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ABSTRACT
The mostly concurrent garbage collection was presented in
the seminal paper of Boehm et al. With the deployment of
Java as a portable, secure and concurrent programming lan-
guage, the mostly concurrent garbage collector turned out
to be an excellent solution for Java’s garbage collection task.
The use of this collector is reported for several modern pro-
duction Java Virtual Machines and it has been investigated
further in academia.
In this paper, we present a modification of the mostly

concurrent collector, which improves the throughput, the
memory footprint, and the cache behavior of the collector
without foiling the other good qualities (such as short pauses
and high scalability). We implemented our solution on the
IBM production JVM and obtained a performance improve-
ment of up to 26.7%, a reduction in the heap consumption
by up to 13.4%, and no substantial change in the (short)
pause times. The modified algorithm was subsequently in-
corporated into the IBM production JVM.
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D.3.4 [Programming Languages]: Processors—Memory
management (garbage collection)
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1. INTRODUCTION
Modern SMP servers with multi-gigabyte heaps provide

new challenges for garbage collection (GC). GC techniques
originally designed for single processor client machines lead
to unacceptable pauses when used on large servers. There is
a growing need for a GC that is specifically targeted at large
server configurations: 64-bit shared-memory running multi-
threaded applications on a multi-gigabyte heap. Such appli-
cations include web application servers, which must provide
relatively fast responses to client requests and scale to sup-
port thousands of clients. The requirements for this kind of
“server-oriented” GC include: ensuring short pause times on
a multi-gigabyte heap, while maintaining high throughput
and good scaling on multiprocessor hardware.
The mostly concurrent garbage collector was presented in

the seminal paper of Boehm et al [9]. With the deployment
of Java as a portable, secure and concurrent programming
language, the mostly concurrent garbage collector turned
out to be an excellent solution for Java’s garbage collec-
tion task. The use of this collector is reported for the pro-
duction JVM of IBM [27], SUN [29], and BEA WebLogic
JRockit [22], and has been investigated further in academic
research (e.g., [17]).
In this paper, we present a basic improvement to the

mostly concurrent collector increasing the throughput, re-
ducing the heap consumption, and reducing the cache miss
rate, without impairing the other good qualities (such as
short pauses and high scalability).

1.1 The Mostly Concurrent Collector
The basic collector of Boehm et al [9] is a mark-and-sweep

collector. It begins by marking the roots and tracing con-
currently with the program run. Since the object connec-
tivity graph is modified by the program while the collector
traverses the heap, a write barrier is required to ensure cor-
rectness. The write barrier uses a set of virtual dirty bits
(similar to a card marking scheme) to record locations of
references in the heap that are modified by the program.
These locations must be retraced by the collector to make
sure that all reachable objects are marked. The repeated
trace is called card cleaning and it may run once (or more),
concurrently with the program. However, during concurrent
card cleaning, more cards (or pages) may become dirty (via
the write barrier or via page protection traps) and so this
process may never terminate. To finish the collection, the
program is stopped and all cards are cleaned. At this time,
all reachable objects are guaranteed to be marked and the
sweep phase may start (concurrently or during the program
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pause). For a more detailed description of the basic collector
see Section 2.1.
Printezis and Detlefs [29] have extended this collector to

run with generations, noting that the write barrier is sim-
ilar. They suggest several improvements and report excel-
lent behavior with a modern JVM. Ossia et al [27] have
extended the collector to run in several parallel threads (so
the pause times are more efficiently used on an SMP) and
combined the incremental collector with separate low pri-
ority collector threads to better utilize the CPU. Endo et
al [17] have investigated how this collector can run in an
uncooperative environment while maintaining a low bound
on program pauses.

1.2 This Work
In this paper, we present a basic improvement to the

mostly concurrent collector aimed at improving the through-
put and heap consumption, without interfering with the
other good qualities (such as low pauses and high scala-
bility). The idea is to study the collector algorithm and
improve it in two ways. First, we would like to eliminate
repetitive collector work as much as possible, and thus im-
prove its efficiency. Second, we would like to reduce the
number of dirty cards as much as possible in order to keep
the pause times low.
The optimization potential stems from the fact that the

collector inherently does repetitive work. The heap is scanned,
and then marked objects on dirty cards are re-scanned. In
particular, the (mark-bits of the) children are read again to
check whether a new unmarked child object has been linked
to the marked parent object by the program threads. At
first glance, it seems that correctness dictates this amount
of repetitive work. However, in this paper we claim that a
substantial fraction of this work may be eliminated. The
idea is to avoid the initial tracing through dirty cards. If
the collector traces through an object on a dirty card, the
same object will be traced again when the card gets cleaned.
Thus, the first trace can be spared. This simple idea buys a
large improvement in the throughput, a substantial reduc-
tion of the memory footprint, and a significant reduction in
the cache miss rate. However, this idea moves some of the
tracing work from the tracing phase to the card cleaning
phase, and that may increase the pause times.
An additional simple idea is used to reduce the number

