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Abstract. We describe a novel approach to performing data dependence
analysis for Java in the presence of Java’s “non-traditional” language
features such as exceptions, synchronization, and memory consistency.
We introduce new classes of edges in a dependence graph to model code
motion constraints arising from these language features. We present a
linear-time algorithm for constructing this augmented dependence graph
for an extended basic block.

1 Introduction

Data dependence analysis is a fundamental program analysis technique used by
optimizing and parallelizing compilers to identify constraints on data flow, code
motion, and instruction reordering [11]. It is desirable for dependence analysis to
be as precise as possible so as to minimize code motion constraints and maximize
opportunities for program transformations and optimizations such as instruction
scheduling. Precise dependence analysis for scalar variables is well understood;
e.g., an effective solution is to use SSA form [6]. In addition, much previous
work has studied dependence analysis for memory accesses, typically focusing on
references to array variables with affine subscripts (e.g., [15]) and on dereferences
of pointer variables (e.g., [14]). In this paper, we address the problem of data
dependence analysis for Java [2], focusing on Java’s “non-traditional” language
features such as exceptions and synchronization.

As in past work, we represent the result of data dependence analysis as
a data dependence graph. We unify all dependences (due to scalars, memory
locations, exceptions, synchronization, and the memory model) as dependences
on abstract locations. Each register or scalar temporary is its own abstract
location, and abstract locations for memory are derived from the results of an
earlier alias analysis, such as type-based alias analysis [8]. We handle Java’s
plethora of instructions that may potentially raise exceptions by (a) construct-
ing the dependence graph over extended basic blocks, unbroken by potentially
excepting instructions (PEISs), (b) introducing a new kind of dependence (on an
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“exception state” abstract location) to sequence PEIs, and (c) treating each PEI
as reading all scalar/memory locations live in the exception handler for the PEL.
Instructions that do not read or write any abstract locations live in the exception
handler of a PEI will end up being unrelated to the PEI in the dependence
graph, and thus can be moved across the PEI during scheduling. (Previous Java
implementations have routinely considered PEIs as barriers to code motion for
all instructions.) We also separate the tests for exception conditions (such as null-
pointer and array-bounds checks) from the instructions doing the work (such as
field and array load and store operations), keeping only a special “validated”
dependence edge from the test instruction to the work instruction, so that they
can be optimized independently and scheduled more flexibly. To ensure proper
memory consistency at synchronization points, we treat each acquire-lock Java
instruction (monitorenter) as a write of all memory abstract locations, and each
release-lock Java instruction (monitorexit) as a read of all memory abstract
locations. Overall, these dependence constraints preserve the correct semantics of
Java programs, but still allow significant scheduling and code motion flexibility.
We present a linear-time algorithm for constructing this dependence graph for
for a single extended basic block. This algorithm has been implemented in
the Jalapefio optimizing compiler, where it is used for performing instruction
selection and instruction scheduling [3].

The rest of the paper is organized as follows. Section 2 provides an overview
of our design decisions for modeling basic blocks and control flow due to Java
exceptions. Section 3 describes the main algorithm used for data dependence
analysis. Section 4 presents an example illustrating our approach to dependence
analysis. Section b discusses related work, and section 6 contains our conclusions.

2 Modeling Basic Blocks and Control Flow due to Java
Exceptions

In this section, we provide an overview of our design decisions for modeling basic
blocks and control flow due to Java exceptions. A detailed description of this
approach is given in [4], which describes how the Jalapefio optimizing compiler
builds extended basic blocks and performs global analysis in the presence of
exceptions. The focus of the work in [4] was program analysis; it did not address
the problem of code motion (dependence analysis) in the presence of exceptions.

Exceptions in Java are precise. When an exception is thrown at a program
point, (a) all effects of statements and expressions before the exception point
must appear to have taken place; and (b) any effects of speculative execution
of statements and expressions after the exception point should not be present
in the user-visible state of the program. Our goal is to efficiently compute the
most precise (least constrained) set of dependences that we can, while obeying
Java’s exception semantics. For checked exceptions and runtime exceptions,
the Java language specification identifies all statements/operations that can
potentially throw an exception. In the remainder of this paper, we use the



term PEI (Potentially Exception-throwing Instruction) to denote these state-
ments/operations.

