
Region Analysis and Transformation for Java Programs

Sigmund Cherem and Radu Rugina
Computer Science Department

Cornell University
Ithaca, NY 14853

{siggi,rugina}@cs.cornell.edu

ABSTRACT
This paper presents a region analysis and transformation
framework for Java programs. Given an input Java program,
the compiler automatically translates it into an equivalent
output program with region-based memory management.
The generated program contains statements for creating re-
gions, allocating objects in regions, removing regions, and
passing regions as parameters. As a particular case, the
analysis can enable the allocation of objects on the stack.

Our algorithm uses a flow-insensitive and context-sensitive
points-to analysis to partition the memory of the program
into regions and to identify points-to relations between re-
gions. It then performs a flow-sensitive, inter-procedural re-
gion liveness analysis to identify object lifetimes. Finally, it
uses the computed region information to produce the region
annotations in the output program. Our results indicate
that, for several of our benchmarks, the transformation can
allocate most of the data on stack or in short-lived regions,
and can yield substantial memory savings.

Categories and Subject Descriptors
D.3.4 [Processors]: Compilers, Memory management; F.3.2
[Semantics of Prog. Languages]: Program Analysis

General Terms
Languages, Performance

Keywords
Region-based memory management, pointer analysis, pro-
gram transformations.

1. INTRODUCTION
A region-based system groups heap objects together in re-

gions and deallocates all of the objects in a region at once.
This approach has a number of appealing properties. First,
it may improve data locality. Second, it may improve perfor-
mance by deallocating entire regions rather than individual

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISMM’04, October 24–25, 2004, Vancouver, British Columbia, Canada.
Copyright 2004 ACM 1-58113-945-4/04/0010 ...$5.00.

objects. Third, it can be used in conjunction with static
analysis to provide automatic memory management. More
precisely, the compiler can group heap data into regions,
it can statically determine the program points where it is
safe to reclaim regions, and then transform the program
by augmenting it with region annotations. This approach,
originally proposed by Tofte and Talpin [23, 2], has been
successfully applied to functional languages such as ML.

And last, but not least, region-based memory manage-
ment is an attractive approach to memory management for
real-time systems, since such systems cannot afford to be
interrupted for unbounded amounts of time by a garbage
collector. For instance, the Real-Time Specification for Java
(RTSJ) [5] allows real-time programs to manage data with-
out garbage collection by allocating objects into an immor-
tal memory area, or into scoped regions of memory with
bounded lifetimes. However, RTSJ requires run-time checks
to ensure the safe access and deallocation of objects in such
memory areas. A static region analysis has appealing prop-
erties in this context: it can automatically infer memory
scopes, freeing the programmer of the burden of reasoning
about object lifetimes; or, it can enable the optimization
of programs with explicit scopes by eliminating unnecessary
run-time checks.

This paper presents a region analysis and transforma-
tion system for Java programs: it proposes techniques for
handling the imperative, object-oriented, and multithreaded
constructs in the language. Given an input Java program,
our system produces an output program augmented with
region annotations. These annotations include creating and
removing regions 1, allocating objects into regions, and pass-
ing regions as parameters.

Our region-based system has two features that distinguish
it from several existing approaches: a) regions are not lex-
ically scoped (unlike [23, 10, 15, 6, 8]); and b) the system
allows dangling references, so regions are being reclaimed
when they are no longer needed, even if there are incom-
ing references from live regions (unlike [15, 6, 8, 5]). Both
choices improve the precision of the computed lifetimes, at
the expense of making the analysis more complex. Analysis
systems with these features [1, 16] have been studied in a
functional setting, but not for imperative languages.

As in the case of many other analysis problems, the main
complication that imperative languages bring over functional
ones is the presence of pointer-based structures, aliasing,

1We use the terms region creation and removal, instead of al-
location and deallocation, in order to avoid ambiguities between
object allocation and region allocation.

85

and destructive updates. We leverage pointer analysis tech-
niques to address all of these issues. We use a unification-
based flow-insensitive, but context-sensitive pointer analysis
to partition the memory into regions and compute points-to
relations between the regions. Further, in the presence of
imperative control-flow constructs such as loops, sequences,
or if statements, the compiler must use a flow analysis to
identify live regions at each program point. We propose a
flow-sensitive, inter-procedural region liveness analysis that
computes region lifetimes. The compiler uses this informa-
tion to determine the program points where to insert region
creation and removal statements.

Finally, object-oriented and other features of Java pose
further challenges to the analysis. Virtual methods may
dynamically invoke different methods at run-time; threads
make it difficult to identify the lifetimes of shared objects;
and exceptions complicate the control flow. This paper pro-
poses a set of analysis techniques and run-time mechanisms
to handle all of these constructs.

Region analysis provides a solution to the problem of stack
allocation, as a particular case: it is able to identify regions
whose lifetimes match methods lifetimes and can allocate
these objects on stack. The analysis, however, does not focus
exclusively on such situations; in general, it manages regions
with arbitrary lifetimes, such as regions whose lifetimes span
across multiple procedures, or regions with loop-carried life-
times. Existing approaches to stack allocation [3, 9, 25, 4,
14, 21] are not aimed at identifying or taking advantage of
these general cases.

We have implemented and evaluated our analysis and
transformation on a set of Java benchmarks. We have ex-
tended the interpreter of the Kaffe VM [26] to support region
annotations and to provide region run-time support. Our re-
sults indicate that, for almost all of the benchmarks where
data is not live throughout the program, the transforma-
tion is able to allocate most of it on stack or in short-lived
regions, and can yield substantial memory savings.

The paper is structured as follows. Section 2 presents
our region constructs, Section 3 discusses an example, Sec-
tion 5 presents the basic analysis algorithm, and Section 6
describes extensions. Finally, we present experimental re-
sults in Section 7, discuss related work in Section 8 and
conclude in Section 9.

2. REGION CONSTRUCTS
The input language to our analysis and transformation

system is Java. Given a input Java program, the system
produces an output program which extends the original pro-
gram with region annotations. In this section we present the
region constructs informally. The formal semantics for simi-
lar constructs in a generic imperative language can be found
in [20]. There are five region constructs:

• create r and remove r, where r is a variable that
holds a handle to a region. Statement create r dy-
namically creates a new region and stores its han-
dle in r; statement remove r dynamically removes re-
gion r and reclaims all of its memory. Region vari-
ables need not be declared; their scope is the enclosing
method. We write create r1,..,rn as a shorthand
for create r1;..;create rn (similarly for remove).

• new C(e1,..,en) in r, for the allocation of objects
into regions. Here C is a class name, e1,.., en are

the constructor actual parameters, and r is the region
where the newly created object is to be placed. All
allocation statements must specify a target region.

• T m<r1,..,rk>(T1 p1,..,Tn pn) {..}, for method
declarations. Here m is the declared method; r1, ..,
rk are region parameters (in angle brackets); T, T1,
.., Tn are standard Java types; and p1, ..., pn are the
standard method parameters. We require overridden
methods to have the same number of region parame-
ters in the subclasses (because they may be dynami-
cally dispatched). Intuitively, region parameters hold
handles to regions where the method uses to place new
objects into. We refer to all of the regions that are not
parameter regions, but occur in the method body, as
local regions.

• m <r1,..,rk> (e1,..,en), for method calls. Here, m
is the method, r1, .., rn are the actual region parame-
ters, and e1, ..., en are the standard actual parameters
of the method.

