
Efficient and Precise Datarace Detection for Multithreaded
Object-Oriented Programs

Jong-Deok Choi
IBM T. J. Watson Research Center

jdchoi@us.ibm.com

Keunwoo Lee
Univ. of Washington

klee@cs.washington.edu

Alexey Loginov
Univ. of Wisconsin - Madison

alexey@cs.wisc.edu

Robert O’Callahan
IBM T. J. Watson Research Center

roca@us.ibm.com

Vivek Sarkar
IBM T. J. Watson Research Center

vsarkar@us.ibm.com

Manu Sridharan
MIT

manu@alum.mit.edu

ABSTRACT
We present a novel approach to dynamic datarace detection for
multithreaded object-oriented programs. Past techniques for on-
the-fly datarace detection either sacrificed precision for performance,
leading to many false positive datarace reports, or maintained preci-
sion but incurred significant overheads in the range of 3� to 30�.
In contrast, our approach results in very few false positives and
runtime overhead in the 13% to 42% range, making it both effi-
cient and precise. This performance improvement is the result of
a unique combination of complementary static and dynamic opti-
mization techniques.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Programming; D.1.5
[Programming Techniques]: Object-oriented Programming; D.2.5
[Software Engineering]: Testing and Debugging

General Terms
Experimentation, Languages, Measurement, Performance

Keywords
dataraces, race conditions, debugging, parallel programs, synchro-
nization, multithreaded programming, object-oriented programming,
static-dynamic co-analysis

1. INTRODUCTION
A datarace occurs in a multithreaded program when two threads

access the same memory location with no ordering constraints en-
forced between the accesses, such that at least one of the accesses
is a write. In most cases, a datarace is a programming error. Fur-
thermore, programs containing dataraces are notoriously difficult
to debug because they can exhibit different functional behaviors
even when executed repeatedly with the same set of inputs and the
same execution order of synchronization operations. Because of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PLDI’02, June 17-19, 2002, Berlin, Germany.
Copyright 2002 ACM 1-58113-463-0/02/0006 ...$5.00.

the detrimental effects of dataraces on the reliability and compre-
hensibility of multithreaded software, it is widely recognized that
tools for automatic detection of dataraces can be extremely valu-
able. As a result, there has been a substantial amount of past work
in building tools for analysis and detection of dataraces [1, 13, 15,
17, 18, 21, 24, 27].

Most previous dynamic datarace detection techniques have been
relatively precise, in that most races reported correspond to truly
unsynchronized accesses to shared memory. However, these de-
tectors incur order-of-magnitude overheads in the range of 3� to
30� [13, 18, 17, 24]. Recent approaches reduce the overhead
of datarace detection, but at the cost of decreased precision. For
example, monitoring dataraces at the object level rather than the
memory-location level reduced overheads for datarace detection to
the range of 16% to 129% [21] but resulted in many spurious race
reports (see Section 9 for details).

This paper presents a novel approach to dynamic datarace de-
tection for multithreaded object-oriented programs which is both
efficient and precise. A key idea in our approach is the weaker-
than relation (Section 3), which is used to identify memory ac-
cesses that are provably redundant from the viewpoint of datarace
detection. Another source of reduction in overhead is that our ap-
proach does not report all access pairs that participate in dataraces,
but instead guarantees that at least one access is reported for each
distinct memory location involved in a datarace (see Section 2.5 for
details). Our approach results in runtime overhead ranging from
13% to 42% which is well below the runtime overhead of previ-
ous approaches with comparable precision. This performance is
obtained through a combination of static and dynamic optimization
techniques which complement each other in reducing the overhead
of our detector. Furthermore, almost all the dataraces reported by
our system correspond to actual bugs, and the precise output of our
tool allowed us to easily find and understand the problematic source
code lines in our test programs.

Figure 1 shows the overall architecture of our approach. The
first phase is an optional static datarace analysis which produces
a static datarace set i.e., a (conservative) set of statements that are
identified as potentially participating in dataraces. Any statement
that does not belong to the static datarace set is guaranteed to never
cause a datarace during execution. If this phase is omitted, then the
static datarace set defaults to all statements that contain memory
accesses.

The second phase is instrumentation, whose goal is to insert trace
statements at program points identified in the static datarace set.
This insertion process can be optimized, in which case no instru-
mentation is inserted at redundant trace points, i.e., program points

258

dynamic datarace setstatic datarace set

Program (Optimized)

Instrumentation

Static

Analyzer

executable
access events

+ Cache
Optimizer
Runtime Runtime

Detector

instrumented

Execution

Program

Figure 1: Architecture of Datarace Detection System

whose access events can be ignored since other (non-redundant)
trace points will provide sufficient information for datarace detec-
tion. The result of the second phase is an executable that is ex-
tended with code to generate access events during program execu-
tion.

The third phase is an optional runtime optimizer, which uses a
cache to identify and discard redundant access events that do not
contain new information. Finally, the runtime detector examines
the access events and detects dataraces during the program execu-
tion.

The instrumentation and runtime detector phases guarantee the
precision of our approach, whereas the optimization phases deliver
the efficiency that makes our approach practical. Our results show
that it is necessary to combine all the optimization phases (static
analysis, optimized instrumentation, and runtime optimizer) to ob-
tain maximum performance. Our approach contrasts with purely
ahead-of-time (static) datarace detection, which attempts to report
dataraces that may occur in some possible program execution [1,
15, 27]. Instead, our approach detects dataraces on-the-fly, usually
the most convenient mode for the user. If so desired, our approach
could be easily modified to perform post-mortem datarace detec-
tion by creating a log of access events during program execution
and performing the final datarace detection phase off-line.

The rest of the paper is organized as follows. Section 2 defines
the conditions under which a datarace may occur and summarizes
the problem statement addressed by this work. Section 3 describes
the algorithm used by the runtime datarace detector. Even though
it is the last phase in Figure 1, we describe the runtime datarace
detector phase first because it is a mandatory phase and it provides
necessary background for explaining the optimization phases. Sec-
tion 4 presents the caching mechanism and key optimizations that
the runtime optimizer uses to identify and delete redundant access
events. Sections 5 and 6 respectively describe the static analysis
and optimized instrumentation phases shown in Figure 1. In Sec-
tion 7, we discuss our implementation of the ownership model [21]
and its interaction with the weaker-than relation. Section 8 con-
tains our experimental results obtained by executing a set of multi-
threaded Java programs on a prototype implementation of our ap-
proach. Finally, Section 9 describes related work, and Section 10
contains our conclusions.

2. DATARACE CONDITIONS AND PROB-
LEM STATEMENT

In this section, we first formalize the notion of dataraces, and
give an example. We then formalize the problem of dynamic datarace
detection and describe the set of dataraces we guarantee to detect
and report.

2.1 Datarace Conditions
We define a datarace as two memory accesses which satisfy the

following four conditions: (1) the two accesses are to the same
memory location (i.e., the same field in the same object 1) and
at least one of the accesses is a write operation 2; (2) the two ac-
cesses are executed by different threads; (3) the two accesses are
not guarded by a common synchronization object (lock); and (4)
there is no execution ordering enforced between the two accesses,
for example by thread start or join operations. We call these
conditions the datarace conditions, and observe that they are dif-
ferent from datarace conditions assumed in past work on datarace
detection for fork-join programs [1, 8]. In general, our approach
is applicable to any monitor-style synchronization primitives sup-
ported by the programming language, operating system, or user.

2.2 Example
Figure 2 shows an example program with three threads: main,

T1, and T2. Statements are labeled with statement numbers such
as T01, the first labeled statement in the main thread. We will
also use the notation stmt:expr to denote a field access expres-
sion within a statement. For convenience, statements that are not
relevant to dataraces have been elided from this example. Note
that thread main performs a write access on field x.f at statement
T01, before creating and starting threads T1 and T2.

