
Ogg Vorbis and MP3

Audio Stream charecterization

By:

Ayman Ammoura Franco Carlacci

Instructor: Dr. Ioanis Nikolaidis

Last Compiled: September 22, 2002

CONTENTS 1

Contents

1 Introduction 4

2 Which Came First, the Ogg or the Vorbis? 6
2.1 Vorbis: The CODEC . 6
2.2 The Ogg Bitstream . 7
2.3 Using RTP Over UDP: Vorbis Without The Ogg 8

2.3.1 Codebook Transmission 9

3 Experimental Methodology 10
3.1 Obtaining Sample Pieces . 11
3.2 Waveform: Ogg Verses MP3 11
3.3 Sound Quality . 14

3.3.1 Drop That Bass . 14
3.3.2 General Sound Quality 15

4 Autocorrelation and Self-Similarity 18
4.1 Time Series Plots . 18
4.2 Examining Temporal Correlations 18
4.3 Lagged Scatterplot . 20
4.4 Variance-time plots . 22
4.5 Further Results . 23

5 Concluding Remarks 23

bibliography 28

A Tools Used for Audio Generation and Analysis 30

LIST OF FIGURES 2

List of Figures

1 The general Ogg project that include the video project Tarkin. 5
2 The complete process of input, analysis, encoding, and output. 6
3 The raw Vorbis packets are logically segmented into a set

of segments of length 255 bytes. The last segment is the
lacing value which must be < 255 and is used as a recapture
sequence marker. 7

4 This is the Vorbis bitstream structure. It is designed to be
used either inside an Ogg bitstream (TCP and files) or as-is
(RTP over UDP). 9

5 Three 20-second samples appended into one file. Left is the
original wave sample, followed by the corresponding MP3 and
Ogg Vorbis encoding. 12

6 An average frequency graph for Mp3 and Ogg Vorbis. Sample
is a 20-second piece from Bob Marley. 13

7 This is the statistics over the 20 second sample (Wu Tang)
track. From the left, Mp3, Ogg and Wav formats. 14

8 Method Man (the Wu Tang Clan) 50-trace average. This is
the average over the last 50 traces in the sample. The focus
of the wave form is on the ultra-low frequencies. Mp3 does
deliver approximately +2dB gain over Ogg in this range. . . . 15

9 This figure shows the Mid-Low frequency range. Notice how
Ogg is more dominant through the the 5KHz mark. 16

10 A closer look at what happens at high frequency ranges. Ogg
has a better handel on the frequency ranges above the 15kHz
mark when compared to Mp3. 17

11 The important thing to notice here is that Ogg remains “bril-
liant” at high frequencies. It is almost identical to the original
wave file wave form. 17

12 This figure is used to further illustrate the “strait cut” exhib-
ited by the LAME encoder at high frequencies. 17

13 frame number versus bitrate for the file macy.ogg 19
14 Frame number versus bitrate for the file macyvbr.ogg plotted

as discrete points . 19
15 First 300 frames of the graph frame number versus bitrate for

the file macyvbr.ogg . 20
16 Lag 1 scatterplot for macyvbr.ogg 21
17 Lag 20 scatterplot for macyvbr.ogg 21

LIST OF FIGURES 3

18 Variance-time plots with β and hurst parameter and least-
squares line. 23

19 Run length versus frequency of occurrences for values below
the cutoff. 24

20 Run length versus frequency of occurrences for values above
the cutoff. 25

21 lag 1 scatterplot for straussvbr.ogg 25
22 Lag 1 scatterplot for enyavbr.ogg 26
23 Variance-time plot for enyavbr.ogg 26
24 Variance-time plot for straussvbr.ogg 27

Ogg Vorbis and MP3

Audio Stream Characterization

Ayman Ammoura Franco Carlacci
University of Alberta

Instructor: Dr. Ioanis Nikolaidis

September 22, 2002

Abstract
This paper presents a detailed discussion about the newly emerging

multi media CODEC known as Ogg Vorbis. The focus remains on
the audio part of Ogg Vorbis. To understand how this format differ
in audio quality, an analytical comparison with the “leading” audio
CODEC MPEG layer 3 is conducted. This leads to a discussion in
which the physical and logical properties of such streams is identified.
In this report several avenues are explored in an attempt to characterize
Ogg bitstream traffic. Most of the experiments conducted were based
on some modifications to the library code provided by the Xiph.org as
part of their open source distribution.

1 Introduction

Audio streams make a large percentage of streamed data over the internet.
One of the main reason that made this possible, besides fast ethernet connec-
tions, is the fact that audio compression algorithms are capable of producing
file sizes that are a fraction of the original input CD audio tracks. One of the
absolute leaders in audio compression is the MPEG layer 3 CODEC known
as MP3. The input to an MP3 encoder is a wave file and the output is a
compressed version that is stream,

One of the main motivating reasons for developing Ogg Vorbis has to do
with patents. Unlike the most popular audio compression CODECs, Ogg
Vorbis is fully open source , non-proprietary, patent-free, and royalty-free
software. It is a general-purpose compressed audio format for mid to high
quality1 audio and music[4, 10]. One of the best features that made Ogg

1That is roughly between 8kHz to 48kHz with at least 16 bit polyphonic encoding.