Traditionally, a basic block consists of a set of instructions that is sequen-
tially executed: if the first instruction of the basic block is executed, then each
subsequent instruction in the basic block will be executed in turn [11]. Thus,
in the standard model of a basic block as a single-entry, single-exit region of
the control flow graph, any PEI will signify the end of its basic block. Since
PEIs are quite frequent in Java, the approach taken by the Jalapefio optimizing
compiler is that PEIs do not force the end of a basic block. Therefore, a basic
block can be a single-entry multiple-exit sequence of instructions (similar to an
extended basic block [11] or a superblock), and can be significantly larger than
basic blocks that must be terminated by PEIs.

Another key decision in the design of the Jalapefio optimizing compiler is to
separate out the checking performed in a PEI from its actual work. For exam-
ple, a getfield (or putfield) instruction is split into an explicit null_check
instruction followed by a load (or store) instruction. null_check instructions
are also used to guard against accessing null arrays and invoking virtual methods
on null objects. Explicit instructions are generated for array-bounds and zero-
divide checks, in a similar manner. The ordering relationship between the test
and worker instructions is captured by having the test instruction contain a
pseudo-assignment of a scalar temporary, and having the later worker instruction
contain a pseudo-read of this temporary. (Strictly speaking, the temporary does
not hold a boolean condition, but instead a “validated” signal. The value in
the temporary is immaterial to the worker instruction; all that matters is that
the test has been successfully performed.) The advantage of creating explicit
test instructions is that they are eligible for redundancy elimination via global
analysis, just like other instructions in the IR (Intermediate Representation).

Even if some of the tests can be performed implicitly by hardware, such as
implicit null pointer tests in the Jalapeio JVM [1], there is value in modeling
the tests explicitly in the IR because doing so can enable more flexibility in code
motion and instruction scheduling. Additionally, virtual method invocations can
be optimized (such as through static binding and inlining) without worry that a
required null_check might be lost. To reclaim the efficiency of implicit hardware-
performed checks, we include a post-pass that merges each remaining null _check
instruction with the first following load or store instruction (when legal). After
this merging, the null_check becomes implicit in the load or store instruction,
and 1s accomplished by an underlying hardware mechanism.

3 Dependence Analysis

Traditionally, data dependence graphs represent dependences among register
reads and writes, and memory reads and writes. A data dependence can be
classified as a true dependence (a write to a location followed by a read of
the same location), an anti dependence (a read of a location followed by a
write of the same location), or an output dependence (a write of a location



followed by another write of the same location) [15]. Data dependences can be
easily computed for (virtual or physical) registers, because registers are explicitly
named as operands of instructions. Computing data dependences for memory
locations (e.g., object fields and array elements) is a harder problem, and ex-
act solutions are undecidable in general. The difficulty arises from the aliasing
problem, where syntactically different expressions may nevertheless refer to the
same memory location. In addition to pointer-induced aliases, certain reads and
writes of locations must be ordered so as to obey the semantics of exceptions,
synchronization, and the memory model in Java. Finally, exceptions themselves
must be properly ordered in order to ensure that the view of program state as
needed by the corresponding exception handlers is preserved.

Our approach integrates all these new kinds of dependence constraints into
a single framework, based on true, anti, and output dependences. We model
registers, memory locations, and even exception and synchronization states as
abstract locations. We present a simple two-pass algorithm, given in Figure 2,
that iterates over the instructions in each (extended) basic block to construct the
dependence graph. The execution time and space for the algorithm is linear in
the size of the basic block, i.e., linear in the number of defs and uses of abstract
locations across all instructions in the basic block.

The rest of this section is organized as follows. Section 3.1 summarizes the
abstract locations used in our approach. Section 3.2 contains a brief description
of the dependence analysis algorithm in figure 2. Sections 3.3 to 3.7 outline how
the scheduling constraints of ALU instructions, memory instructions, exception-
generating instructions, call instructions, and synchronization instructions are
modeled using abstract locations. Section 3.8 outlines the impact of Java’s
memory coherence assumption on dependence analysis. Section 3.9 discusses
some extensions to our basic algorithm.

3.1 Abstract Locations

As illustrated in Figure 1, we use type information to partition concrete memory
locations into abstract locations (location types). Each abstract location repre-
sents a “may-aliased” equivalence class of concrete locations, i.e., any two refer-
ences to the same abstract location can potentially interfere, but two references
to distinct abstract locations cannot interfere.

The following abstract locations represent different cases of global or heap-
allocated data:

Fields: Each field declaration has a corresponding abstract location; all loads of
that field use its abstract location, and stores of that field define its abstract
location. Distinct fields have distinct abstract locations.