The execution of the program generates an error at run-
time if: 1) a region r which occurs in a remove or new state-
ment, or in a method call doesn’t hold a handle to an allo-
cated region (either because the region has not been created
yet, or because it has already been removed); or 2) the pro-
gram accesses a field or a method of an object which has
been placed in a region that has been removed since the al-
location of the object; or 3) the program executes a create

r statement, but r already holds a handle to an allocated
region. The analysis and translation in our system ensures
that none of these situations will occur when the output
program is being executed.

3. EXAMPLE
This section presents two examples that illustrate the main

features of our analysis and transformation.

3.1 Example 1: A List Container
Figure 1 presents two classes that implement a linked list

structure. The code shown is the result of the transforma-
tion; the input program is the same, but without the region
annotations. Class Element implements the list elements,
which hold references to data objects. Class List holds the
list head and provides three methods: add, to insert an el-
ement at the beginning of the list; reverse, to produce a
new list with the elements in reverse order; and iterator,
which creates an iterator over the list elements. We omit
the definition of the Iterator class.

Our transformation generates the following region anno-
tations for class List: it produces formal region parameters
for methods add, reverse and iterator (at lines 11, 14,
and 24); it annotates the object allocation sites (at lines 12,
15, and 25) with regions for the new objects; and passes a
region parameter (at line 18) when method reverse invokes
add.

For method add, region parameter r1 represents the region
where the method allocates the new list element that will
hold the data object e. Method reverse requires two region
parameters: region r2 holds the new list object, and region
r3 holds all the elements of the new list. The objects that the
method creates in these two regions are being returned to the
caller. The reversal method allocates the list object in r2 at

86

1 class Element {
2 Object data;
3 Element next;
4 public Element(Object d, Element n)
5 { data = d; next = n; }
6 }
7
8 class List {
9 Element head;

10
11 public void add<r1>(Object e)
12 { head = new Element(e,head) in r1; }
13
14 public List reverse<r2,r3>(){
15 List list = new List() in r2;
16 Element elem = head;
17 while (elem != null) {
18 list.add<r3>(elem.data);
19 elem = elem.next;
20 }
21 return list;
22 }
23
24 public Iterator iterator<r4>()
25 { return new Iterator(head) in r4; }
26 }

Figure 1: Example translation. The input program
is the same, but without the region annotations.

line 15, but delegates method add to perform the allocation
of list elements at line 12; therefore, it passes region r3 as
an actual parameter to add. Finally, method iterator has
one region parameter r4; it creates a new container in this
region and returns it to its caller.

The transformation generates no region annotations for
class Element. Nonetheless, the compiler must analyze its
constructor method to figure out how its execution affects
the aliasing and region liveness in its callers.

3.2 Analysis Information
The key piece of information that the analysis computes

is a region points-to graph for each method. This graph
concisely captures the effects of invoking the method; these
include points-to effects, object allocation effects, and access
(i.e., read and write) effects for the method. The nodes in
a region points-to graph represent the regions that the exe-
cution of the method (including all invoked methods) either
accesses or manipulates references into. The edges model
points-to relations between these regions. Edge labels rep-
resent field names, and node labels represent sets of variables
(or allocation sites) that reference (or create) objects in the
corresponding region. For this example, we denote alloca-
tion sites using new, since there is at most one allocation
per method. The special variable this models the receiver
object; and ret models the return value. Nodes with no
labels represent regions that the method indirectly accesses
through calls to other methods.

Figure 2 shows the points-to graphs that our analysis com-
putes for the constructor of class Element, and for methods
add and reverse in class List. Shaded nodes in these graphs
indicate regions that the method – including all the meth-
ods it invokes – allocates new objects into (the allocation
effects); and nodes drawn with dashed circles indicate re-
gions that the method does not access (hence, solid circles
describe access effects).

data

next

this
n

d

(a) Method Element

data
new

(r1)

next

e
head

this

(b) Method add<r1>

data
this

ret
list
new

(r2)

next

elem

next

(r3)

head data head

(c) Method reverse<r2,r3>

Figure 2: Points-to graphs for methods Element, add,
and reverse.

Consider the graph for method reverse shown in Fig-
ure 2(c). In this graph, nodes this and elem represent the
regions where the receiver object and its list elements are
located when the method is invoked. The two shaded nodes
on the right represent the regions where the method allo-
cates the new list and its elements; the method must receive
these regions (r2 and r3 in the code) from its caller. The
dashed node in the middle shows that the original list and
the reversed list share data items in the same region. The
node representing region r3 and its incoming and outgoing
edges are generated by the call to add. Indeed, the right sub-
graph of reverse matches the points-to graph of method add.
Finally, the pseudo-variable ret models the return value of
this method and shows that the method returns a reference
to the newly created list in r2.

Region points-to graphs provide the key information that
the compiler needs to generate the output program. First,
to determine the region for an allocation site, the compiler
looks up the graph for the node corresponding to that site;
for instance, the middle node in the graph of add generates
the annotation “in r1” at line 12. Second, to determine how
many and what region parameters each method needs, the
compiler looks for all of the allocation (shaded) nodes reach-
able from the method parameters and the return value; for
reverse, regions r2 and r3 are the two shaded nodes reach-
able from this and ret. Third, at call sites, the analysis
matches up nodes representing actual values in the caller
graph to nodes representing the corresponding formals in
the callee graph, and uses this mapping to derive the actual
regions needed at the call site. Finally, the analysis uses the
access effects in these graphs to compute region liveness in-
formation in the callers of these methods, and place region
creation and removal commands in those methods.

3.3 Example 2: Polynomials
Figure 3 shows an implementation of polynomials using

complex coefficients. Class Complex implements complex
numbers: it provides a constructor, and methods mul and
plus to add and multiply complex numbers. Such num-
bers are immutable, so these operations return their results
as new objects. Hence, each operation requires one region
parameter to store the result.

87

27 class Polynomial {
28 List coeffs;
29 public void valueAt(Complex x) {
30 create r7,r8;
31 List rev = coeffs.reverse<r7,r8>();
32
33 create r9;
34 Complex sum = new Complex(0,0) in r9;
35
36 create r10;
37 Iterator it = rev.iterator<r10>();
38 while (!it.empty()) {
39 Complex coeff = (Complex)it.next();
40 create r11;
41 Complex tmp = sum.mul<r11>(x);
42 remove r9;
43 create r9;
44 sum = tmp.plus<r9>(coeff);
45 remove r11;
46 }
47 remove r7,r8,r10;
48 System.out.println(sum.re);
49 System.out.println(sum.im);
50 remove r9;
51 }
52 }
53
54 class Complex {
55 double re, im;
56 public Complex(double r, double i) {
57 re = r; im = i;
58 }
59 public Complex mul<r12>(Complex c) {
60 double r = re*c.re - im*c.im;
61 double i = re*c.im + im*c.re;
62 return new Complex(r,i) in r12;
63 }
64 public Complex plus<r13>(Complex c) {
65 double r = re+c.re, i = im*c.im;
66 return new Complex(r,c) in r13;
67 }
68 }

Figure 3: Polynomials with complex coefficients.

Class Polynomial implements a polynomial as a list of
complex number coefficients, stored in ascending order. The
method valueAt computes the value of the polynomial for a
given value of its variable and prints the result out. For this,
the method first reverses the coefficient list, then computes
the result according to the formula:

nX

i=0

aix
i = (((an · x + an−1) · x + an−2) . . .) · x + a0

The translation of this method illustrates several features
of our analysis. The method receives no region parameters,
but uses five local regions (r7, ..., r11) created and removed
at different points in the method. Regions r7 and r8 hold
the reversed list and its elements; region r10 holds the iter-
ator. The program removes all of these regions immediately
after the loop.