4

1 INTRODUCTION 5

Ogg ProjectOgg Project

Ogg TarkinOgg TarkinOgg VorbisOgg Vorbis

Ogg Ogg VorbisVorbis TarkinTarkin Ogg Ogg

Figure 1: The general Ogg project that include the video project Tarkin.

Vorbis well accepted is the ability to adjust its bitrates according to some
quality or average parameter. This is known as variable bitrate encoding
and average bitrate encoding, respectively. This places Vorbis in the same
competitive class as audio representations such as MPEG-4 (AAC), and
similar to, but higher performance than MPEG-1/2 audio layer 3, MPEG-4
audio (TwinVQ), WMA and PAC [7].

Ogg is the term used to refer to a group of several multimedia and
signal processing projects that are underdevelopment by the Xiphophorus
organization [9]. Two such project are currently in active development and
one of which has already been released, audio Ogg, and the other is still not
officially released, video Ogg. The Ogg project video codec is called Tarkin.

This report consists of three segments. First, the formats and definitions
that make up the Ogg Vorbis audio is given. This discussion is focused on
the formatting and the transformation of audio sound signals into trans-
portable packets (Section 2.2). In the second portion we present some of
the characteristics of Ogg Vorbis with respect to the encoded signal itself.
The exact details of the mathematics behind the actual encoding of bits and
the subsequent appropriate compression is beyond the scope of this paper.
Instead, by examining the encoded, decoded, compressed and uncompressed
signals, it is possible to observe the effect of the encoding and the charac-
teristics of the resultant bitstream. This is done by taking a close look at
the frequency domain (Section 3).

Once the original audio signal has been encoded and appropriately for-
matted for transporting, it is important to examine the statistical properties
that Ogg Vorbis traffic exhibits. This is done in the third portion of the pa-
per. Using code that scans Ogg streams, our initial results suggested that
the traffic could be classified as self-similar. This notion is exploited further
in Section (4).

2 WHICH CAME FIRST, THE OGG OR THE VORBIS? 6

PCM(wave file)

Analysis

Coding

Ogg Bit Stream File/TCP

RTP(UDP)

Raw Vorbis
Packets

Input: CD data as a sequence of PCM samples per second

Packet segmentation into a series of overlapping windows

Encoding – MDCT, and Compression – Hoffman

Output
Provides own framing

St
re

am
 B

as
ed

Figure 2: The complete process of input, analysis, encoding, and output.

2 Which Came First, the Ogg or the Vorbis?

It is often the case that the terms “Ogg”, “Ogg-Vorbis” and “Vorbis” are
used interchangeably without really knowing which of which is which! In
simple terms, Vorbis is the name of the CODEC that does the encoding,
decoding and the compression while Ogg is the term used to refer to a Vorbis
encoded audio stream. That is, a network carries the Ogg and the client
strips the Ogg and decodes the Vorbis. More details as to what this entails
is presented in this section.

2.1 Vorbis: The CODEC

Given a wave file or a PCM (Pulse Code Modulation) source, the task
is to produce an encoding that maintains a reasonable2 audible quality as
well as compresses the output data. This is precisely the task of the Vorbis
CODEC. Vorbis encodes short blocks of PCM data into raw bit-packed data
packets called raw Vorbis packets. Once these raw packets are generated, the
following step depends on the intended use. For transport mechanisms that
provide their own framing, synchronization and packet separation, such as
RTP (Real-Time protocol), for the purpose of stream-based storage (files)
or transport (TCP) Vorbis uses what is called an Ogg bitstream format
(Figure 2.

2What does “reasonable” really mean? This is discussed the Section 3.

2 WHICH CAME FIRST, THE OGG OR THE VORBIS? 7

Header

Raw Vorbis packet (1279 bytes)

�
(header,255,255,255,255,255,4) = Page

Ogg bitstream framing process

Lacing Value "4" bytes

Packet Segments "255" bytes

Figure 3: The raw Vorbis packets are logically segmented into a set of seg-
ments of length 255 bytes. The last segment is the lacing value which must
be < 255 and is used as a recapture sequence marker.

2.2 The Ogg Bitstream

The Ogg bitstream format provides the raw Vorbis packets with fram-
ing structure, synchronization, synchronization recapture after errors, land-
marks for seeking, as well as the information needed to be able to reproduce
the packets from the frames without relying on the decoding process for
boundary recovery [10].

Figure 3 illustrates how the Ogg framing is used to convert the raw Vorbis
packets into an Ogg bitstream. As the name suggests, this is applied when
the destination for the encoded audio is intended for streaming, ie. TCP or
file storage. There are three terms that are needed to define the Ogg bit-
stream, these are page, segment, and lacing value. As indicated earlier there
are no restrictions on the Vorbis packet size, which makes it necessary to
place a “framing convention.” Such convention allows the decoder, ogg123,
an easy mechanism to synchronies and recover from errors.