Thread T1 calls method foo which contains three accesses to
object fields: a write access T11:a.f, a write access T14:b.g,
and a read access T14:b.f. Thread T2 calls method bar which
contains a write access, T21:d.f. Let us first assume that object
references a, b, d, and x all point to the same object. All the
accesses to the f field in the example will be to the same memory
location, thus every pair of them except for (T14:b.f, T14:b.f)
satisfies the first of the datarace conditions.

In addition, assume that object references T10:this, T13:p,
and T20:q all point to different objects during that execution.
Then, no two statement instances belonging to different threads are
guarded by the same synchronization object, satisfying the third of
the datarace conditions. T1 andT2 are different threads without ex-
ecution ordering between them via start or join, satisfying the
second and the fourth of the conditions. Accesses T11:a.f and
T14:b.f thus exhibit a datarace with access T21:d.f. State-
ment T01 does not cause a datarace with the others in the example
because there exists an ordering via start at T04 and T05, not
satisfying the fourth of the conditions.

Our definition of dataraces identifies both actual and feasible
dataraces [20] in a given program execution. This is different from

1We associate only one memory location with all elements of a
given array.
2Under certain memory models, two read accessesmay also gener-
ate a datarace. The framework presented in this paper can be easily
applied to such models by dropping the requirement that at least
one of the accesses must be a write.

259

// THREAD MAIN // CALLED BY THREAD T1
class MainThread { T10: synchronized void foo(...) {

. . . T11: a.f = 50;
public static void main(String args[]) { T12: . . .

. . . T13: synchronized(p) {
T01: x.f = 100; T14: b.g = b.f;

. . . }
T02: Thread T1 = new ChildThread(...); }
T03: Thread T2 = new ChildThread(...);
T04: T1.start(); // CALLED BY THREAD T2
T05: T2.start(); void bar(...) {

. . . T20: synchronized(q) {
} T21: d.f = 10;

} // class MainThread }
}

Figure 2: Example Program with Three Threads.

datarace definitions (as in [13]) that model mutual exclusion using
the happened-before relation, and exclude feasible dataraces from
their definition. For example, let us now assume that T13:p and
T20:q point to the same object (which is different from the ob-
ject pointed to by T10:this). Therefore the two synchronized
blocks in methods foo and bar are protected by the same lock. If
thread T1 acquires the lock before T2, an approach based on the
happened-before relation will record the fact that statement T13
must execute before statement T20. Doing so will lead it to con-
clude that there is a happened-before relation from T11 to T21
(through T13), and that there is no datarace betweenT11:a.f and
T21:d.f. In contrast, our approach reports the feasible datarace
between T11:a.f and T21:d.f since it could have occurred if
thread T2 acquired the lock before thread T1. In this regard, our
definition of dataraces is similar to that of Eraser [24] (a more de-
tailed comparison with the Eraser approach appears later in Sec-
tions 8.3 and 9).

2.3 Thread Start and Join Operations
As the third and the fourth of the datarace conditions indicate,

there are two kinds of inter-thread serialization constructs that can
be used to avoid dataraces — mutual exclusion (synchronized
methods and blocks) and happened-before relations (thread start
and join operations). In this section, we briefly discuss how
start andjoin operations can be handled by a detector based on
mutual exclusion, using some approximations. The rest of the pa-
per will then present our approach to datarace detection by focusing
on mutual exclusion as the sole inter-thread serialization construct.

To precisely model a join operation using mutual exclusion,
we introduce a dummy synchronization object S j for each thread
Tj . The Sj locks are used solely for the purpose of datarace de-
tection, and are not visible to the application. A dummy mon-
enter(Sj) operation is performed at the start of Tj’s execution, and
a mon-exit(Sj) operation is performed at its end. When thread Tj ’s
parent or any other thread performs a join operation on T j , a
dummy mon-enter(Sj) operation is performed in that thread af-
ter the join completes. These dummy synchronizations help the
datarace detection system observe that the operations following the
join cannot execute concurrently with operations in T j .

It is difficult to model start constraints the same way, because
generally one cannot know in advance how many threads will be
started by each thread, or which dummy locks should be held prior
to starting child threads. Instead, we use an ownership model to
approximate the ordering constraints that arise from start oper-

ations. As in [21], we define the owner of a location to be the first
thread that accesses the location. We only start recording data ac-
cesses and checking for dataraces on a location when the location
is accessed by some thread other than its owner. Though approxi-
mate, this approach is sufficient to capture the ordering constraints
that arise in the common case when one thread initializes some
data that is later accessed by a child thread without explicit locking.
(Further details on our use of the ownership model are provided in
Section 7.)

2.4 Datarace Detection
We formally define datarace detection as follows. An access

event e is a 5-tuple (m; t;L; a; s) where

� m is the identity of the logical memory location being ac-
cessed,

� t is the identity of the thread which performs the access,

� L is the set of locks held by t at the time of the access,

� a is the access type (one of fWRITE, READ g) and

� s is the source location of the access instruction.

Note that source location information is used only in reporting and
has no bearing on our other definitions and optimizations. Given
access events (or, simply, accesses) e i and ej , we define
IsRace(ei; ej) as follows:

IsRace(ei; ej) () (ei:m = ej:m) ^ (ei:t 6= ej :t)^

(ei:L \ ej :L = ;) ^ (ei:a = WRITE _ ej :a = WRITE):

A program execution generates a sequence of access events E.
Performing datarace detection on this execution is equivalent to
computing the value of the condition:

9ei; ej 2 E j IsRace(ei; ej):

This definition does not capture the ownership model described
above. Discussion of the ownership model and its effect on our
design and implementation is deferred to Section 7.

2.5 Dataraces Reported
Let FullRace = fhei; ejig be the set of all access pairs that

form a datarace during an execution. Given an execution with
N accesses, any algorithm which attempts to detect all pairs in
FullRacemust have worst-case time and space complexityO(N 2)
(since all possible pairs could be in FullRace), costs that could be

260

prohibitive for a large sequence of accesses. To avoid these costs,
our detection algorithm does not guarantee enumeration of all pairs
in FullRace, although it still performs datarace detection as pre-
viously defined.

For each memory location m involved in a datarace, our detec-
tion algorithm reports at least one access event participating in a
datarace onm. More formally, consider a partitioning ofFullRace
by memory location into MemRace sets:

MemRace(mk) = fhei; eji 2 FullRace j ei:m = ej :m =mkg

We use boolean predicate IsRaceOn(e i;m) to indicate whether
the event ei is in a pair in MemRace(m):

IsRaceOn(ei;m) () 9ej :hei; eji 2MemRace(m):

We now define the set of dataraces reported by our approach:

Definition 1. For each m with non-empty MemRace(m), our
dynamic datarace detector detects and reports at least one access
event e such that IsRaceOn(e;m) = true:

2.6 Debugging Support
We report a racing access e at the moment it occurs in the pro-

gram, and therefore the program can be suspended and its current
state examined to aid in debugging the race. Our algorithm also re-
ports, for some previous access f with IsRace(e;f), f ’s lockset,
and often f ’s thread3.

(see below). Furthermore, our static datarace analyzer discussed
in Section 5 can provide a (usually small) set of source locations
whose execution could potentially race with e. In our experience
this information, combined with study of the source code, has been
enough to identify the causes of dataraces.

To obtain full information about rarely occurring dataraces, a
program record and replay tool such as DejaVu [9] can be used,
where the dynamic detection runs along with DejaVu recording and
the expensive reconstruction of FullRace occurs during DejaVu
replay. DejaVu recording incurs approximately 30% time over-
head.

3. RUNTIME DATARACE DETECTION
In this section, we describe our algorithm for dynamic datarace

detection. Since we do not need to report all races in a given pro-
gram execution, we use two key techniques to decrease the cost
of our algorithm. Our use of the weaker-than relation allows us
to decrease the number of accesses we need to consider and save,
and our representation of the access event history using tries [16]
allows us to efficiently represent and search past accesses.