Most interesting are regions r11 and r9. The analysis
identifies that r11 holds a temporary result at each itera-
tion. Therefore, it creates the region at the beginning of the
loop body, at line 40, and removes it at the end of the loop
body, at line 45. The region lifetime is subsumed by the
lifetime of each loop iteration.

Region Compiler

Points-to
Analysis

Region Liveness
Analysis

Region
Translation

Input
program

Output
program

Figure 4: Region compilation system

Furthermore, it determines that region r9 holds an object
with a loop-carried lifetime: the value produced at the end
of one iteration is needed at the beginning of the next it-
eration. It therefore generates a region removal statement
first, at line 42, followed by a region creation statement, at
next line, to store the new value. Intuitively, this resets the
contents of the region. The translation also accounts for the
start and the completion of this loop-carried dependence:
in the first iteration, the region has already been created
at line 33; after the last iteration, the program removes the
region at line 50. Therefore, region r9 is being created at
two different points and removed at two other points in the
program. However, the transformation ensures that the ex-
ecution through any paths in the program alternates the
region creation and removal; and that the program accesses
data in this region only when the region is live.

The approaches based on lexically scoped regions will fail
to accurately characterize the lifetimes of objects in region
r9. They will be forced to place all of these objects into a
long-lived region (which subsumes the lifetime of the whole
loop), although only one single instance is live at any given
point in time. Hence, regions with lexical scopes are inher-
ently less flexible and less precise than our approach, which
lexically decouples region creation from region removal.

4. SYSTEM OVERVIEW
Figure 4 presents an overview of our system. The overall

system includes the following three main phases:

• Phase 1: Points-to analysis. In this phase, the com-
piler performs a flow-insensitive and context-sensitive
analysis that partitions the memory into regions. For
each method, it builds a region points-to graph that
captures the effects of executing the method and all
the methods it transitively invokes. The analysis re-
sult of each method is region-polymorphic and can be
instantiated at each call site.

• Phase 2: Region liveness analysis. Next, the com-
piler performs a flow-sensitive analysis and computes
live regions at each program point. The analysis si-
multaneously keeps track of live variables and live re-
gions, and uses the computed points-to graphs to de-
termine the reachability of regions from live variables.
We present a basic analysis, as well an extension that
enables inter-procedural region removal.

• Phase 3: Region translation. Finally, the compiler uses
the points-to and the region liveness information com-
puted in the previous phases to produce region annota-
tions in the output program. The translation requires
a single pass through the program.

88

5. ALGORITHM
This section presents each of the three phases in our sys-

tem in detail. To simplify the presentation, we model each
method in the program using a control-flow graph whose
nodes are one of the following statements:

x = y x = y.f x.f = y
x = new C return x x = y1.m(y2, ..., yn)

where x, y, y1, . . . , yn are all program variables, f is a field
name, and C is a class name. Variables include the implicit
argument this. We model array accesses as field accesses
on the special field: f = [].

5.1 Phase 1: Points-to Analysis
This phase computes a region points-to graph for each

method. The nodes represent regions, and the edges rep-
resent points-to relations, as shown in the examples from
Figure 2. Although the algorithm computes the points-to
graphs and the allocation and access effects simultaneously,
we present them separately for the sake of clarity: first we
describe the pointer analysis alone, and then we discuss how
it can be augmented to compute effects as well.

5.1.1 Intra-procedural Analysis
At the intra-procedural level, we use a standard flow-

insensitive pointer analysis algorithm with unification con-
strains, due to Steensgaard [22]. We describe this algorithm
in a formal setting and use this formalism to present the
inter-procedural analysis in the next section.

The analysis of each method in the program works as
follows. Let V be the set of variables of non-primitive types,
S the set of allocation sites in the method, F the set of
class fields, and P the set of statements in the method. We
assume that V includes the implicit parameters this, as well
as a pseudo-variable ret that models the return value of the
method (if that is a reference). Let L be the set of node
labels, consisting of allocation sites a ∈ S, variables x ∈ V ,
as well as field accesses x.f ∈ V ×F , that is, L = S∪V ∪(V ×
F). Field accesses x.f are relevant only when constructing
the graphs, but not for performing the translation, which is
why we omitted them in the examples from Section 3. Let
LP be the set of labels that occur in the method body.

Definition 1. A points-to graph is G = (N, E), where:

• N ⊆ P(LP) is the set of region nodes such that each
label occurs in at most one node. If u ∈ L is a label,
n(u) is the graph node that contains u.

• E = N × F × N is a set of edges labeled with field
names. We write 〈n, f, m〉 to denote an edge between
n and m on field f .

Definition 2. A consistent unification points-to graph is
a points-to graph G = (N, E) such that:

(C1) n(x.f) ∈ N ⇒ 〈n(x), f, n(x.f)〉 ∈ E, i.e., field ac-
cess node labels are consistent with field labels on edges
(consistency condition).

(C2) 〈n, f, m〉, 〈n, f, m′〉 ∈ G ⇒ m = m′, i.e. a node can
have at most one successor node on each field (unifi-
cation condition).

unify (n, n′) m �= m′

〈n, f, m〉, 〈n′, f, m′〉 ∈ E

unify (m, m′)
(R1)

edge (n, f, m)
〈n, f, m′〉 ∈ E m �= m′

unify (m, m′)
(R2)

Figure 5: Rules for the intra-procedural analysis.

With these definitions, the goal of a unification-based
pointer analysis is to build a consistent unification points-to
graph such that, the right-hand side and the left-hand side
of each assignment in the program correspond to the same
node in the graph. We describe the algorithm that finds
such a solution using the following two kinds of operations:

• unify (n, m), which unifies two nodes n and m in the
graph. Given a graph G = (N, E), it produces a new
graph G′ = (N ′, E′) such that:

N ′ = N − {n, m} ∪ {n ∪m}
E′ = {〈p′, f, q′〉 | ∃〈p, f, q〉 ∈ E . p ⊆ p′ ∧ q ⊆ q′}

• edge (n, f, m), which adds an edge between nodes n
and m on field f . Given G = (N, E), it produces a
new graph G′ = (N, E ∪ 〈n, f, m〉).

The algorithm proceeds as follows. First, it performs the
following operations:

edge (n(x), f, n(x.f)) ∀(x.f) ∈ LP

unify (n(u), n(v)) ∀(u = v) ∈ P
unify (n(ret), n(x)) ∀(return x) ∈ P

Next, the algorithm uses rules (R1) and (R2) from Figure 5
to propagate unifications down in the graph. When the algo-
rithm performs the operation in the premise of a rule and the
other premises hold, then it performs the operation(s) in the
conclusion. Together, the two rules enforce the unification
condition (C2) on the final points-to graph. This descrip-
tion naturally leads to an implementation which processes
unification and edge operations using a worklist algorithm.

A key aspect is that the algorithm analyzes each method
independently of its callers and produces an analysis result
parameterized on the region parameters, which are assumed
to be unaliased. This approach yields a general result, which
can be instantiated at each call site by the inter-procedural
analysis.

5.1.2 Inter-procedural Analysis
Once the compiler has built an intra-procedural points-to

graph for each method, it analyzes call statements. It uses a
context-sensitive analysis that embeds the information from
the caller into the callee at each call site, according to the
aliasing context at that site. We assume that the invoked
method is statically known; Section 5.1.4 discusses how to
handle virtual method calls.