A logical Ogg bitstream is an ordered set of pages that belong to one Ogg
bitstream. Since it is possible to multiplex more than one Ogg bitstream,
the term Ogg physical bitstream is used to define a stream that consists of
one or more logical bitstreams. To clarify, multiplexing one or more logical
Ogg streams does not include stereo audio. What is meant by multiplexing
is the ability to include multichannel tracks in a single Ogg media streams.
Another example is in Video where audio (single or multichannel track) and
video are multiplexed into a single Tarkin stream. Just a side note that
worth mention here is that with Ogg Vorbis it is possible to multiplex an
MP3 audio track with an Ogg video stream.

In the example given in Figure 3, assume that a packet of size 1279
bytes has arrived to be incorporated into an Ogg bitstream. To construct

2 WHICH CAME FIRST, THE OGG OR THE VORBIS? 8

one page, a header is needed to store the number of logical segments that
are going to be generated. The convention here is that every segment except
the last must be exactly 255 bytes long. Values that are less than 255 are
reserved for a special type of segment that is called the lacing value. For
instance, upon the receipt of a page, if the some of the data was lost,then the
decoder will seek the lacing value to recover and re-synchronies. It should
be noted here that it is indeed possible to have an Ogg stream that consists
of a single page.

In in an effort to avoid confusion, it is important to draw a distinction
between three types of bitstreams. The scarce bits-and-pieces of literature
available about Ogg Vorbis seem to describe three bitstreams; Ogg logical,
Ogg Physical and Vorbis bitstream. In the above discussion the Ogg bit-
streams have been defined as a collection of raw Vorbis packets that have
been formatted used Ogg framing. Now, what if the Ogg framing is not
needed? For this purpose, the Vorbis bitstream is used. More details is
given next.

2.3 Using RTP Over UDP: Vorbis Without The Ogg

As indicated in Section 2.1, once the raw Vorbis packets are obtained, the
next step is determined by the method by which these packets are to be
consumed. If these packets are to be streamed, then the Ogg formatting is
needed for synchronization and framing; however, if the transport mecha-
nism used does provide its own framing, then the Ogg formatting is unnec-
essary. This subsection includes a description of how Vorbis encoded audio
may be formatted for use as an RTP payload type [8]. Applications typically
run RTP on top of UDP (User Datagram Protocol)as part of the transport
layer protocol UDP provides a connectionless service to application-level
procedures [6, 12], this means that this is unreliable service. The natural
question to pose then is how can this be use for the transportation of audio
media?

To use UDP as a transport protocol for real-time traffic, some func-
tionality has to be added. Functionality that is needed for many real-time
applications is combined into RTP. The services that RTP provides include
timestamping, sequence numbering, payload identification and source iden-
tification [11]. As far as the transportation of the Vorbis packets, the most
significant information in the RTP header is the timing information. The
sender timestamps each RTP packet with the point in time the first sample
in the packet was encoded. The receiver then uses these timestamps to re-
construct the original timing before the audio can be played back (decoded

2 WHICH CAME FIRST, THE OGG OR THE VORBIS? 9

Parameter Header

Vorbis Bitstream

Comment Header

Codebook Header

Bitstream begins here

…

Figure 4: This is the Vorbis bitstream structure. It is designed to be used
either inside an Ogg bitstream (TCP and files) or as-is (RTP over UDP).

- ogg123).
There are three header packets that must begin any Vorbis bitstream;

these are parameter header packet, comment header packet and codebook
header packet. The comment header is used to specify information such as
the stream type, version, number of channels, sample rate, nominal bitrate
(ABR), minimum and maximum bitrates (VBR) etc. The text comment
header is the second (of three) header packets that begin a Vorbis bitstream.
It is meant for short, text comments, not arbitrary metadata; arbitrary
metadata belongs in a metadata stream (usually an XML stream type) [13].

Vorbis uses codebooks, the third header, to perform Huffman encoding
on vectors of floating point values. These values are stored in the analysis
packets that are also called the “raw Vorbis” packets. Technically, a code-
book is a one-to-one mapping between a set of these vectors and a set of
Huffman codes, which are bitstrings of varying lengths [13]. To be a lit-
tle more specific, the process of creating Vorbis packets is called Bitpacking
which arranges the variable sized words of the back-end coding into a vector
of octets without wasting space. The octets produced by coding a single
short-time audio segment is one raw Vorbis packet.

2.3.1 Codebook Transmission

In order to decode a Vorbis stream, a set of codebooks3 are needed. The
RTP takes care of error recovery but without the codebooks the Vorbis
player (decoder) will not be able to use any of the packets transmitted.
These codebooks may vary for for each logical bitstream, for example n
users listening to Vorbis net-radio station. This gives rise to an important
issue that remains an open issue [8].