Array Elements: Each primitive array type (i.e., bool[], short[], int[],
long[], float[], double[], and char[]) has a unique abstract location
modeling the concrete locations of its elements, accessed by aload and
astore instructions for an array of the corresponding type. An additional
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Fig. 1. Examples of abstract locations

abstract location, Object[], is used to represent the locations of elements
of all arrays of objects, including arrays of arrays.
This refinement of array element abstract locations based on the type of the
elements of the arrays reflect a simple kind of type-based alias analysis [§].
Results of more extensive alias analysis can be incorporated as further refine-
ments of these abstract locations, so long as the resulting abstract locations
partition the underlying concrete locations.

Statics: Each static data element (including static fields) has a distinct abstract
location.

In addition, there is a distinct abstract location associated with each of the
following that represent method-local data:

— A symbolic register.

— A spill location, based on its constant offset in the stack frame. (This abstract
location is only used when performing dependence analysis after register
allocation.)

— exception_type, that is used to model all exception dependences. A PEI
contains a pseudo-assignment of this abstract location, assigning it the class
of the raised exception.

Each operand of an IR instruction accesses an underlying abstract location,
as described above. In some cases, this requires creating pseudo-operands that
specify defs/uses of abstract locations, even though these defs/uses are not part
of the concrete semantics of the instruction. For example, a load instruction
has an explicit operand that is a use of the symbolic register that contains the
load address, and a pseudo-operand that represents the abstract location being
accessed in global memory.

In this paper, p.uses will be used to denote the set of abstract locations used
(i.e., read) by instruction p, and p.defs will be used to denote the set of abstract
locations defined (i.e., written) by p. It is important to note that the execution
time of the dependence analysis algorithm presented in section 3.2 is linear in



the sum of the sizes of the p.uses and p.defs sets for all instructions, p, in the
basic block. When conservative intraprocedural analysis information is used to
determine these sets, the size of each set will be bounded by a constant, and
the algorithm will take time linearly proportional to the number of instructions.
More precise interprocedural information for call instructions can lead to larger,
non-constant-sized defs and uses sets.

3.2 Linear-Time Dependence Analysis Algorithm

Figure 2 contains our algorithm for computing the dependence graph for an
(extended) basic block, in time and space that is linear in the size of the
block, i.e., linear in the number of operands (and pseudo-operands) across all
instructions in the block.

The first pass of the algorithm traverses the instructions in the block in
forward order. The key idea is to associate a “last definition” value, last_def,
with each abstract location used in the block. For a given abstract location, loc,
loc.last def is initialized to NULL. As this pass proceeds, loc.last def is set
to the most recent definition operand that performs a write on abstract location
loc. In general, when a use u is encountered with loc = u.location such that
loc.last def # NULL, a flow dependence edge is created from loc.last def
.instruction to u.instruction. As with all dependence edges created by this
algorithm, this edge may represent a register, memory, or exception dependence,
depending on the underlying abstract location. Similarly, when a def d is encoun-
tered with loc = d.location such that loc.last def # NULL, an output de-
pendence edge is created from loc.last def.instruction to d.instruction.
In addition, loc.last def is updated to d.

The second pass of the algorithm traverses the instructions in the reverse
order. All last_def values are reinitialized to NULL. As this pass proceeds,
loc.last def is set to the most recent definition operand (in a backwards
traversal) that performs a write on abstract location loc. When a use u is
encountered such that u.location.last def # NULL, an anti dependence edge
1s created from u.instruction to u.location.last def.instruction.

The use of a single last_def value for each abstract location guarantees the
linear-sized time and space complexity for this algorithm. Consider the following
IR fragment as an example:

si: putfield a.x := t1
s2: putfield b.x := t2
s3: t3 := getfield c.x

All three instructions access the same abstract location (field x). Therefore, our
algorithm will only insert an output dependence edge from s1 to s2 and a flow
dependence edge from s2 to s3.