3.1 The Weaker-Than Relation
Given two past access events e i and ej , if for every future ac-

cess ek , IsRace(ej; ek) implies IsRace(ei; ek), ej need not be
considered when performing datarace detection on future accesses.
Since ei is more weakly protected from dataraces than e j (or pro-
tected equally), we say that ei is weaker than ej (or ej is stronger
than ei). Exploiting the weaker-than relationship between accesses
allows us to greatly reduce the overhead of our datarace detection
algorithm.

We now outline a sufficient condition for dynamically determin-
ing that event ei is weaker-than event ej , by using the memory
location, access type, thread, and lockset information contained in
each event. We add the pseudothread t? to the possible values

3See Section 3.1 for an explanation of why the specific threads
cannot always be reported in our approach.

of e:t for a past access event e stored by our detector. t? means
“at least two distinct threads,” and we set e i:t to t? when we en-
counter some later event ej such that ei:m = ej:m, ei:L = ej:L,
and ei:t 6= ej:t. The intuition behind t? is that once two different
threads access a memory location with the same lockset, any fu-
ture access to that memory location with a non-intersecting lockset
will be a datarace (unless all accesses are reads), independent of
which threads previously accessed the location. Utilizing t? is a
space optimization that simplifies our implementation, but it is also
the reason why we cannot always report the specific thread for the
earlier access in a datarace.

We define a partial order v between two threads t i and tj , and
between two access types a i and aj , as follows:

ti v tj () ti = tj _ ti = t?

ai v aj () ai = aj _ ai = WRITE:

Given these orderings, we can now define the weaker-than partial
orderv for accesses:

Definition 2. For access events p and q,

p v q () p:m = q:m ^ p:L � q:L

^p:t v q:t ^ p:a v q:a:

THEOREM 1 (WEAKER-THAN). For past accessesp and q and
for all future accesses r,

p v q =) (IsRace(q; r) =) IsRace(p; r)):

PROOF. First, p:m = q:m and q:m = r:m implies p:m = r:m:

Second, p:L � q:L and q:L \ r:L = ; implies p:L \ r:L = ;:
Third, p:t v q:t implies that p:t = t? or p:t = q:t: In either case,
p:t 6= r:t since q:t 6= r:t: (A new access r cannot have r:t = t?:)
Finally, p:a v q:a implies p:a = WRITE or p:a = q:a: If p:a =
q:a 6= WRITE; r:a must be WRITE.

Our race detector ensures that if we detect that p is weaker than
q, we at most store information about the weaker of p and q, de-
creasing our time and space overhead 4. In Sections 4 and 6, we
show how the weaker-than relation can also be used to filter events
before they reach the detector.

3.2 Trie-Based Algorithm
In this section, we describe our runtime datarace detection algo-

rithm and its use of tries to represent the event history.

3.2.1 Detection Algorithm
For each unique memory location in an access event observed

by the datarace detector, we represent the history of accesses to
that location using an edge-labeled trie. The edges of the trie are
labeled with identifiers of lock objects, and the nodes hold thread
and access type information for a (possibly empty) set of access
events. The set of locks for an access is represented by the path
from the root of the trie to the node corresponding to that access.

Nodes in our tries have a thread field t and an access type field
a. Internal nodes which have no corresponding accesses are as-
signed access type READ and a special thread value t > (meaning

4In the rare case that our tool reports a spurious datarace, an opti-
mization based on the weaker-than relation could suppress the re-
porting of a real datarace while allowing the false positive report.
Using extra locking inserted by the user to suppress the spurious
report overcomes this deficiency.

261

“no threads”). We define the meet operator u for thread informa-
tion ti and tj and access information ai and aj:

8i: ti u ti = ti; ti u t> = ti; ai u ai = ai

8i:8j: ti u tj = t? if ti 6= tj

8i:8j: ai u aj = WRITE if ai 6= aj

When we encounter an access event e, we first check if there
exists an access ep in the history such that ep v e. This check
is performed through a traversal of the trie corresponding to e:m,
following only edges labeled with lock identifiers in e:L (in depth-
first order). During this traversal, we examine each encountered
node’s access type and thread information to see if it represents
accesses weaker than e, as defined in the previous section. (The
traversal procedure guarantees that the lockset and memory loca-
tion weakness conditions are satisfied.) If we find such a node, then
we can safely ignore e while maintaining the reporting guarantees
described in Section 2. In practice the vast majority of accesses are
filtered by this check.

If the weakness check fails, we check e for dataraces by per-
forming another depth-first traversal of the trie. For each node n
encountered, we have one of three cases:

Case I. The edge whose destination is n is labeled with lock iden-
tifier ln such that ln 2 e:L. In this case, e shares at least one
lock with all the accesses represented by n and its children.
Therefore, there cannot be a datarace with any access repre-
sented by the subtree rooted at n, and we need not search any
deeper in this branch of the trie.

Case II. Case I does not hold, e:t u n:t = t?, and e:a u n:a =
WRITE. In this case we have a datarace, since e:t differs
from some previous thread which accessed e:m, the inter-
section of their lock sets is empty, and at least one access
was a write. We report the race immediately and terminate
the traversal.

Case III. Neither case I nor II holds, in which case we traverse all
children of n.

After checking for races, we update the trie with information
about e. If there is already a noden in the trie whose path to the root
is labeled with the locks e:L, we update n with n:t n:tue:t and
n:a n:a u e:a. If no such n exists then we add nodes and edges
to create such an n, setting n:t e:t and n:a e:a. Finally, we
traverse the trie once more to remove all the stored accesses which
are stronger than the newly-added access.

3.3 Implementation
We have implemented the algorithm in Java, and the code is

straightforward. The algorithm runs online alongside the program.
(The interface between the algorithm and the program is discussed
below.)

Our implementation uses memory addresses to identify logical
memory locations. Garbage collection can move objects to differ-
ent addresses and reuse the same addresses for different objects.
We could respond to garbage collection by augmenting the ob-
ject address information stored in our data structures, but for our
prototype implementation we simply use enough memory so that
garbage collection does not occur.

4. RUNTIME OPTIMIZATION
The algorithm described in the previous section reads an event

stream generated by the running target program. To reduce the

overhead of race detection, we reduce the number of access events
that need to be fed into the detector, using a combination of static
and dynamic techniques. This section describes the dynamic tech-
nique: caching to detect redundant accesses.

4.1 Overview
The previous section describes how an access is discarded if

we have already seen a “weaker” access. Experiments show that
in many benchmarks almost all accesses are discarded this way.
Therefore we make the check for a previous weaker access as ef-
ficient as possible, by introducing caches to record previous ac-
cesses.

There are two caches per thread, one recording read accessesand
one recording write accesses. Each cache is indexed by memory lo-
cation. Whenever the program performs an access to location m,
we look up m in the appropriate cache. The cache design guaran-
tees that if an entry is found, there must have been a weaker access
already recorded by the algorithm, so no further work is required.
If no entry is found, then we send information about the new access
to the runtime detector and also add a corresponding new entry to
the cache.

4.2 Cache Policy
Recall that access p is weaker than access q if p:m = q:m ^

p:Locks � q:Locks ^ p:t v q:t ^ p:a v q:a. We require that
if entry for access p is found in the cache when new access q is
checked, then p is weaker than q.

To guarantee that p:t v q:t, we observe that q:t is simply the
currently executing thread when q occurs. Therefore we use sepa-
rate caches for each thread. Any p found in thread q:t’s cache must
have p:t = q:t. (This also ensures that cache operations do not
require synchronization.)

Because we use separate caches for reads and writes, if we find
entry p when we look up the cache then certainly their access type
is the same, i.e., p:a = q:a.