A client requesting a connection to a multicast RTP Vorbis session needs
to get the first set of codebooks intact in some manner. How can this be

3The Vorbis codebooks vary between 4 kilobytes and 8 kilobytes

3 EXPERIMENTAL METHODOLOGY 10

done? As of the date of this writing, there has been no final solution in
which this requirement is guaranteed. Some of the possibilities proposed by
the Xiph.org foundation include:

1. Use the session description protocol (SDP) to include the first set of
codebooks.

2. Use multicast to broadcast a second Vorbis stream that contains in-
cluding the codebooks.

3. Define a method that a client can use to request the codebooks via
RTCP.

4. Periodic retransmission of the headers.

3 Experimental Methodology

The general motivation for this project is to study the statistical properties
of either the MP3 audio compression algorithm or the Ogg Vorbis. Having
said that, it is important to take a closer look at both to examine some of
the differences. The final analysis of an studio stream was performed on the
Ogg Vorbis stream (Section 4). This choice was not based on a particular
reason it is just the fact that it is new, and the dynamic range provided by
the Vorbis encoder seem to be better than that of the MPEG as well as the
fact that Ogg is an open source project.

It is difficult to isolate the methodology of the research from the results
obtained. For the most part, the interest was to try and locate interesting
features of the encoded streams, either from the encoding perspective or
from the stream perspective. As a result, the remainder of this paper is
divided into two main parte. We first present the methods used to analyse a
the Ogg and the MP3 sample pieces. In the second segment, the discussion
is focused on the statistical properties of an Ogg Vorbis stream, including
the multiplexing of more than one stream over a network.

The original PCM files were captured, “ripped,” from audio CD’s into
wave (WAV) files using creative studio. From these files, LAME version
3.2 and Oggenc (the Ogg encoder) were used to produce the encoding into
the MP3 an Ogg respectively. Both encoders are capable of generating the
variable file format that is desired for this study.

3 EXPERIMENTAL METHODOLOGY 11

3.1 Obtaining Sample Pieces

Each wave sample obtained was converted into Ogg and into MP3. The
sample length for each of the samples was 20 seconds4. There are a total of
23 samples in the corresponding we page for this project [1]. The following
are the two commands used for generating the files:

lame -v -V 2 sample.wav sample.mp3
oggenc -q 2 sample.wav -o sample.ogg

Once these samples have been encoded, a closer look would easily reveal
that this would not result in samples that are compatible with one another,
the reason for this is the fact that both encoders have their own interpreta-
tion of the quality parameter. That is, level “2” quality in Lame does not
necessarily mean the same bandwidth produced by the Vorbis encoder.

3.2 Waveform: Ogg Verses MP3

There are two ways by which an encoder can be studied; by exploring the
back-end algorithms or by listening to its output. Those two methods define
the objective fidelity and the subjective fidelity of the analysis respectively.
For this project, the latter seemed more appropriate due to time consider-
ations and the fact that the output of the encoders is very enjoyable. As
a matter of fact, the real reason why the subjective fidelity is very impor-
tant when discussing Ogg Vorbis is the fact that Vorbis compresses audio
by eliminating inaudible or undesirable audio frequencies based on spatial
psychoacoustic models. What does that mean? It means that the Vorbis
developers used experiments that illustrated how humans recognize various
sound frequencies and to what degree. This information was then used so
that certain frequencies and/or certain frequency changes are not encoded.

Initially in the project, we have collected several software pieces, plugs
and demo packages in an attempt to find a code that would plot and analyse
samples of both Ogg and MP3 input. after obtaining such tools the validity
of this was questioned. What is to be answered here is what is being looked
at and compared here? Looking at the wave form of an Ogg sample, basically
assumes that we have agreed on some tacit interpretation of the encoded
sound that is done by the plugin. That is, what is of importance is to know
what was changed, and what was removed5. As a result, it was decided that

4No particular reason for choosing this time duration, but 20 seconds seems to be long
enough to audibly identify the sound quality and visually examine the behaviour of the
encoded samples.

5Both MP3 and Ogg Vorbis are forms of lossy compression.

3 EXPERIMENTAL METHODOLOGY 12

Time Æ

WAV MP3 Ogg

16Khz

Figure 5: Three 20-second samples appended into one file. Left is the original
wave sample, followed by the corresponding MP3 and Ogg Vorbis encoding.

to obtain objective results, the following must take place:

1. Take a 20 second wave sample.

2. Encode both samples into Ogg Vorbis and MP3 using ABR with pa-
rameters that are least biased.

3. Convert the two pieces back to wave formate.

4. Compare the three wave pieces side-by-side.

The main observation here is to observe what happens what to the high
frequency frequency ranges upon encoding. It seems that frequencies above
the 16KHz seem to have been lost after the compression process in both
the Mp3 and the Ogg Vorbis (indicated by the black region - no energy).
However, from Figure 5 it is observed that the cutoff is not as sever in
the Ogg sample as it is in the MP3 sample. This indicates that the Ogg
algorithm is more capably of encoding some dynamic range in the upper
frequencies. A look at the close-ups in Figures 12 and 11 easily confirms
this observation.

The way that both encoders treat high frequencies can be confirmed us-
ing Figure 6. What is important in this figure is the ability to examine the
entire 20 second sample, record the power (decibels) of the frequency for
every millisecond, and then averaging over the entire period6. The result of
averaging both the Mp3 and the Ogg Vorbis samples is seen in this figure.
It should be clear here that the Ogg Vorbis does indeed maintain, although
diminishing, some of the higher frequencies. In contrast, the plot repre-
senting the Mp3 sample experiences a sudden large drop above the 15KHz

6This was produced using baudline freeware.