We formulate the problem of analyzing a call site as fol-
lows. Given the a caller graph Gr = (Nr, Er) and a callee
graph Ge = (Ne, Ee), the analysis must construct a result
graph G′

r = (N ′
r, E

′
r) for the caller such that: a) G′

r is a con-
servative approximation of Gr; and b) the subgraph of G′

r

89

n(pi) = n(pj) n(yi) �= n(yj)

unify (n(yi), n(yj))
(R3)

n(this) = n(pj) n(y0) �= n(yj)

unify (n(y0), n(yj))
(R4)

n(ret) = n(pj) n(x) �= n(yj)

unify (n(x), n(yj))
(R5)

〈ne, f, me〉 ∈ Ee α(ne) = nr

〈nr, f, m′
r〉 ∈ Er α(me) = mr �= m′

r

unify (mr, m
′
r)

(R6)

〈ne, f, me〉 ∈ Ee α(ne) = nr

〈nr, f, mr〉 ∈ Er α(me) undefined

α(me)← mr
(R7)

〈ne, f, me〉 ∈ Ee α(ne) = nr

∀p . 〈nr, f, p〉 �∈ Er α(me) = mr

edge (nr, f, mr)
(R8)

〈ne, f, me〉 ∈ Ee α(ne) = nr

∀p . 〈nr, f, p〉 �∈ Er α(me) undefined
m = FreshNode(Gr)

α(me)← m edge (nr, f, m)
(R9)

Figure 6: Rules for inter-procedural analysis.

rooted at the actual parameters is a conservative approxima-
tion of the subgraph of Ge rooted at the formal parameters
of the callee. The resulting graph G′

r incorporates the effects
of the call. Here we use the following definition.

Definition 3. A graph G = (N, E) is a conservative ap-
proximation of G′ = (N ′, E′) if there exists a node mapping
α : N ′ → N such that 〈n, f, m〉 ∈ E′ implies 〈α(n), f, α(m)〉 ∈
E for all n, m ∈ N ′ .

Consider a call statement x = y0.m(y1, ..., yn) that in-
vokes a method m with formal parameters this, p1, . . . , pn

and return value ret. To compute the result graph G′
r, the

analysis gradually builds a partial map α : Ne → Nr that
maps callee nodes to caller nodes. At the end, the mapping
witnesses the embedding of the callee information into the
caller.

The algorithm proceeds as follows. Initially, α maps each
formal parameter of the callee to its corresponding actual
parameter at the call site:

α(n(pi)) = n(yi) ∀i = 1..n
α(n(this)) = n(y0)
α(n(ret)) = n(x)

To ensure that α is a map after this initialization, the analy-
sis unifies actual nodes that correspond to parameter nodes
that have been unified in the callee. For this, the algorithm
uses rules (R3), (R4), and (R5) in Figure 6. These rules
require that each parameter node has no more than one cor-
responding actual node in the caller; hence, they can be

regarded as duals of rules (R1) and (R2), which require that
each node has at most one successor for each given field.

After setting the initial values of α, the algorithm tra-
verses the nodes in the callee graph Ge starting from the for-
mal parameters and inspects each edge exactly once. Dur-
ing the traversal, it uses the rules (R6) – (R9) to complete
the mapping and to trigger new operations. The algorithm
traverses callee edges in a top-down fashion, such that the
source node ne of the callee is always mapped to a node nr

in the caller when the edge 〈ne, f, me〉 is traversed. The four
cases check if the edge target is mapped and if the mapping
of the source already has an edge in the caller. In the last
rule, when none holds, the analysis generates a fresh node
in the caller.

The above algorithm shows how to analyze each call. The
complete inter-procedural analysis uses a fixed-point ap-
proach to compute the final result. The compiler constructs
the strongly connected components in the call graph and
analyzes these components in reverse topological order. It
iteratively analyzes the calls in each strongly connected com-
ponent until no changes occur. Each strongly connected
component in the call graph is analyzed exactly once.

5.1.3 Recursive Structures
For recursive methods that manipulate recursive data struc-

tures, rule (R9) in the interprocedural analysis may generate
an unbounded number of fresh nodes, so the algorithm is no
longer guaranteed to terminate. For example, consider a re-
cursive method that traverses a list by following the next
element at each recursive invocation:

static void traverse(Element h) {

Element x = h.next;

if (x != null) traverse(x);

}

As described so far, the inter-procedural analysis will keep
re-analyzing method traverse, generating a fresh node at
each iteration. Therefore, the analysis will loop forever.

Our solution to this problem is to maintain a Java type
for each node in the graph and restrict the creation of new
edges and nodes as follows. Whenever the analysis adds
a new edge to the graph, it ensures that the target of that
edge is not reachable from another node with the same type.
Otherwise, it unifies the two nodes with the same type ac-
cording to the following rule:

edge (n, f, m) 〈m′, m〉 ∈ E∗

m′ �= m type(m′) = type(m)

unify (m′, m)
(R10)

where E∗ is the reflexive and transitive closure of the edge
relation: 〈m′, m〉 ∈ E∗ means that m is reachable from m′

in the points-to graph (which includes the new edge from
n to m). The analysis implements rule (R10) by traversing
the graph backwards from node n and looking for a node
m′ with the same type as m. This rule limits the number of
graph nodes that model elements of recursive structures.

For instance, for method traverse, this rule unifies nodes
h and h.next, because they have the same type Element.
Therefore, the points-to graph for traverse will have a sin-
gle node with a self-edge on field next. A similar situation
occurs for the example from Section 3, where the analysis of
the class constructor Element unifies nodes this and n.

90

The type associated with each region represents an upper
bound for the actual types of object allocated in that re-
gion. The analysis keeps track of region types as follows. It
initializes the types of variable nodes n(x) and field nodes
n(x.f) to their declared types, and the types of allocation
nodes n(a) to the type of objects allocated at site a. When
the analysis unifies two nodes, it takes the least upper bound
(LUB) of the two types in the type hierarchy.

5.1.4 Virtual Method Calls
The presence of subtyping and virtual method calls raises

two problems. From the point of view of the caller, the
invoked method is not statically known. From the point of
view of the callee, the number of region parameters being
passed at the call site is not known, because the virtual
methods it overrides may have different numbers of region
parameters.

To solve the first problem, the analysis computes a points-
to graph for each method m that incorporates the points-
to information from all of other methods that override m.
It does so by adding a dummy call from each method to
the methods that immediately override it in the class hier-
archy. During the analysis, the points-to information will
transitively propagate from the methods at the bottom to
the overridden methods at the top of the hierarchy. At a
call site, the algorithm analyzes one single method, since
the points-to information for that method incorporates the
effects of all the methods that it may dispatch to.

For the second problem, that of mismatch between actual
and formal region parameters for a method, the analysis
creates an additional global points-to graph for each family
of virtual methods (families are the equivalence classes in-
duced by the overriding relation). That global graph merges
together the information from all of methods in the family,
providing a unique region space for formal parameters. The
number of parameter regions for all calls to methods in the
family is the same and is determined by this global graph.
For each method, the analysis identifies a mapping from its
formal parameters in the local space (given by the points-
to graph of the method) into the formal parameters in the
global space (given by the global points-to graph). This
mapping allows virtual methods to select the regions they
need from those that have been passed to them.

5.1.5 Tracking Allocations and Accesses
Tracking allocation and access effects during points-to

analysis is fairly straightforward: we extend the abstrac-
tion to a tuple G = (N, E, A, T), where A ⊆ N is the set
of allocation nodes and T ⊆ N is the set of accessed nodes.
The sets A and T represent all of the regions that the cur-
rent method, including the methods it invokes, accesses or
allocated objects into.