To ensure that p:Locks � q:Locks, we monitor the set of locks
currently held by each thread. Whenever the program executes
monitorexit to release a lock l, we evict from the cache any
p such that l 2 p:Locks. This ensures that at all times, for every p
in the cache, p:Locks is a subset of the currently held locks. Hence
when q occurs we know p:Locks � q:Locks for all p in the cache.

Note that because Java synchronization blocks are reentrant, a
thread might execute monitorexit but not actually release the
lock becausethe lock had previously been acquired more than once.
We ignore these “nested” locks and unlocks; only the last monito-
rexit on a lock object requires cache entries to be evicted.

Each cache is indexed by memory location alone. Because our
policy guarantees all entries in the cache are weaker than the access
being looked up, we do not actually have to check the thread ID,
access type, or lock set, and they are not stored in the cache entries.

When a thread releases a lock l we need to quickly evict all the
cache entries whose lock sets contain l. We exploit the nested lock-
ing discipline imposed by the Java language (although not by the
bytecode language – we rely on the fact that the bytecode was gen-
erated by a Java compiler). The discipline ensures that at the time
some access generated a cache entry p, if lock l was the last lock
in p:Locks to be acquired, then lock l will be the first of p:Locks
to be subsequently released (“last in, first out”). Therefore for each
lock l currently held by the thread, we keep a linked list of the
cache entries p where l was the last lock in p:Locks to be acquired.
When l is released we evict all the entries on its list from the cache.
The lists are doubly-linked so that individual cache entries can be
quickly removed when they are evicted due to cache conflicts.

262

4.3 Implementation
We use two 256-entry direct mapped caches, one for reads and

one for writes, indexed by memory address. The hash function
multiplies the 32-bit memory address by a constant and takes the
upper 16 bits of the result. The cache code is entirely written in
Java and was executed on the Jalapeño virtual machine [2]. We
ensure that the Jalapeño optimizing compiler inlines all calls to
the cache lookup methods in the user’s program. We also used
Jalapeño-specificmethod calls to ensure that the cache lookup code
is compiled into efficient machine code (e.g., without array bounds
checks). A cache lookup which results in a hit requires ten Pow-
erPC instructions in our implementation.

5. STATIC DATARACE ANALYSIS
The static datarace analysis algorithm formulates datarace anal-

ysis as a conjunction of interthread control flow analysis and points-
to analysis of thread objects, synchronization objects, and access
objects. We use this formulation to compute the static datarace
set, a set of statement pairs that may cause a datarace during some
execution. Statements that are not part of any statement pair in the
static datarace set are non-datarace statements and need not be in-
strumented at all. In this section, we give a brief summary of our
approach to static datarace analysis. A more detailed description
can be found in [11].

We first describe a static formulation of the datarace conditions
(Section 5.1). We then describe the interthread control flow graph
(ICFG) that we use to represent sequential and parallel interpro-
cedural control flow (Section 5.2), and the ICFG-based points-to
analysis that can be used to compute the static formulation of the
datarace conditions (Section 5.3). Finally, we describe an exten-
sion of escape analysis [10, 4, 5, 23] that can be used to improve
the precision of static datarace analysis (Section 5.4).

5.1 Datarace Conditions
For two statements x and y, the datarace conditions defined in

Section 2 can be formulated conservatively as follows for static
analysis5:

IsMayRace(x; y) (= AccMayConflict(x; y) ^

(:MustSameThread(x; y)) ^

(:MustCommonSync(x; y)) (1)

AccMayConflict(x; y) = true if executions of x and y may access
the same memory location, so we use may points-to information
for its computation. For example in Figure 2, we use may points-to
information for object references T11:a and T21:d to statically
determine whether they may access the same memory location dur-
ing some execution.

MustSameThread(x;y) = true if x and y are always executed
by the same thread, so we use must points-to information on thread
objects for its computation. In Figure 2, we use must points-to
information on the thread objects that can run T11 or T21 to stat-
ically determine whether the two statements may be executed by
different threads.

MustCommonSync(x;y) = true if x and y are always synchro-
nized by at least one common lock, so we use must points-to in-
formation on synchronization objects for its computation. In Fig-
ure 2, we use must points-to information on the synchronization
objects pointed to by T10:this and T20:q to statically deter-
mine whether the two statements may be executed under different
synchronization objects.
5For convenience, we ignore the fourth of the datarace conditions
in Section 2, and conservatively assume that it always holds.

It is worth noting that may approximations of MustSameThread
and MustCommonSync cannot be correctly used in conservative
datarace analysis, because the datarace conditions refer to the com-
plements of these sets.

5.2 Interthread Control Flow Graph (ICFG)
The ICFG is a detailed interprocedural representation of a multi-

threaded program in which nodes represent instructions (i.e., state-
ments) and edges represent sequential and parallel control flow.
Each method and each synchronized block has distinguished entry
and exit nodes in the ICFG.

An ICFG contains four types of control flow edges: intrapro-
cedural 6, call, return, and start. The first three types are present
in a standard interprocedural control flow graph. Start edges are
unique to the ICFG, and represent invocations of the start()
method of a Thread object, which starts the thread and invokes
its run() method. All other invocations of a run() method ex-
ecute as part of the calling thread. (Join edges are not included in
the ICFG because they are not needed for the conservative static
datarace analysis performed in our approach.)

Start edges are referred to as interthread edges, while all other
edges in the ICFG are called intrathread edges. The entry node that
is a target of a start edge is called a thread-root node. An ICFG path
without any interthread edges is an intrathread path, and an ICFG
path with one or more interthread edges is an interthread path.

We use the interthread call graph (ICG) as the interprocedural
abstraction of the ICFG, designed for practical and scalable analy-
sis of large programs. An ICG node is created for each method and
each synchronized block in the ICFG. The inclusion of separate
ICG nodes for synchronized blocks is a notable difference between
the ICG and standard call graphs.

5.3 Points-to Analysis
The points-to analysis that we employ for a static datarace anal-

ysis is a flow-insensitive, whole program analysis. In our analysis,
a distinct abstract object is created for each allocation site in the
program. Each abstract object represents all the concrete objects
created at the same site during execution. The points-to analysis
computes for each access in the program the set of abstract objects
it points to along some path.

A precise must points-to analysis is expensive in general. We
have devised a simple and conservative must points-to analysis based
on the notion of single-instance statements, each of which executes
at most once during an execution. An object created at a single-
instance statement is called a single-instance object. If an access
points to only one abstract object and that abstract object is a single-
instance object, then the relation between the access and the object
is a must points-to relation7. More details on the must points-to
analysis are given in [11].

Let MustPT (x)) andMayPT (x) be the must and may points-
to sets of access x. We compute AccMayConflict(x; y) of Equa-
tion (1) as follows using points-to information:

AccMayConflict(x; y) = (2)

(MayPT (x) \MayPT (y) 6= ;) ^ (field(x) = field(y));

where field(x) refers to the accessed field of the object (or class).
For access u, let ThStart(u) be the set of thread-root nodes

from whose entry nodes there exists an intrathread ICFG path to
u. We compute MustSameThread(x; y) as follows using points-to

6We assume that the intraprocedural edges capture all intraproce-
dural control flow, including control flow arising from exceptions.
7We use a special “null” object to represent a null reference.

263

information:

MustThread(u) =
\

v2ThStart(u)

MustPT (v:this)

MustSameThread(x; y) = (3)

(MustThread(x) \MustThread(y) 6= ;);

where v:this denotes the this pointer of thread-root node v.
For node n 2 ICG, let Synch(n) = true if n is a synchro-
nized method or block, and let un be the access of the synchro-
nization object if Synch(n) = true: Also, let Pred(n) be the
set of intrathread predecessor nodes of n on ICG. We compute
MustSync(v) by the following set of dataflow equations:

Gen(n) =

�
MustPT (un) if Synch(n)
; otherwise

SO
n
o = SO

n
i [Gen(n); SO

n
i =

\
p2Pred(n)

SO
p
o

MustSync(v) = SO
n
o ;8v 2 n:

Now, we compute MustCommonSync(x; y) as follows:

MustCommonSync(x; y) = (4)

(MustSync(x) \MustSync(y) 6= ;):

Finally, we compute IsMayRace in Equation 1 by combining
Equations 2, 3, and 4.

