read operation a set of legal readable values is computed, while in the
run of LC., a single value is read at each read operation. We consider runs of LC),,, and LC,, in which the
memory operations that are performed and the order in which they are performed are identical. We then
show that for each read operation of LC,p, the single value read is in the set of readable values computed at
the corresponding move of LCy,;, s run.

13

Equivalent Runs of LC,,,, and LC.,

We must first start by considering what it means for runs of LC),,, and LC,, to be equivalent. An ASM run
consists of a partial order of moves performed by agents, with some agent executing its associated module
at each move. Informally, for runs of the two models to be equivalent, the system components (locations and
processors) must be the same, and the same agents must make the same moves in the same order. More
precisely, the following conditions must be met:

— The static information (e.g., number of processors, locations and agents) must be the same in the two
runs.

— The runs must have the same partial order of moves.

— For each move, the environment in the two runs must produce the same results for the monitored
functions nextOpType, writeVal, and nextOwner.

We formalize the above as follows:

— Let o be a state of LC)y,, or LCp,. Then o~ is the reduct of o to the static and monitored functions
common to LCypym, and LC,, (i.e., the static and monitored functions of LCj, introduced in §2).
— A state gy of LC),m, is equivalent to a state g, of LC,), if o, are isomorphic.

m and o,
Let pf, = (15, Qep,05,) be arun of LC,,. p7, is a partially ordered set of moves, a.,, is a function mapping
moves to agents (i.e., gives the agent performing a move), and o7, is a function mapping finite initial segments
of moves to states of LC., (the state resulting from each finite initial segment of moves).

In the proofs, we need to consider a sequential “equivalent” of a distributed run rather than the run
itself. According to the ASM Lipari guide [11], we lose no generality by proving correctness of an arbitrary
linearization of a run. Hence, we can consider a linearization pep= (Hep, Qep, Tep) Of ply- fiep is a linearly
ordered set of moves (an arbitrary interleaving) that has the same moves as uy, and preserves all the ordering
of uy,. Since iy is a sequence, every finite initial segment of iy is a prefix of uy,, so o), is a restriction of
o, to finite prefixes of uy,.

Let prmm= (lmm> ¥mm, Emm) be a run of LCp,, that is equivalent to a run of LC,,, as defined below.
Informally, in the runs py,m, and pgp, the same agents perform the same operations in the same order; only
the implementation details differ: in LC,,,, the partial order < is updated, while in LC., it is the cache
entries and main memory locations that are updated.

More formally, a run p,,m, can be considered equivalent to a run p., as follows. First of all, it should be
noted that fewer moves are made in p,, than in p.,: WritebackAgents do not exist in py,,, and so do not make
moves; a release in p,., is always a single-move action (there is no need to prepare for a release). We thus
restrict fopmm to the moves of 1., that are neither writeback-agent moves nor release preparation moves. More
formally, pemm = prep\ {M: acp(M) = WritebackAgent}U {M :a.p(M) prepares to release at M }). Likewise,
we define .y, as the restriction of acp to moves of fiy,,. Finally, for each prefix X of pmm, 0mm (X) is equiv-
alent to ., (X). Since the only sources of nondeterminism in LC,,,, are the monitored functions nextOpType,
writeVal and nextOwner, and these are identical in p.p and pmm, Pmm is unique up to isomorphism.

Lemmata: Ordering of Events in p.,m,

The proof that LC., implements LC),y,, hinges on two important properties of the ordering of events in
Pmm, stated in the following lemmata. Lemma 1 states that the events issued by a ProcAgent are linearly
ordered by <; whenever a processor agent issues two events d and e in sequence, d becomes a predecessor
of e. This can be proved using a straightforward induction on the number of p-events issued between moves
D, and E,,.

Lemma 1 In ppy,, let p be a ProcAgent, let d, be a p-event issued at a move D), and let e, be a p-event
issued at a move E, after Dy,. Then d, < ep.

14

The next property concerns how events issued by different agents in py,,,, can become ordered with respect to
each other. In determining whether a write event w, by one agent p is readable by another agent ¢ (assuming
that p and ¢ operate on a common location), it is necessary to determine whether w, precedes ¢’s latest
event (according to <). If not, w, is readable; if so, wy is only readable if there is no write event intervening
between w,, and ¢’s latest event. Lemma 2 asserts that

— a p-write becomes a predecessor of a g-event if p releases after the write and ¢ then acquires;
— this is the only way that a p-write can come to be ordered with respect to a g-event.