In contrast, traditional dependence analysis algorithms (e.g., [15]) will also
insert a flow dependence edge from s1 to s3 (assuming that object references
a, b, ¢ can potentially be aliased). In general, there can be quadratic number



Dependence_Graph_Construction(BasicBlock bb) {

foreach abstract location loc in bb.locations do
loc.last_def := NULL // clear last defs
end for

for each instruction p in bb.instructions in forward order do
let pnode := dependence graph node corresponding to instruction p

// Abstract location determines if register/memory/exception dependence
for each use operand u in p.uses do
let loc := u.location
if loc.last_def !'= NULL then
create TRUE dependence edge from loc.last_def.instruction to pnode
endif

end for

for each def operand d in p.defs do
let loc := d.location
if loc.last_def !'= NULL then

create OUTPUT dependence edge from loc.last_def.instruction to pnode

endif
loc.last_def :=d // record last def

end

end

foreach loc in bb.locations do
loc.last_def := NULL // clear last defs
end

for each instruction p in bb.instructions in backward order do
let pnode := dependence graph node corresponding to instruction p
// record last def
foreach def operand d in p.defs do

let loc := d.location
loc.last_def := d
end

// create anti dependence edges

foreach use operand u in p.uses do
let loc := u.location
if loc.last_def !'= NULL then

create ANTI dependence edge from pnode to loc.last_def.instruction

endif

end

end

Fig. 2. Algorithm to compute dependence graph of an extended basic block



of extra edges created by using traditional dependence analysis algorithms. Our
algorithm avoids creating such transitively implied edges by ensuring that each
use or def is the target of at most one edge in the dependence graph.

3.3 ALU Instructions

Simple arithmetic instructions have some number of register operands and some
number (typically one) of register destinations. Each register is modeled in our
system by a unique abstract location, distinct from any other abstract location,
representing the fact that a register is not aliased with any other register or
memory location. Given this definition of abstract locations, our algorithm will
construct data dependence edges for registers.

3.4 Memory Instructions

Memory instructions have abstract locations that represent the global data being
accessed. A load instruction has a use pseudo-operand that reads the abstract
location representing the area of memory possibly read by the load, while a
store instruction has a def pseudo-operand that writes to the abstract location
representing the area of memory possibly written by the store.

The appropriate abstract locations for memory pseudo-operands are deter-
mined by an alias analysis preceding dependence graph construction. Alias anal-
ysis is a rich research area, but fortunately it is separable from the dependence
graph construction problem. Our dependence graph construction algorithm only
assumes that the results of alias analysis can be expressed as a partitioning of
concrete locations, as discussed in section 3.1.

3.5 Exception Instructions

A conservative approach to dependence analysis of exception instructions would
simply prevent any write operation (including updates to scalar local variables)
from moving above or below a PEI. However, this would greatly limit opportu-
nities for scheduling, and largely defeat the purpose of scheduling across PEIs.

Given a PEI p, our approach is to include in p.uses abstract locations for
all variables and memory locations live at the entry of the exception handler
to which the exception would be routed. Then, write operations that do not
modify an abstract location in p.uses can be free to move across the PEI p.
Live variable analysis can compute the set of local variables that are live on
entry to each handler (all global and heap-allocated data would normally be
considered to be live, by default).

In addition, we include in p.defs the exception_type abstract location.
This ensures that PEIs are contrained to be executed in order via the output
dependences between them generated by the defs of exception_type.



3.6 Call Instructions

The explicit operands of a call instruction identify the call’s arguments and
result. In addition, pseudo-operands are introduced to represent abstract mem-
ory locations possibly read and/or written by the callee(s). In the absence of
interprocedural analysis information, a call instruction is assumed to define all
abstract locations that represent memory locations (i.e., all fields, arrays, and
static data). More precise sets of abstract locations could result from interpro-
cedural use and side-effect analysis.

In addition, for calls that can raise exceptions, the rules for PEIs described
in section 3.5 should be followed.

3.7 Synchronization Instructions

The monitorenter and monitorexit synchronization instructions define a crit-
ical section. Java’s memory model defines the effect of these instructions on
memory locations from the point of view of a particular thread as follows: at a
monitorenter instruction, the thread updates its local view of memory based on
the “true” or global view, and at a monitorexit instruction, the thread flushes
its local view of memory back to the global view.

To construct a safe dependence graph, we expand a monitorenter instruction
into a lock operation and an update operation, and a monitorexit instruction
into a publish operation and an unlock operation, as shown in the example in
Figure 3. A single abstract location S (representing the global synchronization
state) is used to serialize all lock/unlock instuctions within a thread (by treating
each of them as a def of S). The memory model semantics is captured by treating
the update operation as a write of all abstract locations (more precisely, all
locations that can be written by another thread), and the publish operation as
a read of all abstract locations (more precisely, all locations that can be read by
another thread). Finally, an abstract location for the synchronized object (lock1
in Figure 3) is used to ensure that all memory read/write operations remain
within their original critical section (by treating lock and unlock as defs of
lock1, and memory operations in the critical section as uses of lockl).