5.4 Extending Escape Analysis
Past work on escape analysis normally identifies objects as thread-

local when they are never reachable from threads other than the
thread that created them. A thread-local object can never partici-
pate in a datarace.

Java code frequently uses objects associated with a thread T

which do not follow the above pattern but which are not suscep-
tible to data races. In particular, we say an object O is “thread-
specific” to T if all accesses to O are performed while T is being
constructed (and before T starts running), or by T itself. Refer-
ences to such objects are typically stored in fields of the T object
and hence escape to the thread creating T , and are not thread-local
as described above. Because this usage is common, we extended
our static analysis to identify some thread-specific objects.

We have implemented a simple, but effective, approximation al-
gorithm to compute the thread-specific objects. First, we define the
thread-specific methods recursively as follows: (1) <init> meth-
ods of thread objects, and run methods that are not invoked explic-
itly (i.e., invoked only as a result of the thread being started) and
(2) a non-static method all of whose direct callers themselves are
thread-specific non-static methods passing their this references
as the this reference of the callee.

Second, we define the thread-specific fields as the fields of a
thread that are only accessed via getfield/putfield oper-
ations on the this reference of a thread-specific method. Fi-
nally, we define an unsafe thread as a thread whose execution may
start before its initialization completes. A thread object is conser-
vatively identified as unsafe if its constructor can transitively call
Thread.start or if the this reference escapes from the con-
structor. (A thread is safe if it is not unsafe.)

Based on these definitions, we say an object is thread-specific to
T if T is safe and the object is only reachable from thread-specific
methods of T or through thread-specific fields of T. Accesses to
a thread-specific object of a safe thread cannot be involved in a
datarace. Moreover, accesses to thread-specific fields cannot be
involved in a datarace.

6. COMPILE-TIME OPTIMIZATIONS
Our static datarace analysis phase improves the performance of

our dynamic detector by eliminating from consideration statements
that can never participate in a datarace. Another approach to compile-
time optimization stems from the weaker-than relation defined in
Section 3: if the execution of a statement always generates an ac-
cess that will be discarded because a previous access is weaker, the
statement need not be instrumented. In this section, we describe
how we use a static form of the weaker-than relation and a loop
peeling transformation to avoid inserting instrumentation that we
can prove will only produce redundant access events.

6.1 Static Weaker-Than Relation
Let Events(S) denote the set of access events generated by in-

strumentation statementS in a given execution. We define the static
weaker-than relation for statements as follows:

Definition 3. Si is weaker than Sj , written as Si v Sj ; iff for
all ej 2 Events(Sj) in any given execution, there exists e i 2
Events(Si) in the same execution such that (1) e i v ej , where
ei v ej as defined in section 3, and (2) there exists no thread
start() or join() between ei and ej .

A sophisticated interprocedural analysis would be required to de-
termine Si v Sj for arbitrary Si and Sj . However, we have devel-
oped a conservative and effective analysis for computing S i v Sj
when Si and Sj belong to the same method.

We model the instrumentation which generates access events us-
ing a pseudo-instruction trace(o;f;L; a), where o is the object
being accessed, f is the field of the object being accessed,L is the
lock set held during the access, and a is the access type (READ
or WRITE). All operands are treated as uses of their values. For
accesses to static fields, o represents the class in which the field
is declared, and for accesses to array elements, f represents the
array index. Thread information is not explicitly modelled in the
trace instruction since we do not attempt to optimize across thread
boundaries (thread information is available to the instrumentation
code at runtime). We insert a trace pseudo-instruction after ev-
ery instruction which accesses a field of an object, a static field, or
an array element (optionally using information from static datarace
analysis to eliminate consideration of instructions which cannot be
involved in dataraces).

After insertion, we attempt to eliminate trace pseudo-instructions
using the static weaker-than relation. First, we defineExec(S i; Sj)
for statements Si and Sj of the same method as follows:

Definition 4. Exec(Si; Sj) is true iff (1) Si is on every intrapro-
cedural path that contains Sj , and (2) there exists no method invo-
cation on any intraprocedural path between S i and Sj .

The first condition indicates that whenever S j executes in an exe-
cution instance of the method, Si also executes. Two well-known
concepts can be used for computing Exec(S i; Sj): Si dominates
Sj , written dom(Si; Sj), and Si post-dominates Sj , written
pdom(Si; Sj). In our experiments, we used dom. (It is very dif-
ficult to prove that one statement post-dominates another in Java,
because almost any statement can throw an exception, and there-
fore we suspect that pdom would not be effective.) The second
condition guarantees that no path between S i and Sj will contain
start() or join().

With Exec, the static weaker-than relation can be decomposed
into the following easily verifiable conditions (notation to be ex-
plained):

Si v Sj (= Exec(Si; Sj) ^ ai v aj ^ outer(Si; Sj)

^valnum(oi) = valnum(oj) ^ fi = fj:

264

To show that a statement Si = trace(oi; fi; Li; ai) always gener-
ates an event ei weaker than any ej produced by

Sj = trace(oj; fj; Lj; aj);

we must show that

ei:t v ej:t ^ ei:a v ej:a ^ ei:L � ej:L ^ ei:m = ej:m:

Intraprocedurally, ei:t will always equal ej:t, and we can directly
check ai v aj which implies ei:a v ej:a. We check that ei:L �
ej:L using the nesting of Java’s synchronization blocks. Specifi-
cally, we verify the condition outer(Si; Sj), which is true if and
only if Sj is at the same nesting level in synchronization blocks
as Si or at a deeper level within Si’s block. Finally, to show that
ei:m = ej:m, our analysis checks that

(valnum(oi) = valnum(oj)) ^ (fi = fj);

where valnum(oi) is the value number of the object reference. If
all of these conditions hold, then Si v Sj , and therefore we can
safely eliminate Sj .

6.2 Implementation
In this section, we briefly describe the implementation infras-

tructure that we use for optimized instrumentation. The instru-
mentation and the analysis of the weaker-than relation is performed
during the compilation of each method by the Jalapeño optimizing
compiler [2]. We created a new instruction in the high-level inter-
mediate representation (HIR) of the compiler corresponding to our
trace pseudo-instruction, and these instructions are inserted as pre-
viously described. After the insertion of the trace statements, con-
version to static single assignment (SSA) form is performed, during
which the dominance relation is computed. Elimination of redun-
dant trace statements is then performed based on the static weaker-
than relation, utilizing an existing value numbering phase. The re-
maining trace statements are marked as having an unknown side
effect to ensure they are not eliminated as dead code by Jalapeño’s
other optimization phases unless they are truly unreachable.

After the completion of some of Jalapeño’s HIR optimization
phases, we expand each trace statement into a call to a method
of our dynamic detector, and we force Jalapeño to inline this call.
Jalapeñothen optimizes the HIR again. Finally, the HIR represen-
tation is converted to lower-level representations (and eventually
to machine code) by the compiler, without further instrumentation-
specific optimization.

6.3 Loop Peeling
Loops can be a key source of redundant access events. For ex-

ample, in the loop in Figure 3 consisting of statementsS10 through
S13, statement S13 will produce redundant access events after
the first iteration of the loop, since the information is the same
as that recorded in the first iteration. However, two issues make
these redundant events difficult to statically eliminate. Our redun-
dancy elimination based on the static weaker-than relation cannot
be applied to remove the instrumentation, since the information
produced in the first iteration of the loop is not redundant. Further-
more, we cannot perform standard loop-invariant code motion to
hoist the instrumentation outside the loop, because statement S11
is a potentially excepting instruction (PEI); it may throw an ex-
ception and bypass the remaining instructions of the loop. Thus
statement S13 is not guaranteed to execute even if the loop condi-
tion is initially true. PEIs occur frequently in Java because of safety
checks such as null-pointer and array bounds checks.