The analysis keeps track of the sets A and T as follows.
The intra-procedural analysis marks each node n(a) corre-
sponding to an allocation site a as an allocation node. For
each field access x.f or method call x.m(..), it marks the
node n(x) as an accessed node; and it marks each alloca-
tion node also as an accessed node. The unification of two
nodes yields an allocation (or accessed) node if one of the
two original nodes was an allocation (or accessed) node. At
the inter-procedural level, for each allocation node n in the
callee, the mapped node m = α(n) is an allocation node in
the caller (and similarly for accesses).

5.2 Phase 2: Region Liveness Analysis
The next phase of the algorithm performs a flow-sensitive

analysis to extract information about the live regions at each
program point. We say that a region is live at point in the
program if:

1. the region is reachable from at least one live variable
at that program point; and

2. the execution of the program may access (i.e., read,
write, or allocate objects into) the region in the future.

This section presents an analysis which computes liveness
information for local regions only; Section 6.1 presents an
extension that computes liveness information for parameter
regions as well.

We formulate the algorithm as a backward dataflow anal-
ysis. The dataflow information that the algorithm computes
is a pair of live regions and live variables. Let NL be the
set of local regions in the current method, defined as those
regions that are not reachable from the parameter nodes
in the points-to graph. Then, the dataflow information is:
(Liver,Livev) ∈ D = P(NL) × P(V). This forms a lat-
tice domain whose meet operator is the component-wise set
union, and whose top element is the pair of empty sets of
live regions and variables:
 = (∅,∅).

We define the transfer functions for statements as follows.
Given the pair (Liver,Livev) denoting the live regions and
variables after a statement s, and the points-to graph G =
(N, E, A, T) of the current method, the liveness information
(Live′r,Live′v) before the statement is:

Live′v = (Livev − defv) ∪ usev (1)

Live′r = (Liver ∪ user) ∩ Reachr ∩ NL (2)

where the set Reachr contains those regions that are reach-
able from live variables:

Reachr = {m | ∃y. y ∈ Live′v ∧ 〈n(y),m〉 ∈ E∗} (3)

and the sets defv, usev, and user are defined as:

Statement s defv(s) usev(s) user(s)
x = y {x} {y} ∅

x = y.f {x} {y} {n(y)}
x.f = y ∅ {x, y} {n(x)}
x = new C : a {x} ∅ {n(a)}
x = y1.m(y2, .., yn) {x} {y1, .., yn} {n(y1)} ∪ T α

m

return x ∅ {x} ∅

The last column shows the regions that the program ac-
cesses. For the new statement, we use an explicit label
a ∈ S to describe the allocation site that the statement
corresponds to. A statement accesses a region if it reads or
writes a field of an object in the region (x = y.f or x.f = y),
if it creates a new object in the region (new C), or if it invokes
the method of an object in the region (y1.m(y2, . . . , yn)).
When invoking a method m we add those regions accessed
by the callee: T α

m = {α(n) | n ∈ Tm}, where Tm is the set
of regions accessed by m and α is the mapping at this call
site (as defined in Section 5.1.2).

It can be shown that the above transfer functions are
monotonic. Finally, the dataflow information at the end
of each method is the the set of parameter regions N −NL.
This completes the definition of a full dataflow framework
for region liveness.

91

s ≡ (x = new C in r)
r �∈ Liver(•s)
•s =⇒ create r

s ≡ (x = y1.m<r1, .., rk>(...))
ri �∈ Liver(•s)
•s =⇒ create ri

n ∈ Liver(•s)− Liver(s•)
s • =⇒ remove rn

(p1, p2) ∈ FlowEdges
n ∈ Liver(p1)− Liver(p2)

p2 =⇒ remove rn

Figure 7: Rules for placement of region statements.

5.3 Phase 3: Region Translation
The final phase of the algorithm is the region transforma-

tion. For each method, the compiler assigns a region name
rn to each allocation node n in the points-to graph of that
method. Then, it inspects each construct in the program
and generates a corresponding region-annotated construct
in the output program, as follows:

• Object allocations. It translates each statement “new C”,
whose allocation site is a, into: “new C in rn(a)”.

• Method declarations. Given a method m, the compiler
inspects the graph of method m and identifies all al-
location nodes that are reachable from formal param-
eters. Let these nodes be n1, . . . , nk. The compiler
then adds the regions <rn1 , . . . , rnk> as formal region
parameters of the method. Note that accessed nodes
with no allocations, don’t need to be passed as param-
eters.

• Method calls. At each call site, the compiler derives
a mapping α between the formal parameters of the
invoked method and the actual region parameters at
the call site, using the algorithm from Section 5.1.2
(but the only rule from Figure 6 that applies at this
point is rule (R7)). If n1, . . . , nk are the callee nodes
corresponding to the formal parameters, the actual pa-
rameters at the call are: rα(n1), . . . , rα(nk).

Finally, the compiler uses the region liveness information
to place region creation and removal statements. We de-
scribe this process using rewriting rules of the form p⇒ c/r,
to denote that the compiler inserts a create or remove com-
mand c/r at program point p. For each statement s, we
write •s for the program point before s, and s• for the pro-
gram point after s.

Figure 7 shows the rewriting rules that describe the in-
sertion of region creation and removal statements. The
FlowEdges relation in the last rule models control-flow edges
as pairs of program points (p1, p2), where program point p2.
The second premise of the rule can only be satisfied at con-
trol flow split points, because region liveness is a backward,
“may” analysis.

Essentially, the compiler places region creation statements
at the points where local regions become live, and removes
them as soon as they become dead. A region becomes live
when it is explicitly used at an allocation site or a call site,
but is not live at those points. A region ceases to be live
when it is live before a statement, but not after; or at control
flow split points, when the region is live on one, but not all
of the outgoing branches.

6. EXTENSIONS
This section presents several extensions to the algorithm

from the previous section.

6.1 Inter-procedural Region Removal
The analysis presented so far uses a simple model to rea-

son about regions in the program: it computes liveness in-
formation only for local regions in NL. Regions passed in
as parameters are assumed to be live in the callees. As a
result, each region is always created and removed in the
method where it is local. We present an extension which re-
laxes this constraint by computing liveness information for
parameter regions as well. This extension enables the anal-
ysis to identify regions that can be removed early, in the
invoked methods; hence, it identifies regions whose lifetimes
span over multiple procedures.

The extended liveness algorithm works as follows. For
each method m, it keeps track of a set Dm of region pa-
rameters that are dead at the end of method m and un-
aliased with any other region parameter. Initially, all of
these sets optimistically contain all the parameter regions:
Dm = Nm − Nm

L , where Nm, Nm
L denote the sets N , NL

for method m.
First, the algorithm performs an intra-procedural region

liveness analysis for each method m, as presented in Sec-
tion 5.2, but computes liveness information for all regions in
Nm, not only for local regions in Nm

L . For this, we change
the filtering in Equation (2) to:

Live′r = (Liver ∪ user) ∩ Reachr ∩ (NL ∪Dm)

Then, the algorithm uses a fixed point approach to an-
alyze call sites and determine if the optimistic assumption
is violated. If so, it removes the violating regions from the
sets Dm. More precisely, the algorithm inspects, for each
method m, all of the calls to m, in particular, each formal
parameter in Dm and the corresponding actual region in a
caller method m′. If the actual region is live or is passed as
another formal parameter in the same call, then the analysis
removes that parameter from Dm and re-analyzes all of the
methods that m invokes. Formally:

s ≡ (x = y1.m<r1, .., ri, .., rn>(...)) pi ∈ Dm

m <p1, .., pi, .., pn>(...){...}
ri ∈ Livem′

ip (s•) ∨ ∃j �= i . ri = rj

Dm ← (Dm − {pi})
where the set Livem′

ip (s•) is the set of live regions derived

using current intra-procedural liveness results Livem′
r and

the current values in the set Dm′
:

Livem′
ip (s•) = Livem′

r (s•) ∪ (N − (NL ∪Dm′
))

The condition ∃j �= i . ri = rj in the premise of this rule
disallows the analysis to remove a parameter region that is
aliased with another region; otherwise, the region could be
removed multiple times. Once a region is aliased at a call
site (i.e., passed as parameter twice), it is marked as live, so
neither the callee, nor the methods that the callee invokes
can remove the region.