Note that instructions that access only scalars can be moved freely across
synchronization instructions e.g., see the defs of scalars a and b in Figure 3. A
memory read operation (e.g., the read of r.z in Figure 3) can be moved above
a monitorexit if so desired (but not above a monitorenter); further, because
of the presence of the lockl abstract location, the code motion can be reversed
by moving the memory read back below the monitorenter without exhibiting
the anomaly described in [13]. Finally, the expansion of the monitorenter and
monitorexit instructions enables synchronization elimination to be performed
by removing the lock/unlock operations, while still retaining the memory model
requirements that are captured by the update and publish operations.
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Fig. 8. Example of modeling dependences due to monitorenter and monitorexit

3.8 Memory Coherence

The Java memory model enforces a strict memory coherence semantics for all
accesses to the same (concrete) location, even when not guarded by synchroniza-
tion instructions. It has been observed that reordering of potentially aliased load
instructions can be an illegal transformation for multithreaded programs written
for a memory model that includes the strict memory coherence assumption [10,
13]. For example, consider the following code fragment:

getfield p.x
getfield q.x

Suppose p and q may be aliased. While one thread (T1) executes the above
code fragment, another thread (T2) can execute multiple putfield p.x instruc-
tions. The Java memory model requires that, if p and q point to the same object
in memory, then thread T1 should not see the values written by thread T2 out
of order. Since the compiler must conservatively assume the possible existence
of a thread like T2, it would be illegal for the compiler to reorder the above
getfield instructions. Therefore, under this strict memory coherence model,
the dependence graph must contain an edge from the first getfield instruction
to the next, so as to prevent this reordering.
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Unfortunately, adding read dependences between all possibly aliased loads
can significantly constrain opportunities for instruction reordering. As an alter-
native to the default, strict memory coherence model, the Jalapefio optimizing
compiler allows users to select a weak consistency model that does not require
memory coherence e.g., Location Consistency (LC) [9]. This memory model
guarantees that properly synchronized programs will have the same execution
semantics as in the default model, without imposing additional constraints on
the dependence graph. Recently, there has been a proposal for a new memory
model for Java [12] that is based on the LC model.

3.9 Extensions

The dependence analysis algorithm described in this section takes linear time
because of the use of a single last_def value for each abstract location. This
algorithmic property relies on the fact that abstract locations do not overlap.
Requiring abstract locations to be disjoint can limit the precision and expres-
siveness of more sophisticated alias analyses. Our algorithm can be extended to
handle abstract locations that form a lattice of possibly overlapping regions, but
the worst-case time complexity of the algorithm may degrade to quadratic time
(although a factored representation of the resulting dependence graph can still
require only a linear amount of space).

PEIs, calls, and synchronization instructions may all be considered to read
and/or write all global memory abstract locations. Representing all these ab-
stract memory locations explicitly would greatly increase the size of the basic
block and the resulting dependence graph. To reduce the number of such abstract
memory locations, only those abstract memory locations referenced explicitly by
some load or store instruction in the same (extended) basic block need to be
included explicitly; all other abstract memory locations can be summarized by
a single “rest of memory” abstract location (this extra abstract location is only
needed in basic blocks that contain no explicit loads or stores, but do contain
synchronization instructions and/or calls). The resulting abstract locations still
form a partition of the set of concrete locations accessed by that block.

Currently, PEIs are considered to write to the special exception_type ab-
stract location, ensuring that PEIs are serialized. However, two PEIs with the
same exception handler can be indistinguishable from the perspective of the
exception handler, if (a) both PEIs raise the same kind of exception (e.g.,
both are null-pointer tests or both are array-bounds checks) or if the handler
always handles whatever exceptions both PEIs raise and the handler otherwise
ignores the exception object it is passed, (b) both report the exception at
the same place in the program as determined by the resolution of the Java
implementation’s getStackTrace debugging native method, and (c) both have
the same dependence constraints on the set of abstract locations live in the
handler. Indistinguishable PEI instructions can be freely reordered, up to any
other dependence constraints on their operands. This reordering ability can be
implemented by extending our algorithm to track the walue assigned to the
special exception_type abstract location, where this value reflects the kind of
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exception raised by the PEI (if the handler cares) and the debugging location in-
formation for the PEI. Then a PEI’s assignment to the exception_type abstract
location leads to an output dependence with the location’s last_def PEI only
if they assign different values to the location. Otherwise the new PEI is inserted
in the dependence graph “in parallel” with the previous PEI, forming a kind of
equivalence class in the dependence graph of PEIs that are indistinguishable. A
straightforward implementation of this idea would lead to a quadratic-time and -
space algorithm, but a more sophisticated algorithm exists, based on maintaining
a factored representation of the dependence graph, that has only linear time and
space complexity.