Lemma 2 In pym, let p and g be distinct ProcAgents or for which p.loc = g.loc. Let W), be a move at
which p issues a WriteEvent wy,, and let Rd, be a move after W, at which q issues a ReadEvent. Then
wp < q.latestEvent at Rd, if and only if

— p issues a ReleaseEvent 7, at a move Ry, in the interval (Wp, Rd,) and
— q issues an AcquireEvent a, at a move A, in the interval (R,, Rdy).

Lemmata: Properties of Read Operations

Lemmata 3-5 concern the three types of read operation in p.,: dirty, miss, and clean. For a read operation of
any type in pp, we establish that the value read is one of the (possibly many) values read at the corresponding
move of prm-

Lemma 3 In pgp, let Rdf,) be a move at which a ProcAgent p performs a dirty read of a Value v. Then in
Pmm, P also reads v at Rdf,).

Proof outline. An examination of p., shows that p reads the last value it wrote, either by consulting the
cache or its last writeback agent. By Lemma 2, this write is unreadable by p in p,, if and only if: (1) p
releases its location ¢; (2) some other processor agent acquires ¢, writes, and then releases; and then (3) p
acquires. However, a further examination of p., shows that p does not release. Therefore, v is a readable
value in pyp,. O

Lemma 4 In pgp,, let Rd{‘,/[be a move at which a ProcAgent p performs a miss read of a Value v. Then in
Pmm, P also reads v at Rdﬁ/l.

Proof outline. Let £ be the location associated with p. An examination of p., shows that p reads the last
value of £ written back to main memory (by some q).

If p = ¢, the write is unreadable in p,,,, only if p performs another write before the read. But an
examination of p., shows that p does not do this, so the write is readable in pp,,.

If p # ¢, Lemma 2 implies that the write is unreadable in p,,, if and only if: (1) g releases and then (2) p
acquires, and one of the following happens: (3a) g writes again before releasing; (3b) p writes after acquiring;
or (3c) some other processor agent acquires ¢, writes, and then releases. But an examination of p., shows
that this does not happen. Therefore, v is a readable value in py,p,. O

Lemma 5 In p.p, let Rdg be a move at which a ProcAgent p performs a clean read of a Value v. Then in
Pmm, P also reads v at Rdg.

Proof outline. An examination of p.p,shows that p reads a value from the cache, and this value was placed
there as a result of either (A) a miss read (of a value written by some ¢) or (B) the last write by p.

In case (A), Lemma 2 implies that the write is unreadable in p,,, if and only if: (1) ¢ releases the
location ¢ and then (2) p acquires, and one of the following happens: (3a) ¢ writes again before releasing;
(3b) p writes after acquiring; or (3c) some other processor agent acquires £, writes, and then releases. But a
further examination of p., shows that this does not happen.

In case (B), Lemma 2 implies that the write is unreadable in p,,, if and only if: (1) p releases and then
(2) p acquires, and in the interim (3) some other processor agent acquires ¢, writes, and then releases. But
an examination of p., shows that p neither releases or acquires in p.p.

In either case, v is a readable value in py,p,. O

15

Theorem: LC., Obeys LC,,.,,
Finally, we can state our main theorem, which follows directly from the previous lemmas:

Theorem 1 Let Rd, be a move of p.p, at which a ProcAgent p reads a Value v. Then at Rd, in pym, p also
reads v.

6 LC,, is Strictly Stronger Than LC,,,,

In this section, we want to show that LC., does not allow certain behavior allowed by LC,,. In particular,
we give an execution of LC),, in which a particular value is read, value which cannot be read in any
equivalent run of LC.p,.

Consider a run py,y, of LC),,, with the following properties. In pp,m,, two distinct ProcAgents p and ¢
operate on a common Location ¢, and no other ProcAgents operate on £. (Other ProcAgents may perform
operations on Locations other than £.) The operations of p and g occur in the following sequence:

Ap: Acquire by p.

Wp: Write by p, that writes the value 1.
R,: Release by p.

W,: Write by g, that writes the value 2.
Ay Acquire by g.

Rd,: Read by gq.

At Rd,, the value 1 is readable according to LCpm, that is, in ppm, ¢ can read the value 1 at move Rd,,.
The value 1 is unreadable at Rd, only if it is overwritten by a write operation that is a successor of W,,.
Such a write cannot exist because: (1) there are no other writes by p; (2) the only acquire is at A4; and (3)
there are no writes after A,.