We reduce the generation of redundant access events in loops
using a loop peeling program transformation. This transformation

// Before optimization.
S00: A a;
S10: for(...) {
S11: PEI
S12: a.f = ...;
S13: trace(a, f, L, W)

}

// After optimization.
S20: if (...) {
S21: PEI
S22: a.f = ...;
S23: trace(a, f, L, W);
S24: for (...) {
S25: PEI
S26: a.f = ...;

}
}

Figure 3: Example of Loop Peeling Optimization

creates a new copy of the body of the loop for the first iteration and
utilizes the original body for the remaining iterations. Statements
S20 through S26 show the result of loop peeling and our existing
redundancy elimination applied to the loop of S00. The if state-
ment at S20 is needed to guard against the possibility of the loop
not executing at all. The for statement at S24 is modified to en-
sure that the loop will not execute the first iteration, which is now
executed by statements S21 through S23. After the loop peeling,
the trace statement in the loop body can be eliminated since state-
ment S23 is statically weaker. The resulting code traces the write
access to a:f at most once, achieving the goal of eliminating the
instrumentation from the loop. We are unaware of previous work
that performs this type of program transformation to decrease the
cost of instrumentation.

7. OWNERSHIP MODEL
All of the preceding discussion ignores the effects of the “own-

ership model” introduced in Section 2.3. Here we briefly consider
how the ownership model interacts with our other machinery.

7.1 Implementation
We modified our runtime race detector to record for each mem-

ory location an owner thread to, the first thread to access the mem-
ory location. Every time the location is accessed we check to see
if the current thread is to, and ignore the access in that case. The
first time the current thread is not to, we say the memory location
becomes shared; we set t o to ? and send this access event and all
subsequent events on to the rest of the detector, as described in sec-
tion 3. Essentially the access event stream is filtered to only include
accesses to memory locations in the shared state.

7.2 Interactions with Weaker-Than Relation
The run-time and compile-time optimization phases rely on the

concept of one access event e 1 being “weaker-than” another event
e2, in which case e2 can be suppressed. Unfortunately, in the
presence of the ownership model, the definitions of IsRace and
weaker-than in section 3.1 are not sufficient to guarantee that e 1

weaker-than e2 implies e2 can be suppressed. The difficulty arises
when an event e1 is sent to the detector while e1:m is in the owned
state, and then e1:m changes to the shared state before e 2 occurs.
In this situation e2 should not be suppressed.

265

For run-time optimization (i.e., the cache), we can avoid this
problem by forcibly evicting a location m from each thread’s cache
when it becomes shared.

It is harder to avoid this problem in compile-time optimization.
Given two statements S1 and S2 , it is generally difficult to prove
that the accessed location’s state cannot change from “owned” to
“shared” between S1 and S2 . Introducing a dynamic check of the
ownership state at S1 or S2 would eliminate the benefit of the opti-
mization. The only truly sound compile-time approach would be to
use the post-dominance relationship; i.e., when S2 post-dominates
S1 and the access at S2 is guaranteed to be weaker than S 1 , re-
move the instrumentation at S1. This is safe because if the object
is owned at S2, and therefore the access is suppressed, then the ob-
ject must also have been owned at S 1 and that access can also be
suppressed. Unfortunately, as previously noted, post-dominance
between S1 and S2 almost never holds in Java because almost any
bytecode instruction can throw an exception. (This might be less of
a problem in other languages.)

Our actual approach is to simply ignore the interaction between
weaker-than and the ownership model, for both static and dynamic
optimizations. This means that in theory our tool may inadvertently
suppress accessesand thus fail to report races. However, we did not
observe any such problems in practice; in our experiments we ver-
ified that the same races were reported whether the optimizations
using the “unsafe” weaker-than relation were enabled or disabled.

8. EXPERIMENTAL RESULTS
Here we present evidence supporting our two major claims: that

our definition of dataraces captures truly unsynchronized accesses
with fewer “false alarms” than alternative definitions, and that those
dataraces can be detected with modest overhead — especially com-
pared to other datarace detection implementations.

8.1 Program Examples
Table 1 lists the programs used in our experiments.
We derived sor2 from the original sor benchmark by manu-

ally hoisting loop invariant array subscript expressions out of inner
loops. This optimization could be performed by a compiler using
only intraprocedural analysis, but it is not implemented in Jalapeño,
and it has significant impact on the effectiveness of our optimiza-
tions. We modified elevator slightly to force it to terminate
when the simulation finishes (normally it just hangs). 8

The elevator and hedc benchmarks are interactive and not
CPU-bound, and therefore we do not report performance results for
these benchmarks.

8.2 Performance
Table 2 shows the runtime performance of our algorithm and

some selected variants to demonstrate the impact of each of our
optimizations. “Base” records the performance of each example
without any instrumentation (and without loop peeling). “Full” is
our complete algorithm with all optimizations turned on. “NoS-
tatic” is “Full” but with the static datarace detection turned off, so
all access statements are potential dataraces. “NoDominators” is
“Full” with the static weaker-than check disabled; it also disables
loop peeling (which is useless without that check). “NoPeeling”
turns off loop peeling only. “NoCache” disables the cache.

In mtrt without static datarace detection, we instrument so many
accesses that Jalapeño runs out of memory before the program ter-
minates.

8We obtained all these examples from Praun and Gross, to whom
we owe great thanks.

For each configuration, we ran the program five times in one
invocation of the VM and reported the best-performing run. We
enabled full optimization in Jalapeño but disabled adaptive compi-
lation. Jalapeño was configured to use a mark-and-sweep garbage
collector, but we set the heap size to 1GB of RAM so no GC ac-
tually occurred. Our test machine had a single 450MHz POWER3
CPU running AIX.

These overheads are lower than for any previously reported dy-
namic datarace detection algorithm. The benefits of each opti-
mization vary across benchmarks, but each optimization is vital for
some benchmark. Programs such as tsp, with loops involving
many method calls and even recursive method calls, benefit greatly
from the cache. Programs such as sor2, which are dominated by
loops over arrays, benefit most from dominator analysis and loop
peeling.

We did not measure space overhead directly; Jalapeño mixes pro-
gram data with virtual machine data, making space measurements
difficult. Our instrumentation consumed the most space for tsp,
requiring approximately 16K of memory per thread (for 3 threads)
and 7967 trie nodes holding history for 6562 memory locations.
(We have a scheme for packing information for multiple locations
into one trie which we cannot present due to space limitations.) We
estimate the total amount of memory used by instrumentation for
tsp to be about 500K.

8.3 Accuracy
Table 3 records the number of objects for which we report dataraces

using our algorithm and some selected variants. (We normally out-
put each object field on which a datarace occurs; for comparison
purposes, here we count only the number of distinct objects men-
tioned.) “Full” is our complete, most precise algorithm. “Field-
sMerged” is a variant of our algorithm where we do not distinguish
different fields of the same object, so one thread accessing o:f 1

might appear to datarace with another thread accessing o:f 2 if they
do not hold a common lock. (Static fields of the same class are still
distinguished.) “NoOwnership” is another variant of “Full” which
does not wait for a location to be touched by multiple threads before
starting to monitor its accesses.

We report two dataraces in mtrt. Accesses to the field
RayTrace.threadCount are not synchronized, causing its value
to potentially become invalid; fortunately its value is not actually
used. There are also unsynchronized accesses to
ValidityCheckOutputStream.startOfLine in the SPEC
test harness, which could result in incorrect output.
tsp has a serious datarace on TspSolver.MinTourLen,

which can lead to incorrect output. We also report dataraces on
fields of TourElement, which cannot in fact happen due to higher-
level synchronization.