3 EXPERIMENTAL METHODOLOGY 13

15KHZ

Ogg

mp3

Figure 6: An average frequency graph for Mp3 and Ogg Vorbis. Sample is
a 20-second piece from Bob Marley.

3 EXPERIMENTAL METHODOLOGY 14

Mp3 Ogg waveMp3 Ogg wave

Figure 7: This is the statistics over the 20 second sample (Wu Tang) track.
From the left, Mp3, Ogg and Wav formats.

mark. This corresponds to the black “strip” seen on top of the mp3 sample
in Figure 5.

One feature that does exist in both encoders and illustrates how psychoa-
coustics are used in encoding music can be seen from the results in Figure
7. The average power is measured in decibels (dB). Decibels are defined in
Terms of power per unit surface area on a scale from the threshold of human
hearing, which is set at 0 dB, up until the level of pain, set about 120-140
dB. This indicates that the Ogg Vorbis encoding does “add” more power
to the signals it encodes and both do add more than the original encoded
sample.

3.3 Sound Quality

In order to comment the subjective fidelity of both encoders, various samples
of varying attributes were listened to and compared. During the sampling
process some attributes were noted. In the hope to further understand
or prove these observed sound attribute, the following frequency domain
analysis is reported.

3.3.1 Drop That Bass

One sound attribute that is noticed in pieces containing significant low fre-
quencies on a regular basis (low base). The sample that has been chosen
is from the Method Man - Wu Tang Clan. This is a Rap piece with many
instances of ultra low frequency. What is needed here is to be able to pick
a wave form that presents the low frequency range and compare that with

3 EXPERIMENTAL METHODOLOGY 15

Ogg

Mp3

Deep Bass

Figure 8: Method Man (the Wu Tang Clan) 50-trace average. This is the
average over the last 50 traces in the sample. The focus of the wave form
is on the ultra-low frequencies. Mp3 does deliver approximately +2dB gain
over Ogg in this range.

the original and the Mp3waveform. Once again, this is difficult to do since
is almost impossible to be able to isolate manually traces. Instead, we have
edited the Wave sample into a 3-second sample the end of which is a long
deep-base sound. As before, this sample was encoded to Mp3 and Ogg and
then decoded back to Wave. Then Spectra Lab Pro was used to average the
last 50 traces of the sample. The resulting average frequency can be seen in
Figure 8. The ultra low base known as “base-drop” that can be produced
audio speakers is within the range 20Hz - 70Hz7.

3.3.2 General Sound Quality

It is true that the be able to detect the minute changes in encodings, very
fine and well-toned instruments have to be used. The samples that we have
listened to were compared using a headphone set-that is isolates a good deal
of the outside noise. Besides the ultra low frequency mentioned above, Ogg
Vorbis does have a “cleaner” sound. What does this mean? For the most
part, while listening to vocal artist, samples from LeAnn Rimes [1], Ogg
seems to deliver a better sound through a more noticeable stereo separation.
That is, with Ogg encoded pieces it is easy to note that a sample is indeed
in stereo. Mp3 seems to produce better stereo at higher bitrates.

In addition, the Signal to Noise Ratio (SNR) was computed for different
samples. The SNR is the ratio of the signal peak level to the total noise
level. These levels are measured by their power, and hence, the SNR is
expressed in decibels (dB). SpectraLab (the software used)computes the
SNR by searching the entire spectrum to find the peak frequency and then

7Anything lower than 30Hz can only be reproduced by professional speaker systems.

3 EXPERIMENTAL METHODOLOGY 16

Ogg

Mp3

1kHz

Figure 9: This figure shows the Mid-Low frequency range. Notice how Ogg
is more dominant through the the 5KHz mark.

calculates the total noise power in the remaining spectrum. That is, a high
SNR indicates less distortion (since more signal than noise) while low SNR
indicates greater distortion.

1. Wav: SNR (left) = 4.88 dB, (right) 5.65 dB

2. Ogg: SNR (left) = 6.92 dB, (right) 7.51 dB

3. Mp3: SNR (left) = 9.69 dB, (right) 10.20 dB

These results seem to favour Mp3 as a sound with a “less distortion,”
but this measure is objective and to judge the sound by listening is indeed
subjective. It is probably because of the greater stereo separation in Ogg
that it does sound better! Figures 9, 10, 11, and 12 illustrate in more
detail the various attributes of Ogg. All these figures have been obtained
from the same sample (LeAnn Rimes) considering only the average of the
final 100 traces in the sample. What is interesting is that Ogg not only
reproduce frequencies in the range 15KHz - 16KHz better than Mp3 but it
also preserves the original dynamic range of the original wave file.

3 EXPERIMENTAL METHODOLOGY 17

Ogg

Mp3

Figure 10: A closer look at what happens at high frequency ranges. Ogg
has a better handel on the frequency ranges above the 15kHz mark when
compared to Mp3.