This above algorithm can be implemented efficiently by
traversing the strongly connected components of the call
graph in (direct) topological order and analyzing each com-
ponent once.

92

6.2 Stack Allocation
The algorithm can be easily extended to enable the stack

allocation of objects. The analysis must identify regions
which hold a statically bounded number of objects. If the
following conditions hold for a local region, then the com-
piler can allocate it on stack:

• No escaped allocations. Whenever the region is passed
as parameter to another method, the callee doesn’t
allocate new objects in the region. We allow regions
to escape the current method, as long as the invoked
methods do not allocate new objects in them.

• Bounded allocations. Between the creation and re-
moval of the region in the current method, there must
be a bounded number of objects allocations in the re-
gion. We use a simple dataflow analysis that computes
a set of live allocations a ∈ S at each statement. If an
allocation a is never live at the point where it is exe-
cuted, then there is a bounded number of objects that
this allocation site places into the region.

• Array allocations. Arrays allocated in the region must
have a statically known size.

6.3 Multithreading
Because our points-to analysis is flow-insensitive, it con-

servatively characterizes multithreaded executions. The re-
gion liveness analysis, however, is flow-sensitive and is not
sound in the multithreaded setting: a region local to a
method may escape to a child thread and outlive that method.
The single-threaded analysis will incorrectly assume that the
method outlives all of its local regions, and that these re-
gions can be removed when the method returns.

To ensure a correct program execution, we use an ap-
proach that requires a cooperation between the analysis and
the run-time region system. More precisely, the analysis of
each thread works as presented so far, with the assumption
that local regions do not outlive their methods. When re-
gions escape from a parent thread to a child thread, the
analysis marks them as dead at the end of the child thread.
We use a run-time solution based on reference counts (sim-
ilar to the approaches in [16, 6]) where each region keeps a
counter that indicates how many threads concurrently ac-
cess it. When a thread is forked, the program increments
the counter of all the regions passed to the child thread.
When the parent or the child attempts to remove the region
via a remove statement, it decrements the counter. The re-
gion gets actually removed only if the counter becomes zero.
Thus, the last thread that accesses the region is the one that
removes it.

Multithreading also requires a number of changes in the
analysis. First, a parent thread must pass to the child thread
all of the regions it accesses, not just the allocation regions;
otherwise, regions may be unsafely deallocated by the par-
ent thread while the child still accesses them. Therefore,
the program must pass these regions as parameters from
their creation points to the point where the child thread
is being forked. For this, the analysis marks all of the re-
gions accessed by child threads as shared, and tracks the
shared flags during the interprocedural analysis (similar to
the way it tracks access and allocation flags). In the transla-
tion phase, the analysis passes as region parameters both the
allocation regions and the shared regions. Next, the analy-
sis must account for synchronization operations: whenever

the program acquires or releases a lock on object x, it marks
node n(x) as accessed; similarly, when the program synchro-
nizes on x, the liveness analysis adds n(x) to the set of live
regions. Finally, to avoid placing shared objects on the stack
of one particular thread, the compiler must require an ad-
ditional stack allocation condition in the previous section:
that stack allocated regions must not be shared.

6.4 Exceptions
Exceptions raise two issues in the context of region anal-

ysis. First, when an exception occurs, the exception object
being thrown escapes the procedure and the analysis cannot
compute its lifetime. Therefore, the analysis marks thrown
objects as immortal and does not allocate them in regions.

Second, if a method terminates abruptly with an excep-
tion, the program must reclaim all of the local regions that
are still live. Our solution relies on run-time support. When
an exception occurs, the exception run-time system that
walks up the stack deallocates all of the local regions for
each method whose activation frame is traversed. One com-
plication is that the run-time system must determine the
subset of local regions that are live, and just remove those.
A simpler solution is to use an additional level of indirection
for regions such that, if the program attempts to remove a
region multiple times, it only removes the region the first
time and has no effect afterward. This enables the run-time
system to remove all of the local regions of methods when
it walks up the stack, regardless of how many of them have
already been removed.

7. EXPERIMENTAL RESULTS
We have implemented the algorithm and all of the exten-

sions presented in this paper as a bytecode-level transfor-
mation in the Soot infrastructure [24]. Our compiler takes
an input Java program and generates an equivalent region-
annotated program. We have extended the standard Java
bytecodes with additional opcodes to support the region op-
erations. We have also extended the interpreter of the Kaf-
feVM [26] to support the new bytecodes and provide the run-
time mechanisms for manipulating regions, including the ex-
tensions discussed in Section 6. We added instrumentation
code in the extended virtual machine to collect region statis-
tics. We ran the experiments on a 2 GHz Pentium machine
running KaffeVM 1.07 on Linux.

7.1 Analysis Measurements
Table 1 presents our list of benchmark programs, which

consists of the Java Olden benchmarks [7]. The first two
columns in the table show the application size before and af-
ter the transformation, and indicate that the region annota-
tions introduce little space overhead. Next, the table shows
the number of methods that our system analyzes. These
numbers include all of the library methods that applica-
tions invoke. Finally, the last two columns in the table show
the running times of our analysis, which includes points-to
analysis and region liveness analysis; and the total compi-
lation time, which includes loading the input files, building
the Soot representation, and writing the output files. The
running times indicate that the analysis is tractable in prac-
tice and represents only a fraction (16% on average) of the
total compilation time.

93

Size(Kb) Time (sec)
Program Original vs. Methods Total vs.

Translated analyzed Analysis
bh 31.1 32.8 916 23.7 3.8
bisort 8.5 9.1 825 21.9 3.3
em3d 12.6 13.6 871 22.8 3.7
health 16.8 17.7 844 22.3 3.4
mst 12.0 12.6 841 22.0 3.3
perimeter 15.6 16.2 858 22.3 3.3
power 26.4 27.2 879 23.0 3.5
treeadd 5.4 5.8 816 21.7 3.2
tsp 11.3 12.0 828 22.0 3.3
voronoi 27.1 29.1 928 23.9 4.5

Table 1: Benchmarks and analysis times

7.2 Memory Measurements
Table 2 presents the maximum memory utilization dur-

ing the execution of these benchmarks. We compare these
numbers in three settings: running the applications with
no memory management (first column), running them with
automatic garbage collection (second column), and running
them with region-based support (third column). The values
given for the garbage-collected run were measured using the
default KaffeVM incremental garbage collector. Since the
GC system reclaims memory dynamically and the region-
based system statically decides when to reclaim it, the com-
parison to the GC system is meant to provide an upper
bound for the possible savings, rather than a competition
for the region-based system.