The dataraces we report in sor2 are not truly unsynchronized
accesses; the program uses barrier synchronization, which is not
captured by our algorithm.

The dataraces we report in hedc are all true unsynchronized ac-
cesses and have two causes. The size of a thread pool is read and
written without appropriate locking, which could cause the pool
size to become invalid. More seriously, there is an unsynchronized
assignment of null to field Task.thread , which could cause the
program to die with a NullPointerException if the Task
completes just as another thread calls Task.cancel. This would
be nearly impossible to find during normal testing and debugging.
In fact, previous work [21] mistakenly classified this datarace as
benign (possibly because they had to sort through a number of spu-
rious datarace reports).

If we fail to distinguish fields, in hedc we produce spurious

266

Example Lines of Code Num. Dynamic Threads Description
mtrt 3751 3 MultiThreaded Ray Tracer from SPECJVM98
tsp 706 3 Traveling Salesman Problem solver from ETH [21]
sor2 17742 3 Modified Successive Over-Relaxation benchmark from ETH [21]
elevator 523 5 A real-time discrete event simulator
hedc 29948 8 A Web-crawler application kernel developed at ETH [21],

using a concurrent programming library by Doug Lea.

Table 1: Benchmark programs and their characteristics

Example Base Full NoStatic NoDominators NoPeeling NoCache
mtrt 9.0s 10.9s (20%) Out of Memory 10.9s (21%) 10.9s (21%) 11.4s (26%)
tsp 10.0s 14.2s (42%) 27.5s (175%) 15.7s (57%) 15.7s (57%) 381.7s (3722%)
sor2 2.4s 2.7s (13%) 2.7s (13%) 9.8s (316%) 7.7s (226%) 3.2s (37%)

Table 2: Runtime Performance

Example Full FieldsMerged NoOwnership
mtrt 2 2 12
tsp 5 20 241
sor2 4 4 1009
elevator 0 0 16
hedc 5 10 29

Table 3: Number of Objects With Dataraces Reported

race reports in the LinkedQueue class where some fields are im-
mutable and accessed without synchronization and others are not.
It also produces spurious warnings for MetaSearchRequest
objects where some fields are thread-local and others are shared
and require synchronization. In tsp we report additional spurious
dataraces on fields of TourElement.

In all benchmarks, NoOwnership reports many spurious dataraces
when data is initialized in one thread and passed into a child thread
for processing.

Previous work such as Eraser [24] and object datarace detec-
tion [21] uses a looser definition of dataraces, where a datarace
is deemed to have occurred on a location m if there is no single
common lock held during all accesses to m. This approach pro-
duces spurious datarace reports in mtrt, where variables holding
I/O statistics are accessed by two child threads holding a common
lock syncObject, but also by a parent thread after it has called
join on the two child threads but without any other synchroniza-
tion. Our scheme for representing join introduces pseudolocks
S1 and S2; the three threads access the variables with lock sets
fS1;syncObjectg, fS2;syncObjectg and fS1; S2g. We re-
port no datarace because these locksets are mutually intersecting,
although they have no single common lock.

In summary, for these benchmarks, most of the dataraces we re-
port are true unsynchronized accesses, and most of those corre-
spond to real bugs. Using a less strict definition induces signifi-
cantly more spurious reports.

9. RELATED WORK
Past research on datarace detection can be classified as ahead-of-

time, on-the-fly, or post-mortem. These approaches offer different
trade-offs along ease-of-use, precision, efficiency, and coverage di-
mensions.

Ahead-of-time datarace detection is usually performed in static

datarace analysis tools which yield high coverage by consider-
ing the space of all possible program executions and identifying
dataraces that might occur in any one of them. Flanagan and Fre-
und’s datarace detection tool is a static tool for Java [15] which
tracks synchronization using extended type inference and check-
ing. Guava is a dialect of Java that statically disallows dataraces by
preventing concurrent accesses to shared data [3]. Only instances
of classes belonging to the class category called monitor can be
shared by multiple threads. By serializing all accesses to fields
or methods of the same shared data, Guava can prevent dataraces.
Boyapati and Rinard propose a system of type annotations for Java
that ensures a well-typed program is datarace-free and allows the
programmer to write a generic class and subclass it with different
protection mechanisms. [6].

Warlock is an annotation-based static datarace detection tool for
ANSI C programs [27], which also supports lock-based synchro-
nization. Aiken and Gay’s work statically detects dataraces in SPMD
programs [1]. Since SPMD programs employ barrier-style syn-
chronizations, they need not track locks held at each statement. The
static datarace analysis employed as part of our datarace detection
is based on points-to analysis of reference variables [7, 26]. The
primary advantage of a static analysis approach is its efficiency due
to the fact that it incurs no runtime overhead. However, this advan-
tage is mitigated in practice by severe limitations in precision (due
to false positive reports) and ease-of-use (due to the requirement of
presenting a whole program to the static analysis tool, sometimes
augmented with annotations to aid the analysis).

The key advantage of dynamic analysis approaches such as on-
the-fly and post-mortem datarace detection is the precision of the
results (few or no false positives), but in past work this advantage
usually came at a high cost in efficiency. A dynamic approach also
has more limited coverage than a static approach because it only
reports dataraces observed in a single dynamic execution. In some
cases, dynamic tools can improve coverage by considering alternate
orderings of synchronization operations that are consistent with the
actual events observed in the original program execution [24].

Dinning and Schonberg introduced the idea of detecting dataraces
based on a proper locking discipline [14]. Their system employed a
detection approach based on both the happened-before relation and
locksets, which they called “lock covers.” Their subtraction opti-
mization uses a notion similar to the weaker-than relation, but they
only suggest using the optimization in the detector itself, while we
employ the notion in many stages of our detection framework.

Eraser is similar to our approach in that its datarace detection

267

algorithm is based on lock-based synchronization [24]. However,
Eraser enforces the constraint that each shared memory location is
protected by a unique lock throughout an execution, which we do
not, thus reporting fewer spurious data races. Our ownership model
is based on Eraser’s, but Eraser has no comparable handling of the
join operation (see Section 8). Eraser works independently of
the input source language by instrumenting binary code, but its run-
time overhead is in the range of 10� to 30�.

Praun and Gross’s object race detection [21] greatly improves
on Eraser’s performance by applying escape analysis to filter out
non-datarace statements and by detecting dataraces at the object
level instead of at the level of each memory location (their overhead
ranges from 16% to 129% on the same benchmarks we used, with
less than 25% space overhead). However, their coarser granularity
of datarace detection (which includes treating a method call on an
object as a write) leads to the reporting of many dataraces which are
not true dataraces, i.e., the reported races do not indicate unordered
concurrent accesses to shared state. For example, on the hedc
program, we report dataraces on 5 objects, all of which are true
dataraces, while object race detection reports over 100 dataraces,
almost all of which are not true dataraces. (The race definitions for
object race detection and Eraser imply they always report a superset
of the races we report.)

TRaDe is similar to object race detection in that they both apply
escape analysis [13], although TRaDe does the analysis dynami-
cally. TRaDe’s datarace detection differs from ours in that it is
based on the happens-before relation. TRaDe adds a runtime over-
head ranging from 4� to 15� [13] compared to an interpreter, with
approximately 3� space overhead. AssureJ [18] and JProbe [17]
are commercial products that can dynamically detect dataraces in
Java programs. AssureJ has been observed to have overhead rang-
ing from 3� to 30�, while JProbe’s memory requirements make its
use practically impossible for any reasonably sized program [13].

Min and Choi’s hardware-based scheme [19] uses the cache co-
herence protocol, and Richards and Larus’ work [22] uses the Dis-
tributed Shared-Memory(DSM) computer’s memory coherencepro-
tocol, respectively, in collecting information for on-the-fly datarace
detection.