Ogg

WAV

Figure 11: The important thing to notice here is that Ogg remains “brilliant”
at high frequencies. It is almost identical to the original wave file wave form.

Mp3

WAV

Figure 12: This figure is used to further illustrate the “strait cut” exhibited
by the LAME encoder at high frequencies.

4 AUTOCORRELATION AND SELF-SIMILARITY 18

4 Autocorrelation and Self-Similarity

As one of the objectives of this project is to analyse the Ogg bit stream, it
is important to be able to extract some of the encoded information. The
bitrates as they are encoded in each frame is used to examine the relation
between that and time.

We have modified the mp3stat program so that we are able to extract
the bitrates for every frame encoded in the Ogg file. This data was output
to a temporary file that contains a sequence of the bitrates as the file is
decoded.

Looking at the source code, the bitrates that are generated correspond
to one per frame. So in our subsequent development we will treat the bitrate
values as a vector or series:




x1

x2

. . .
xn




The value n represents the number of frames found in the Ogg file. This
value will vary depending on the audio sample used .In our attempts to
examine the self similarity of the data that have been obtained the following
experiments were done in order.

4.1 Time Series Plots

The first intuitive plot that may be used to visualize the extracted bitrates
is to plot the values chronologically. That is, a graph that plots the frames
(time) verses their corresponding bitrate. The plot is seen in Figure 13.

It is apparent that the bitrates distribution seem to be narrowed down
to two regions, upper and lower. It is important to note again here that the
encoders were not restricted by any external parameters to try and group
the output to fit an average bit bitrate. This point is re-enforced by the
graph seen in figure 14.

4.2 Examining Temporal Correlations

From the above it is observed that the bitrates are gathered into two regions
but without any time correlation between the points. What needs further
examination is the way these points are generated. In particular, does the
encoder generates a sequence of points in one region and then the following
sequence in the other, or it merely oscillates between the two?

4 AUTOCORRELATION AND SELF-SIMILARITY 19

0 50 100 150 200 250 300 350 400 450 500
70

80

90

100

110

120

130

140

150

160

170

Figure 13: frame number versus bitrate for the file macy.ogg

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200
Bitrate vs virtual time

virtual time

bi
tr

at
e

Figure 14: Frame number versus bitrate for the file macyvbr.ogg plotted as
discrete points

4 AUTOCORRELATION AND SELF-SIMILARITY 20

0 50 100 150 200 250 300
70

80

90

100

110

120

130

140

150

160

170
bitrate vs. virtual time

virtual time

bi
tr

at
e

Figure 15: First 300 frames of the graph frame number versus bitrate for
the file macyvbr.ogg

For that purpose, the plot in Figure 15 was generated. The data here
is a subset of the data seen in Figure 13. Such a smaller subset makes it
possible to visualize how these points are generated in time. As is evident
from the graph the encoder seems to be generating frames that are in one
of the regions seen in Figure 14 and then there is a jump to the next region
were the encoder generates the next frames and then moves one to the first
region.

4.3 Lagged Scatterplot

The following analysis was performed using Matlab. Scripts were writ-
ten that allowed us to compute both the lag-k scatterplots as well as the
variance-time plots.

Our search for self-similarity started by looking at the lagged scatterplot
[3] of our vector. A lagged scatterplot is a scatterplot of a time series against
itself offset by one to several time units. That is, the lagged scatterplot
for lag-k is a simple scatterplot of the last n − k observations against the
first n − k observations , where n is the size of the time series. This plot
is important because alignments of points in some direction indicate some

4 AUTOCORRELATION AND SELF-SIMILARITY 21

0 20 40 60 80 100 120 140 160 180 200
50

100

150

200
1−lag scatterplot for macyvbr.ogg

x
i

x i+
1

Figure 16: Lag 1 scatterplot for macyvbr.ogg

0 20 40 60 80 100 120 140 160 180 200
50

100

150

200
20−lag scatterplot for macyvbr.ogg

x
i

x i+
20

Figure 17: Lag 20 scatterplot for macyvbr.ogg

4 AUTOCORRELATION AND SELF-SIMILARITY 22

degree of correlation. Also if we look at the plots for several different lags
k we will see that the general structure of the scatterplot remains the same
suggesting that the underlying process might be self-similar.

A lag-1 scatterplot and lag-20 scatterplot are shown in figures 16 and
17 We can see how the bitrates are segregated into two very distinct groups
along the line y = x. The clouds in the upper left and lower right region of
the map represent instances during which there is a transition from low to
high (upper left) and high to low (lower right) bitrates. It is clear that
the two plots have an almost identical structure suggesting a self-similar
process.

4.4 Variance-time plots

Our next step was to attempt to estimate the degree of self-similarity by
evaluating the Hurst parameter. LeLand et. al [5] suggest three different
approaches: (1) time-domain analysis based on R/S statistic, (2) variance-
time plots and (3) periodogram-based analysis in the frequency domain. We
used the second approach.