4 Example

Java source program:

public class LCPC {

int £1, £2;
static void foo(int[] x, int i, LCPC b, int q) {
if (q !'= 0)

x[i] = ((b.f1 = x[i]) + b.£f2 + i/q);

Fig.4. An example Java program

In this section, we use a simple example to illustrate the key aspects of
our approach to computing data dependences in a Java program, and how this
algorithm fits into the rest of the compiler framework. Consider method foo()
in the Java program shown in Figure 4. In the remainder of this section, we will
focus our attention on the main basic block for the g != 0 case in method foo ().
Figure 5 shows the (unoptimized) HIR (high-level IR) for this basic block®. The
“PEI” annotation is used to identify exception-generating instructions.

Note that all exception tests are explicit in Figure 5. For example, the load
of x[i] in Figure 4 is translated into three HIR instructions — null_check,
bounds_check, and int_aload. If an exception test fails, then control is trans-
ferred from the exception test instruction to a runtime routine in JVM; this
runtime routine examines the exception table (not shown in the IR figures) to
determine how the exception should be handled (either by transferring to a
handler block or exiting from the method). If an exception test succeeds, the
instruction(s) dependent on the exception test can be enabled for execution.

! As described in [3], the HIR is actually generated from the bytecodes for method
foo(), and not from the Java source code.
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To make explicit the connection between an exception test and the instruc-
tions that it guards in our IR, an exception test is assumed to compute a “condi-
tion register” temporary as a result. Each instruction that depends on the success
of the exception test takes the condition register as an extra input operand. These
condition registers do not appear in the final machine code, but their presence
in the IR ensures that IR optimizations will not cause a guarded instruction to
be executed prior to its exception test. For example, condition register c¢23 in
figure 5 captures the result of a null-pointer check for argument a2 (viz., object
reference b). c23 is then used as an input operand by the putfield instruction.
For future work, we are exploring the possibility of allowing a guard instruction
for an arithmetic exception (e.g., the zero_check guard for a divide-by-zero
exception) to be performed after its corresponding compute instruction. These
possibilities are processor-specific and can be expressed in the IR by removing
the condition register from the IR instructions when the test instruction need
not precede the compute instructions.

Redundant check elimination is performed during global optimizations on
the HIR [3]. All exception test instructions in figure 5 that are marked (*) are
redundant and can be removed. The instructions marked —-> are then modified
to use condition registers from equivalent exception tests. Note that the number
of PEIs has been reduced from seven to three in figure 5 after optimization.
This is one of the key benefits of making exception tests explicit in our IR. After
elimination of redundant tests, we are left with one null _check for each of x and
b, and one bounds_check for x. Note that the zero_check instruction for the
divide instruction was eliminated because of the q != 0 test in method foo().
Further optimization of the remaining tests might be possible with knowledge
of interprocedural calling context information for method foo().

As described in [3], the optimized HIR in figure 5 is next converted to
LIR (lower-level IR). High-level operations such as aload, astore, getfield,
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putfield are expanded into multiple low-level operations that are closer to
machine code. After LIR optimizations are performed, the LIR is translated
to MIR (machine-level IR) by performing instruction selection; the resulting
MIR is shown in figure 6. MIR instructions belong to the target instruction
set architecture (in this case, the PowerPC) with two minor extensions. First,
null_check instructions are allowed to be present in the MIR because their
presence gives greater flexibility for instruction scheduling. (After scheduling, the
null _check instructions will be merged with load/store instructions when pos-
sible, so as to be performed implicitly?.) Second, the condition register operands
are included in the MIR instructions so as to enable precise dependence analysis
for instruction scheduling. (The condition registers will be discarded prior to
generation of machine code.)

Next, our dependence graph algorithm is applied to construct the dependence
graph over MIR instructions. Figure 7 shows the resulting data dependence graph
for the extended basic block from figure 6.