The numbers collected only include the application mem-
ory size, not the memory used by the virtual machine it-
self. The first three columns in Table 2 show the maximum
amount of memory required during the execution of the pro-
gram (i.e., the memory watermark) in each of the three set-
tings. The following two columns project these numbers
into percentages: they show the relative memory savings of
the region-based system with respect to the “None” setting
(column four) and to the GC setting (column five).

These numbers show that the region-based system can
yield significant absolute memory savings for several bench-
marks; and that for most of the benchmarks with no abso-
lute savings, the GC system can’t save memory either.

Surprisingly, for two of the benchmarks, power and tsp,
the region-based system outperforms the GC system. In
particular, for power, the region-based system uses 4 times
fewer memory than the GC system. A closer inspection of
this situation revealed that the garbage collector has not
been triggered often enough by Kaffe, since this applica-
tion uses very little memory. Once we forced collections
to be performed frequently enough, the GC system yielded
roughly the same numbers as the region-based system.

For a number of other benchmarks, all three systems use
roughly the same amount of memory, more precisely for
bisort, em3d, mst, perimeter and treeadd, showing that nei-
ther static, nor dynamic techniques can reclaim memory and
most data objects are long-lived. For bh, health, and voronoi,
the GC system performs better, showing the limitations of
static analysis. Even in such cases, the region-based sys-
tem may bring significant benefits over a system with no
memory management, as in the case of bh and health, where
our transformation saves respectively 88% and 71% of the
memory compared to “None”.

Maximum size (Kb) Savings w.r.t.
Program None GC Region None GC

bh 25,852 2,682 3,076 88% -15%
bisort 413 412 412 0% 0%
em3d 3,446 3,412 3,445 0% -1%
health 22,206 3,714 6,450 71% -74%
mst 33,122 33,114 33,101 0% 0%
perimeter 14,580 14,572 14,563 0% 0%
power 22,030 2,923 749 97% 74%
treeadd 21,057 21,049 21,040 0% 0%
tsp 13,193 6,481 5,851 56% 10%
voronoi 16,764 8,152 16,369 2% -101%

Table 2: Maximum memory usage

7.3 Region Statistics
Table 3 shows several region statistics. The first two

columns represent the percentage of data allocated on stack
and in regions throughout the execution of the program.
The remaining percentage is the immortal data. The third
column shows the average lifetime of all regions and stack-
allocated data, weighted by their sizes. These numbers in-
dicate that the analysis is usually able to allocate a large
fraction of the data on stack or in regions, but the aver-
age lifetime varies with the application. The lifetimes range
from small values such as 1% for bh to 100% for perimeter.

As expected, there is a correlation between the numbers
in this table and the memory savings from Table 2: our
system yields absolute memory savings whenever it places
most of the data on stack or in short-lived regions. For
instance, for mst and em3d the analysis places almost no
data in regions or stack, so there are no savings; and for bh
or power, it places almost all of the data on stack or in short
lived regions, and memory savings are substantial.

The last two columns in Table 3 show how many regions
are being manipulated during program execution. Column
four shows how many regions have been created through-
out the entire execution, and column five shows how many
regions are live at any given time. These numbers indi-
cate that there is a lot of fluctuation in the total number
of regions, ranging from less than hundred regions to more
than a million regions. The maximum number of regions
at each moment is usually low, with one exception, health;
even then, the number is only a fraction of the total number
of regions. In general, this table suggests that, for programs
where most of the data gets placed in regions, larger total
numbers of regions are correlated with lower region lifetimes
and with larger memory savings (e.g. for bh, health, or tsp).

7.4 Discussion
As expected, our results indicate that the ability of the

region-based system to save memory depends on memory
characteristics of each particular application. The memory
watermark and savings, the ability to allocate data on stack,
the average region lifetimes, and total or maximum numbers
of regions all vary with the application and fluctuate across
our set of benchmarks, ranging from very small to very large
values.

However, the overall results for our set of benchmarks
are encouraging: the region-based system was able to save
significant amounts of memory for most of the cases where
data was not live throughout the program. In fact, although

94

Mem. Distrib. Average Dyn. Regions
Program Stack Regions Lifetime Total Max.

bh 22% 66% 1% 478057 2446
bisort 0% 80% 99% 81 29
em3d 0% 0% 23% 88 28
health 22% 78% 30% 1023269 170035
mst 0% 0% 21% 1080 30
perimeter 0% 99% 100% 81 28
power 97% 1% 1% 80 29
treeadd 0% 99% 99% 81 28
tsp 0% 99% 44% 262223 29
voronoi 0% 96% 97% 24657 54

Table 3: Region Statistics

it not intended to compete with the run-time GC system,
our statically-enabled region-based system performed about
as good as, or even better than the GC system for most of
the benchmarks (8 out of 10 benchmarks).

Finally, our experiments suggest that our region analy-
sis and transformation is a good match for real-time sys-
tems. First, our results show that the transformation can
be successful at saving memory, while avoiding pauses for
unbounded amounts of time during program execution. Sec-
ond, because our analysis techniques are sound, programs
can perform region manipulations safely and efficiently, with-
out the run-time overhead that would be otherwise required
to ensure the absence of accesses to deallocated data. And
third, since our system produces all of the region annota-
tions automatically, our system frees programmers of the
burden of writing such annotations: users can write real-
time applications without worrying about memory reclama-
tion, and have our system generate the appropriate region
annotations that would make such programs suitable to a
real-time environment.

8. RELATED WORK
Tofte and Talpin [23, 2] propose a region inference al-

gorithm for a simply typed lambda calculus. Regions are
lexically scoped in their calculus, which imposes a stack dis-
cipline on the region lifetimes. In [2] they introduce a region
resetting operation to alleviate the limitations of the orig-
inal system. Our system can automatically model region
resetting using the region creation and removal primitives,
as shown in the example from Section 3.

Other approaches build on the Tofte/Talpin algorithm,
but lexically decouple region allocation from region deallo-
cation [1, 16]. In particular, Aiken, Fahndrich, and Levien
(AFL) [1] propose an inference system with the same goals
as ours: compute region liveness information to automat-
ically place region creation and removal constructs at dif-
ferent points in the program. They formulate the analysis
using a system of custom constraints specifically designed for
identifying region lifetimes in a functional setting, and focus
on features such as polymorphism and higher-order func-
tions. In contrast, our analysis is designed to identify region
liveness in an imperative setting, using techniques closer to
standard live variable analysis. Our analysis focuses on im-
perative control-flow, pointers, destructive updates, object-
oriented, and multithreaded language constructs, none of
which are addressed by [1]. Furthermore, the AFL system
is less general: it cannot identify loop-carried region life-

times, since regions cannot be re-allocated once they have
been deallocated.

Lattner and Adve [17] propose pool allocation for C pro-
grams. They also use a pointer analysis similar to [18], and
present a transformation which allocates/deallocates regions
at procedure entry/exit points. However, their system can-
not identify arbitrary (e.g., loop-carried or inter-procedural)
region lifetimes, doesn’t handle object-orientation, and has
not been applied to the memory management problem.

In work performed concurrently with ours, Chin et.al. [8]
propose a region inference system for an object-oriented core
calculus. Their system translates programs into an output
calculus with a provably sound region type system. They
use lexically scoped regions and forbid dangling pointers;
hence, their approach is less precise and flexible than ours.
Furthermore, they do not handle multithreading or excep-
tions, and do not provide experimental data regarding the
efficiency of the generated programs.