Then, we show that in any equivalent run of LC.,, 2 will definitely be the (sole) value read at Rd,. There
are two cases:

If ¢’s cache entry is written back after the write (due to an ejection), 2 is written to main memory. By
this time, the value 1 written by p must have already been written back before ¢’s write, since p releases
before W,. So 1 is overwritten by 2 in main memory; since there are no other writes to ¢, there can be no
further writebacks. Therefore ¢ reads 2 from main memory at Rd,.

If ¢’s cache entry is not written back, the value 2 is still present in the cache at Rd,, so ¢ reads 2 from
the cache at Rd,.

i From these two properties, we can state the following theorem.

Theorem 2 There exists a run py;, of LCymin which a read operation Rd returns a value v that cannot
be returned by the same read operation in any equivalent run p., of LC.,.

7 Conclusion

In this paper, we have presented formal specifications for the LC memory model and cache protocol. These
specifications, contrary to the descriptions presented in [8] or [9], have been expressed rigorously. Using these
formal specifications and the notions of sequential and distributed runs, we have then been able to show
that the protocol indeed satisfies the model. In other words, we have shown that, using the LC protocol, any
value returned by a read operation is a value legal according to the LC memory model. In addition, we can
also show that the protocol is stronger than the abstract memory model: certain values that can be read by
the abstract memory model cannot be read by the protocol.

Currently, the ASM methodology has little support for automated verification compared to other tech-
niques. Model checking of ASM specification is an active area of research [4]. An interesting area of further
study for us would be to explore the use of model checking techniques to automate portions of our proof.
Another area of future research is to express other weak memory models and see how these models, and
their associated protocols, differ/compare with our specification of the LC memory model.

16

References

1. S.V. Adve and K. Gharachorloo (1995). Shared memory consistency models: a tutorial. Research Report 95/7,
Digital Western Research Laboratory.

2. B. Bershad, M. Zekauskas and W. Sawdon (1993). The Midway distributed shared memory system. in Proceedings
of the IEEE COMPCON.

3. R.D. Blumofe, M. Frigo, C.F. Joerg, C.E. Leiserson and K.H. Randall (1996). An analysis of DAG-consistent
distributed shared-memory algorithms. In Proceedings of the 8th Annual ACM Symposium on Parallel Algorithms
and Architectures, 297-308.

4. G. Del Castillo and K. Winter (2000). Model checking support for the ASM high-level language. In Proceedings of
TACAS 2000, S. Graf and M. Schwartzbach (editors), LNCS 1785, Springer-Verlag, 331-346.

5. S. Cook and R. Reckhow (1973). Time bounded random access machines. Journal of Computer and System Sciences
7, 354-375.

6. D.E. Culler and J.P. Singh, with A. Gupta (1999). Parallel computer architecture: a hardware/software approach.
Morgan Kaufmann.

7. G.R. Gao. Personal communication.

8. G.R. Gao and V. Sarkar (1994). Location consistency: Stepping beyond the barriers of memory coherence and
serializability. ACAPS Technical Memo 78, School of Computer Science, McGill University.

9. G.R. Gao and V. Sarkar. Location consistency — A new memory model and cache consistency protocol. IEEE
Trans. on Comp., 49(8):798-813, August 2000.

10. K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta and J. Hennessy (1990). Memory consistency
and event ordering in scalable shared-memory multiprocessors. In Proceedings of the 17th Annual International
Symposium on Computer Architecture, 15-26. Also in Computer Architecture News 18(2).

11. Y. Gurevich (1995). Evolving Algebras 1993: Lipari guide. In E. Borger (editor), Specification and Validation
Methods, Oxford University Press, 9-36.

12. P. Keleher, A.L. Cox and W. Zwaenepoel (1992). Lazy release consistency for software distributed shared memory.
In Proceedings of the 19th Annual International Symposium on Computer Architecture, 13-21. Also in Computer
Architecture News 20(2).

13. L. Lamport (1979). How to make a multiprocessor computer that correctly executes multiprocess programs. IEEE
Transactions on Computers C-28(9): 690-691.

14. X. Shen, Arvind and L. Rudolph (1999). Commit-reconcile & fences (CRF): a new memory model for architects
and compiler writers. In Proceedings of the 26th Annual International Symposium on Computer Architecture,
150-161.

15. C. Wallace, G. Tremblay and J.N. Amaral (2001). The Location Consistency memory model and cache protocol:
Specification and verification. Technical Report 01-01, Computer Science Department, Michigan Technological
University.

17