Bytecode Issue

Offset Operator Operands Time

4 LABEL1 Bie4

9 PEI null_check c21 = a0 0

9 ppc_luz t10 = @e{ -4, a0 }, c21 0

9 ppc_slwi til = a1, 2 0

21 ppc_divw t7 = al, a3 0

9 PEI ppc_tw c22 = ppc_trap <=U, t10, ail 2

11 PEI null_check c23 = a2 2

15 ppc_lwz t5 = e{ -20, a2 }, c23 2

9 ppc_lwzx t4 = e{ a0, t11 }, [c21,c22] 3

11 ppc_stw t4, e{ -16, a2 }, c23 5

18 ppc_add t6 = t4, tb 5

22 ppc_add t8 = t6, t7 20

23 ppc_stwx t8, @{ a0, t11 }, [c21,c22] 21
END_BBLOCK Bie4

Completion time: 25 cycles

Fig.8. MIR generated after instruction scheduling for basic block 1 in method foo().
This schedule assumes that the order of exception-generating instructions must be
preserved. Issue times assume no out-of-order execution.

2 Jalapefio uses a layout where an object’s fields and an array’s length are stored at
negative offsets from the object’s reference [1], to support hardware null checking
on the PowerPC architecture where low memory (including address 0) is not page-
protected but high memory is.
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Bytecode

Offset Operator Operands

6 LABEL1 Bie4

9 PEI ppc_lwz t10 = e{ -4, a0 }

9 ppc_slwi til = al, 2

21 ppc_divw t7 = al, a3

9 PEI ppc_tw ppc_trap <=U, t10, al

15 PEI ppc_lwz t5 = 6{ -20, a2 }

9 ppc_lwzx t4 = e{ a0, t11 }

11 ppc_stw t4, e{ -16, a2 }

18 ppc_add t6 = t4, tb

22 ppc_add t8 = t6, t7

23 ppc_stwx t8, e{ a0, ti1 }
END_BBLOCK Bie4

Fig. 9. Final MIR after merging null_check instructions in figure 8.

Next, instruction scheduling is applied to the dependence graph over MIR
instructions. Figure 8 shows the new sequence of target instructions obtained
when applying a simple list scheduling algorithm to the dependence graph from
figure 7. The use of explicit exception tests enables more reordering to be
performed than would otherwise have been possible. For example, since b.f2
is used as an input to a (time-consuming) divide operation, it is beneficial to
move the load of this field as early as possible. As shown in figure 8, the divide
instruction and the load of b.£2 (at stack offset -20) are both moved prior to the
load of x[1] and the store of b.f1. This reordering would not have been possible
if exception tests were not modeled explicitly in the IR. To appreciate the impact
of instruction scheduling for this example, note that the completion time for the
basic block was reduced from 34 cycles (when using the instruction ordering in
figure 6) to 25 cycles (when using the new ordering in figure 8). (Completion
times were estimated assuming that the processor does not perform any out-of-
order execution of instructions.)

Finally, figure 9 contains the MIR obtained after merging each null _check
instruction with the first following load or store instruction that uses its con-
dition register result. In this example, the two null_check instructions have
been successfully merged with load instructions. Note that the load instructions
(ppc-lwz) are now marked as PEIs. No update is required to the exception
handler tables when this merging is performed because the handler blocks are
identical for all PEIs that belong to the same basic block.

5 Related Work

Dependence analysis for scalar variables has been well understood for a long
time; for example, def-use chaining [11] was an early technique for identifying
true dependences within and across basic blocks. The same principle has also
been used to compute anti and output dependences for scalar variables. Scalar
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renaming [5] is an effective technique for eliminating anti and output depen-
dences, and SSA form is a popular approach to obtain a canonical renaming of
scalars [6].

The bulk of past research on dependence analysis for memory accesses has
focused on array variables with affine subscripts and on pointer dereferences. The
advent of vectorizing and parallelizing compilers led to several data dependence
analysis techniques being developed for array accesses with affine subscript
expressions (e.g., [15]); this is a special case that is important for optimization
of scientific programs written in Fortran and C. A lot of attention has also been
paid to “points-to” alias analysis of pointer variables, with the goal of improving
the effectiveness of compiler optimizations of pointer-intensive programs written
in C and C++. Points-to analysis of general C and C++ programs is a hard
problem and the experience thus far has been that most algorithms for points-to
analysis consume excessive amounts of time and space (the algorithm in [14] is a
notable exception). More recently, it has been observed [8] that type-based alias
information can be used to obtain simple and effective dependence analysis of
object references in statically-typed OO languages such as Modula-3 and Java.
Finally, [13] has identified restrictions due to Java’s memory model that must
be imposed on compiler optimizations for multithreaded Java programs.