Most dynamic datarace detection techniques for SPMD programs
work either as post-mortem tools or as on-the-fly tools [25], by
collecting information from actual executions with software instru-
mentation. A post-mortem approach offers the possibility of im-
proving on-line efficiency (by moving the bulk of the work to the
post-mortem phase) at the cost of complicating ease-of-use. How-
ever, the size of the trace structure can grow prohibitively large thus
making the post-mortem approach infeasible for long-running pro-
grams.

Another dimension that can be used to classify past work on
datarace detection is the underlying concurrency model. Past work
on datarace detection was historically targeted to multithreaded fork-
join programs [1, 8]. However, those results are not applicable
to the object-based concurrency models present in multithreaded
object-oriented programming languages such as Java.

Netzer and Miller categorize dynamic dataraces into actual, ap-
parent, and feasible dataraces [20]. Assuming T10:this and
T20:q in Figure 2 point to different synchronization objects, T11
and T21 are both an actual and a feasible datarace if T20 occurs
before T13. They are, however, only a feasible datarace if T13
occurs before T20, which introduces a happened-before relation
from T11 to T21.

Choi and Min describe how to identify and reproduce the race
frontier, which is the set of dataraces not affected by any other
dataraces [12]. By repeatedly reproducing and correcting the dataraces

in the race frontier, one can identify all the dataraces that occur in
executions.

10. CONCLUSIONS AND FUTURE WORK
In this paper, we presented a novel approach to efficient and pre-

cise datarace detection for multithreaded object-oriented programs.
Our approach consists of a unique combination of static datarace
analysis, optimized instrumentation, runtime access caching and
runtime detection phases. This approach results in a runtime over-
head that is only in the 13% to 42% range, well below most past
work. Furthermore, our datarace definition is precise enough that
in our test cases, almost all the dataraces reported were in fact con-
current accesses to shared memory locations without any ordering
constraints. These results show that it is feasible to perform precise
datarace detection in a production setting.

In the future, we plan to broaden the static/dynamic coanalysis
approach to tackle other problems such as deadlock detection and
immutability analysis. We also intend to enhance the static analysis
phases with more precise alias analysis algorithms. We plan to in-
tegrate these new analyses with the record/replay capabilities of our
DejaVu debugger [9], providing a powerful platform for reasoning
about the behavior of multithreaded programs.

Acknowledgments
We would like to thank members of the Jikes RVM runtime group
and the Jikes RVM optimization group at IBM T. J. Watson Re-
search Center for their help with the Jikes RVM system. We also
thank the referees and the committee members of PLDI for their
insightful comments.

We thank Julian Dolby for his GNOSIS interprocedural analysis
framework, which forms the basis of our static datarace analysis.

11. REFERENCES
[1] A. Aiken and D. Gay. Barrier inference. In Proceedings of

the 25th Symposium on Principles of Programming
Languages (POPL), pages 342–354, January 1998.

[2] B. Alpern, et.al. The Jalapeño virtual machine. IBM Systems
Journal, 39(1), 2000.

[3] D. F. Bacon, R. E. Strom, and A. Tarafdar. Guava: A dialect
of java without data races. In ACM Conference on
Object-Oriented Programming Systems, Languages, and
Applications, 2000.

[4] B. Blanchet. Escape analysis for object oriented languages:
Application to Java. In Proceedings of ACM SIGPLAN
Conference on Object-Oriented Programming Systems,
Languages, and Applications, Denver, Colorado, November
1999.

[5] J. Bodga and U. Hölzle. Removing unnecessay
synchronization in Java. In Proceedings of ACM SIGPLAN
Conference on Object-Oriented Programming Systems,
Languages, and Applications, Denver, Colorado, November
1999.

[6] C. Boyapati and M. Rinard. A parameterized type system for
race-free java programs. In ACM Conference on
Object-Oriented Programming Systems, Languages, and
Applications, 2001.

[7] M. Burke, P. Carini, J.-D. Choi, and M. Hind.
Flow-insensitive interprocedural alias analysis in the
presence of pointers. In 7th International Workshop on
Languages and Compilers for Parallel Computing, 1994.
Extended version published as Research Report RC 19546,
IBM T. J. Watson Research Center, September, 1994.

268

[8] G.-I. Cheng, M. Feng, C. E. Leiserson, K. H. Randall, and
A. F. Stark. Detecting data races in Cilk programs that use
locks. Proceedings of the Tenth Annual ACM Symposium on
Parallel Algorithms and Architectures, 1998.

[9] J.-D. Choi, B. Alpern, T. Ngo, M. Sridharan, and
J. Vlissides. A perturbation-free replay platform for
cross-optimized multithreaded applications. In Proceedings
of the 15th IEEE International Parallel & Distributed
Processing Symposium, April 2001.

[10] J.-D. Choi, M. Gupta, M. Serrano, V. C. Sreedhar, and
S. Midkiff. Escape analysis for Java. In ACM Conference on
Object-Oriented Programming Systems, Languages, and
Applications, pages 1–19, 1999.

[11] J.-D. Choi, A. Loginov, and V. Sarkar. Static datarace
analysis for multithreaded object-oriented programs.
Technical report, IBM Research, 2001. Report RC22146;
www.research.ibm.com/jalapeno/dejavu/.

[12] J.-D. Choi and S. L. Min. Race frontier: Reproducing data
races in parallel-program debugging. In Proceedings of Third
ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, April 1991.

[13] M. Christiaens and K. De Bosschere. TRaDe, a topological
approach to on-the-fly race detection in java programs.
Proceedings of the Java Virtual Machine Rsearch and
Technology Symposium (JVM’01), April 2001.

[14] A. Dinning and E. Schonberg. Detecting access anomalies in
programs with critical sections. Proceedings of the
ACM/ONR Workshop on Parallel and Distributed
Debugging, published in ACM SIGPLAN Notices,
26(12):85–96, 1991.

[15] C. Flanagan and S. N. Freund. Type-based race detection for
java. In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI),
pages 219–232, June 2000.

[16] E. Fredkin. Trie memory. Communications of the ACM,
3(9):490–499, September 1960.

[17] KL Group, 260 King Street East, Toronto, Ontario, Canada.
Getting Started with JProbe.

[18] Kuck & Associates, Inc., 1906 Fox Drive, Champaign, IL
61820-7345, USA. AssureJ User’s Manual, 2.0 Edition,
March 1999.

[19] S. L. Min and J.-D. Choi. An efficient cache-based access
anomaly detection scheme. In Proceedings of 4th
International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS),
April 1991.

[20] R. H. Netzer and B. P. Miller. What are race conditions?
some issues and formalizations. ACM Letters on
Programming Languages and Systems, 1(1):74–88, Mar.
1992.

[21] C. v. Praun and T. Gross. Object race detection. In ACM
Conference on Object-Oriented Programming Systems,
Languages, and Applications, 2001.

[22] B. Richards and J. R. Larus. Protocol-based data-race
detection. In Proceedings of the ACM SIGMETRICS
Symposium on Parallel and Distributed Tools, pages 40–47,
August 1998.

[23] E. Ruf. Effective synchronzation removal for Java. In
SIGPLAN 2000 Conference on Programming Language
Design and Implementation, pages 208–218, 2000.

[24] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. E.
Anderson. Eraser: A dynamic data race detector for
multi-threaded programs. ACM Transactions on Computer
Systems, 15(4):391–411, 1997.

[25] E. Schonberg. On-The-Fly detection of access anomalies. In
Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI),
pages 285–297, June 1989.

[26] B. Steensgaard. Points-to analysis in almost linear time. In In
Proceedings of the Twentythird Annual ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL), pages 32–41, January
1996.

[27] N. Sterling. Warlock: A static data race analysis tool. In
USENIX Winter Technical Conference, pages 97–106, 1993.

269