The variance-time plots technique is based on the observation that in
a self-similar process, the variance for the aggregated process X(m)(m =
1, 2, 3, ...) [5] decreases linearly for large m in log-log plots against m. Values
of the estimate of the slope β of the best-fit line between -1 and 0 suggest
self-similarity and the Hurst parameter can be estimated by H = 1 + β/2.
In [5] a typographical error must have slipped in since the authors suggest
that −1 < β < 0 implies that the Hurst parameter H = 1− β/2

Figure 18 show the variance-time plot for a piece by Macy Gray. The
value of the Hurst parameter H is found to be equal to 0.5580. It is known
(and can be mathematically demonstrated) that H = 0.5 corresponds to
non-self-similar data, while 0.5 < H < 1.0 corresponds to self-similar data.
In their paper Leland et al. suggest that high values for H implies a high
degree of ”burstiness”.

We pointed out earlier that the bitrate values fluctuated between two
ranges. Knowing this, we decided to investigate the duration of virtual time
that the bitrates spent in a given range before moving over to the other. We
used Figure 14 to give us a cutoff value and then scanned the bitrate vector
counting runs of values below the cutoff as well as above the cutoff value.
The results are given in the histograms in figure 19 and 20. The intent here
was to see if the self-similarity was a result of some type of on-off, or in our
case low-high, heavy-tailed process. The results are inconclusive.

5 CONCLUDING REMARKS 23

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2
variance−time plot for macyvbr.ogg

log(m)

lo
g(

va
r(

X
(m

)))

y = −0.8268x + 3.1898

Beta = −0.8268
Hurst = 1 + Beta/2 = 0.5866

Figure 18: Variance-time plots with β and hurst parameter and least-squares
line.

4.5 Further Results

As it may be on the mind of the reader at this point, would the above hold
if a different type of musical sample was chosen? To reveal or dispel and
music-type dependence, the same exact tests have been done on two other
full, and completely different, music pieces.

The lag-1 lagged scatterplot for the two pieces are presented in figures
21 and 22. The first sample is the Strauss piece and the second is the Enya.
The Strauss sample is a very complicated instrumental piece. The song
from Enya, on the other hand, is mellow piece with a vocal track laid over
a simple musical accompaniment. We have also included the variance-time
plots for these two pieces in figure 23 and 24. The interesting thing as it
is clearly illustrated in these pictures is that the basic properties hold for
these samples.

5 Concluding Remarks

Once the spectral and waveform tools are installed and ready to use, a be-
ginner to this area will be faced with many considerations and alternative

5 CONCLUDING REMARKS 24

0 20 40 60 80 100 120 140
0

20

40

60

80

100

120

140

160

180

200
run length vs frequency of occurrences for low values

run length

oc
cu

rr
en

ce
s

Figure 19: Run length versus frequency of occurrences for values below the
cutoff.

as to how to conduct a comparative analysis of some CODEC. Issues such
as parameter usage, sample length, and sample type have been easily dealt
with. However, comparing waveforms is more difficult and the averaging
approach that was taken in this studies was indeed our solution. The prob-
lem is that some reports ,such as the one by Andrei Aspidov [2], present
a rather large number of comparative waveform figures of Ogg and Mp3
without any indication of how these frequency traces were obtained. As we
have attempted obtaining our own results it became immediately clear that
it is next to impossible to isolate a single trace so that identical traces from
wav, Ogg, and Mp3 can be compared. Since how a CODEC deals with a
given range of frequencies was the main concern, averaging several identical
frames seemed reasonable for comparative purposes. From the testing that
we have done Mp3 and Ogg seem to excel in different areas. Ogg Vorbis
does provide a true variable bitrate streams that indeed preserves most of
the details and definition when needed. This is especially true in the case
of high frequencies where Ogg will encode traces above the 15kHz in some
instances as determined by the psychoacoustic model used. For pieces were
he ultra low base is needed, Mp3 delivers more power (dB) to the the lower

5 CONCLUDING REMARKS 25

0 5 10 15 20
0

10

20

30

40

50

60

70

80

90

100

110
Run vs Frequency of Occurrence for High values

run size (in virtual time units)

oc
cu

rr
en

ce

Figure 20: Run length versus frequency of occurrences for values above the
cutoff.

0 20 40 60 80 100 120 140 160 180 200
60

80

100

120

140

160

180

200
lag1 scatterplot for straussvbr.ogg

x
i

x i+
1

Figure 21: lag 1 scatterplot for straussvbr.ogg

5 CONCLUDING REMARKS 26

0 50 100 150 200 250
60

80

100

120

140

160

180

200

220
lag 1 scatterplot for enyavbr.ogg

x
i

x i+
1

Figure 22: Lag 1 scatterplot for enyavbr.ogg

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
1.4

1.6

1.8

2

2.2

2.4

2.6

2.8
variance−time plot for enyavbr.ogg

log(m)

lo
g(

va
r(

X
(m

)))

y = −0.5938x + 2.6568

Beta = −0.5938
Hurst = 0.7031

Figure 23: Variance-time plot for enyavbr.ogg

5 CONCLUDING REMARKS 27

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
1

1.5

2

2.5
variance−time plots for straussvbr.ogg

log(m)

lo
g(

va
r(

X
(m

)))

y= −0.5991x + 2.3664

beta = −0.5991
Hurst = 0.7004

Figure 24: Variance-time plot for straussvbr.ogg

frequencies (30Hz - 100Hz).
As far as Ogg traffic is concerned, evidence seems to point to the fact that

the bitrates output by a Vorbis decoder are self-similar with some reasonable
high degree of burstiness. The k-lag scatterplots and the variance-time plots
support this. Attempts at trying to explain this behaviour in terms of
some underlying process were inconclusive. We would like to investigate
this phenomenon further by trying the other two approaches suggested in
[5]. Also the idea of simulating this bitrate generation and listening to the
result sounds (excuse the pun!) like it might be interesting to try.