This paper addresses the problem of data dependence analysis for Java in
the presence of Java’s “non-traditional” language features such as exceptions,
synchronization, and memory consistency. The “abstract locations” introduced
in section 3 can be viewed as an generalization of type-based alias analysis to also
deal with exceptions. Most previous compilers for object-oriented languages (e.g.,
[7]) modeled exceptions as branch instructions that terminate basic blocks, and
hence did not have to deal with dependence analysis for exceptions. In contrast,
our compiler builds extended basic blocks that can include multiple PEIs within
the same basic block.

6 Conclusions and Future Work

In this paper, we addressed the problem of data dependence analysis for Java
in the presence of features such as exceptions, synchronization, and memory
consistency. We introduced dependences on new classes of abstract locations
to model code motion constraints arising from these language features. We
presented a linear-time algorithm for constructing this augmented dependence
graph for an extended basic block (using type-based alias analysis for Java). As
motivation for dependence analysis, we discussed two phases of the Jalapefio
dynamic optimizing compiler, instruction selection and instruction scheduling,
that use the data dependence graph. An interesting direction for future work
1s to use the dependence rules for abstract locations presented in this paper to
enable code motion transformaction across regions that are larger than a single
extended basic block.



18

References

10.

11.

12.

13.

14.

15.

Bowen Alpern, Anthony Cocchi, Derek Lieber, Mark Mergen, and Vivek Sarkar.
Jalapefio — a Compiler-Supported Java Virtual Machine for Servers. In ACM
SIGPLAN 1999 Workshop on Compiler Support for System Software (WCS555'99),
May 1999. Also available as INRIA report No. 0228, March 1999.

Ken Arnold and James Gosling. The Java Programming Language. Addison-
Wesley, 1996.

Michael G. Burke, Jong-Deok Choi, Stephen Fink, David Grove, Michael Hind,
Vivek Sarkar, Mauricio J. Serrano, V. C. Sreedhar, Harini Srinivasan, and John
Whaley. The Jalapefio Dynamic Optimizing Compiler for Java. In ACM Java
Grande Conference, June 1999.

Jong-Deok Choi, David Grove, Michael Hind, and Vivek Sarkar. Efficient and
precise modeling of exceptions for the analysis of Java programs. In Proc. of the
ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and
Engineering, Toulouse, France, September 1999.

Ron Cytron and Jeanne Ferrante. What’s in a Name? Or the Value of Renaming
for Parallelism Detection and Storage Allocation.  Proceedings of the 1987
International Conference on Parallel Processing, pages 19-27, August 1987.

Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth
Zadeck. Efficiently Computing Static Single Assignment Form and the Control
Dependence Graph. ACM Transactions on Programming Languages and Systems,
13(4):451-490, October 1991.

Jeffrey Dean, Greg DeFouw, Dave Grove, Vassily Litvinov, and Craig Chambers.
Vortex: An optimizing compiler for object-oriented languages. In ACM SIGPLAN
Conference on Object- Oriented Programming Systems, Languages and Applications
(OOPSLA), San Jose, CA, October 1996.

Amer Diwan, Kathryn S. McKinley, and J. Eliot B. Moss. Type-based alias
analysis. In SIGPLAN '98 Conference on Programming Language Design and
Implementation, pages 106-117, May 1998.

Guang R. Gao and Vivek Sarkar. Location Consistency: Stepping Beyond the
Memory Coherence Barrier. International Conference on Parallel Processing,
August 1995.

Guang R. Gao and Vivek Sarkar. On the Importance of an End-To-End
View of Memory Consistency in Future Computer Systems. Proceedings of the
1997 International Symposium on High Performance Computing, Fukuoka, Japan,
November 1997.

Steven S. Muchnick. Advanced Compiler Design € Implementation. Morgan
Kaufmann Publishers, Inc., San Francisco, California, 1997.

William Pugh. A new memory model for Java. Note sent to the JavaMemoryModel
mailing list, http://www.cs.umd.edu/ pugh/java/memoryModel, October 22, 1999.
William Pugh. Fixing the Java Memory Model. In ACM Java Grande Conference,
June 1999.

Bjarne Steensgaard. Points-to analysis in almost linear time. In 28rd Annual ACM
SIGACT-SIGPLAN Symposium on the Principles of Programming Languages,
pages 3241, January 1996.

Michael J. Wolfe. Optimizing Supercompilers for Supercomputers. Pitman, London
and The MIT Press, Cambridge, Massachusetts, 1989. In the series, Research
Monographs in Parallel and Distributed Computing.