Other researchers have explored the dynamic detection of
regions in Java programs [19, 11], or have proposed language
support for regions in C [12, 13, 15] or Java [10, 6]. These
techniques are orthogonal to the static detection of regions
presented in this paper. Possible directions of research in-
clude developing hybrid analyses that combine static and
dynamic techniques, or using our analyses to provide de-
fault region annotations in languages with region support.

In the area of pointer analysis, the relevant work is that
based on unification constraints, originally proposed by Ste-
ensgaard [22]. Subsequent work has extended this algorithm
with context-sensitivity for C programs [18, 17]. These anal-
yses are similar to the one presented in this paper, but de-
scribe the call site analysis informally or refer to it as “inlin-
ing graphs”. Our work provides a clear, formal specification
of the analysis at call sites and shows how to apply the
analysis to the region inference and memory management
problems.

Finally, related research has explored combining pointer
and escape analysis for Java programs [3, 9, 25, 4, 14, 21] to
identify when objects escape from the methods or threads
that create them. Such analyses can enable the allocation
of objects on stack (when objects don’t escape their enclos-
ing method) or the removal of synchronization operations
(when object don’t escape their current thread). Our sys-
tem gives a solution to a more general problem: instead of
identifying whether or not object lifetimes match method
lifetimes, we compute unrestricted object lifetimes and use
a region-based system to reclaim memory according to the
computed lifetimes.

9. CONCLUSIONS
We have presented a region analysis and transformation

framework for Java programs. Given an input program,
the algorithm generates an equivalent output program with
explicit region-based memory management support. This
transformation uses points-to analysis to capture the alias-
ing information in the program and uses novel analysis algo-
rithms to compute region liveness information. Our exper-
imental results indicate that this approach is able to place
a large fraction of the objects in regions or on stack, that
many regions are short-lived compared to that of the whole
program, and that the region-based system can yield signif-
icant memory savings for some of the applications.

95

Acknowledgments
We would like to thank the anonymous reviewers for their
suggestions and comments.

10. REFERENCES
[1] A. Aiken, M. Fahndrich, and R. Levien. Better static

memory management: Improving region-based
analysis of higher-order languages. In Proceedings of
the SIGPLAN ’95 Conference on Program Language
Design and Implementation, La Jolla, CA, June 1995.

[2] L. Birkedal, M. Tofte, and M. Vejlstrup. From region
inference to von Neumann machines via region
representation inference. In Proceedings of the 23rd
Annual ACM Symposium on the Principles of
Programming Languages, St. Petersburg Beach, FL,
January 1996.

[3] B. Blanchet. Escape analysis for object oriented
languages. Application to Java. In Proceedings of the
14th Annual Conference on Object-Oriented
Programming Systems, Languages and Applications,
Denver, CO, November 1999.

[4] J. Bogda and U. Hoelzle. Removing unnecessary
synchronization in Java. In Proceedings of the 14th
Annual Conference on Object-Oriented Programming
Systems, Languages and Applications, Denver, CO,
November 1999.

[5] G. Bollella, J. Gosling, B. Brosgol, P. Dibble, S. Furr,
D. Hardin, and M. Turnbull. The Real-Time
Specification for Java. Addison-Wesley, Reading,
Mass., 2000. http://www.rtj.org/.

[6] C. Boyapati, A. Salcianu, W. Beebee, and M. Rinard.
Ownership types for safe region-based memory
management in real-time Java. In Proceedings of the
SIGPLAN ’03 Conference on Program Language
Design and Implementation, San Diego, CA, June
2003.

[7] Brendon Cahoon. The Java Olden benchmarks.
www-ali.cs.umass.edu/~cahoon/olden.

[8] W. Chin, F. Craciun, S. Qin, and M. Rinard. Region
inference for an object-oriented language. In
Proceedings of the SIGPLAN ’04 Conference on
Program Language Design and Implementation,
Washington, DC, June 2004.

[9] J. Choi, M. Gupta, M. Serrano, V. Sreedhar, and
S. Midkiff. Escape analysis for Java. In Proceedings of
the 14th Annual Conference on Object-Oriented
Programming Systems, Languages and Applications,
Denver, CO, November 1999.

[10] M. Christiansen and P. Velschow. Region-based
memory management in Java. Master’s thesis, DIKU,
University of Copenhagen, May 1998.

[11] M. Deters and R. Cytron. Automated discovery of
scoped memory regions for Real-Time Java. In
Proceedings of the 2004 International Symposium on
Memory Management, Berlin, Germany, June 2002.

[12] D. Gay and A. Aiken. Memory management with
explicit regions. In Proceedings of the SIGPLAN ’98
Conference on Program Language Design and
Implementation, Montreal, Canada, June 1998.

[13] D. Gay and A. Aiken. Language support for regions.
In Proceedings of the SIGPLAN ’01 Conference on

Program Language Design and Implementation,
Snowbird, UT, June 2001.

[14] D. Gay and B. Steensgaard. Fast escape analysis and
stack allocation for object-based programs. In
Proceedings of the 2000 International Conference on
Compiler Construction, Berlin, Germany, April 2000.

[15] D. Grossman, G. Morrisett, T. Jim, M. Hicks,
Y. Wang, and J. Cheney. Region-based memory
management in Cyclone. In Proceedings of the
SIGPLAN ’02 Conference on Program Language
Design and Implementation, Berlin, Germany, June
2002.

[16] F. Henglein, H. Makholm, and H. Niss. A direct
approach to control-flow sensitive region-based
memory management. In Proceedings of the 3rd
international ACM SIGPLAN conference on
Principles and Practice of Declarative Programming,
Florence, Italy, September 2001.

[17] C. Lattner and V. Adve. Automatic pool allocation
for disjoint data structures. In Proceedings of The
Workshop on Memory Systems Performance, Berlin,
Germany, June 2002.

[18] D. Liang and M.J. Harrold. Efficient points-to analysis
for whole-program analysis. In Proceedings of the
ACM SIGSOFT ’99 Symposium on the Foundations of
Software Engineering, Toulouse,France, September
1999.

[19] F. Qian and L. Hendren. An adaptive, region-based
allocator for Java. In Proceedings of the 2004
International Symposium on Memory Management,
Berlin, Germany, June 2002.

[20] R. Rugina and S. Cherem. Region analysis for
imperative programs. Technical Report CS
TR2003-1914, Cornell University, October 2003.

[21] A. Salcianu and M. Rinard. Pointer and escape
analysis for multithreaded programs. In Proceedings of
the 8th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, Snowbird, Utah,
June 2001.

[22] Bjarne Steensgaard. Points-to analysis in almost linear
time. In Proceedings of the 23rd Annual ACM
Symposium on the Principles of Programming
Languages, St. Petersburg Beach, FL, January 1996.

[23] M. Tofte and J.-P. Talpin. Implementation of the
typed call-by-value lambda-calculus using a stack of
regions. In Proceedings of the 21st Annual ACM
Symposium on the Principles of Programming
Languages, Portland, OR, January 1994.

[24] R. Vallee-Rai, L. Hendren, V. Sundaresan, P. Lam,
E. Gagnon, and P. Co. Soot - a Java optimization
framework. In CASCON ’99, Toronto, Canada,
November 1999.

[25] J. Whaley and M. Rinard. Compositional pointer and
escape analysis for Java programs. In Proceedings of
the 14th Annual Conference on Object-Oriented
Programming Systems, Languages and Applications,
Denver, CO, November 1999.

[26] Tim Wilkinson. Kaffe – a free Java virtual machine.
http://www.kaffe.org.

96