REFERENCES 28

appendix

References

[1] Ayman Ammoura and Franco Carlacci. Web page for the
oggvorbis and mp3 project. Internet Page, April 2002.
www.cs.ualberta.ca/~ayman/OggVorbis/.

[2] Andrei Aspidov. Ogg vs. lame. Digit
Life, page Internet Publication, 2001.
http://www.digit-life.com/articles/oggvslame/index.html.

[3] George E.P. Box and Gwilym M. Jenkins. Time Series Analysis. Holden
Day Publishing, 1976. ISBN:0-8162-1104-3.

[4] Andy Faulkner, Rich Smith, Brad Baylor, Jim Bailey, Paul Mack, Jim
Lemaster, and Tom Hartel. Running a net radio station with open-
source software. Linux Journal, 1(81), January 2001. Article available
through ACM digital library.

[5] Will E. Leland, Murad S. Taqq, Walter Willinger, and Daniel V. Wil-
son. On the self-similar nature of Ethernet traffic. In Deepinder P.
Sidhu, editor, ACM SIGCOMM, pages 183–193, San Francisco, Cali-
fornia, 1993.

[6] David E. McDysan. ATM Theory and Application. McGraw-Hill Series
on Computer Communications, first edition edition, 1994.

[7] Jack Moffitt. Ogg vorbis–open, free audio–set your media free. Linux
Journal, 1(81), January 2001. Article available through ACM digital
library.

[8] Jack Moffitt. RTP payload format for vorbis encoded audio. Inetrnet-
Draft, Febuary 2001. http://www.xiph.org/ogg/vorbis/doc/.

[9] Jack Moffitt. The xiphophorus home page. Internet HTML Page, 2001.
http://www.xiph.org/ogg/index.html.

[10] Monty. Ogg logical bitstream framing. Web
notes from the developers, Febuary 2001.
http://www.xiph.org/ogg/vorbis/doc/framing.html.

REFERENCES 29

[11] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson.
Rfc 1889: Rtp: A transport protocol for real-time applica-
tions. Network Working Group Memorandum, January 1996.
http://www.faqs.org/rfcs/rfc1889.html.

[12] William Stallings. Data and Computer Communications. Macmillan,
NJ, fourth edition edition, 1994. Page 587.

[13] Ogg Vorbis Team. Ogg vorbis comment field specifi-
cation. Web notes from the developers, Febuary 2001.
http://www.xiph.org/ogg/vorbis/doc/v-comment.html.

A TOOLS USED FOR AUDIO GENERATION AND ANALYSIS 30

A Tools Used for Audio Generation and Analysis

As Ogg Vorbis is still a newly emerging CODEC, the documentation and the
set of support tools are at a minimum. In our attempt to analysis the sound
quality and the statistical properties of Ogg Vorbis traffic several tools were
downloaded and experimented with.

On the back end we have used a statistical tool called Mp3Stat that
uses the Ogg library. Mp3stat is an opensource tool that scans two media
files, MP3 and/or Ogg, and generates a linear graph of bitrates per section of
the file. The way that this tool present the statistics is focused on the visual
aspect of things and, hence, tends to be on the course side so that the seen is
not over whelmed with colours. Several examples of visual representations
of the data files are provided on the associated web site (See [1]). To be able
to take a closer look, on the frame level, of the bitrates that the decoder
encounters we have modified the Mp3Stat code. Since Mp3Stat uses the
lib-ogg tool ogginfo, we “tapped” into the logical flow of Mp3Stat so that
every time a new bitrate is encountered, a text line containing that bitrate
is written to an external file. The home page for Mp3Stat is:

http://safemode.homeip.net/

For the audio analysis of the Ogg Vorbis and Mp3 we have downloaded a
demo version of SpectraLAB and CoolEdit Pro. Either one of these tools
would have been sufficient to analyse the decoded sound signals, the problem
was that in the demo version there are restrictions use. As CoolEdit does not
allow use beyond the 30 minute mark and limits some functions, SpectraLAB
does not allow anything to be written to disk. The combinations of both
does all that one could need. The home page for CoolEdit and SpectraLAB
respectively are:

http://www.syntrillium.com/
http://www.cetaceanresearch.com/analysis.html

To transform the PCM data, cdda, into wave file we have used Creative
Studio while Creative Mixer was used to adjust the output levels and edit
the appropriate 20-second samples obtained.