of dirty cards and keep the pause times low. We assert that
there is no point in marking a card dirty if, at the time of
dirtying the card, it contains no traced objects. If the collec-
tor has not yet traced through this card, the modification of
a pointer by the program does not interfere with trace cor-
rectness and dirtying the card is redundant. Indeed adding
such a check to the write barrier significantly decreases the
number of dirty cards, but also adds a high cost to the write
barrier. We choose an implementation which approximates
this idea and gets good results. The details are presented in
Section 3.

1.3 Implementation and Results
We implemented our solution on top of the mostly con-

current collector that is part of the IBM production JVM
1.4.0. We used the SPECjbb2000 benchmark on an IBM
6-way pSeries server and an IBM 4-way Netfinity server. As
a sanity check we also measured performance on a client ap-
plication: the SPECjvm98 benchmark suite on a uniproces-

sor. Our measurements show a performance improvement
of up to 26.7%, a reduction in heap consumption of up to
13.4%, a reduction in the cache miss rate of up to 6.4%,
and no substantial change in pause times. The performance
improvement of 26.7% is obtained when the collector runs
concurrently with the mutator at a low rate so that it in-
terferes minimally with mutator work. If we let the col-
lector use a lot of CPU time and finish the collection very
quickly (while hindering program activity), the number of
dirty cards and the amount of repetitive work decrease sig-
nificantly. In this case, our methods improve performance
by only 5.4%, on the 6-way pSeries server. To summarize,
we improve performance for all relevant rates of the concur-
rent collector; the biggest improvement is obtained for the
most important concurrent rate, in which the collector runs
non-intrusively. We stress that our measurements are not
taken on a research system; these significant improvements
were actually measured on IBM’s production JVM.

1.4 Related Work
The study of concurrent (and on-the-fly) garbage collec-

tors was initiated by Steele and Dijkstra, et al [34, 35,
11, 12]. Incremental collection was presented by Baker [6].
There exists vast literature on the development of concur-
rent collectors, see for example [18, 7, 8, 23, 26, 2, 24].
More recent concurrent collectors implemented on modern
systems appear in [14, 13, 15, 16, 5, 20, 25, 4, 3]. Recently,
the mostly concurrent collector has been attracting more at-
tention than other collectors in this list. The reason may be
that it is both effective and simple. It has been reported to
be used in the production JVM of IBM [27], SUN Solaris
[29], and BEA WebLogic JRockit [22].

1.5 Organization
In Section 2, we review the mostly concurrent collector al-

gorithm and some of its properties. In Section 3, we present
our algorithmic improvement. In Section 4, we specify our
implementation details and report measurement results. We
conclude in Section 5.

2. THE MOSTLY CONCURRENT COLLEC-
TOR

In this section, we review the basics of the Boehm et al
collector [9]. In Section 2.2 we discuss the tracing rate notion
that has a major influence on the collector behavior and
efficiency.

2.1 The Basic Collector
Boehm et al [9] suggest marking the heap using a sepa-

rate designated collector thread running concurrently with
the program threads. On a multiprocessor, this means that
the program may continue to run with only a slight inter-
ruption, whereas on a uniprocessor this would mean an in-
cremental collector: whenever the collector thread gets CPU
time, it performs more collection work. However, running
the trace with no cooperation from the program threads
does not guarantee that all reachable objects will be traced
and it may cause a reclamation of a reachable object.
The problem is that when the collector has finished trac-

ing and marking object O, having traced all its children,
object O is not traced again. However, the program thread
may modify the pointers in O, making O the only parent
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of a reachable object A, which has not been traced. In this
case, object A will not be noticed by the collector and it
may be reclaimed. To solve this correctness problem, the
mostly concurrent collector requires mutator cooperation in
the form of a card marking write barrier [31]. Whenever
the mutators modify a pointer, they also mark the card on
which the pointer resides as dirty. Now, if the collector re-
traces all pointers of marked objects on all dirty cards, all
reachable objects are guaranteed to be properly traced.
Using the above observations, the mostly concurrent col-

lector works as follows. First, roots are marked and dirty
bits of all cards are cleared. Then, a tracing phase is exe-
cuted concurrently. While the collector runs, the program
threads use the card marking write barrier (or page pro-
tection traps) to record any pointer modification. When
tracing is done, the collector starts a card cleaning phase.
During this phase, the collector goes through all dirty cards.
For each dirty card, the card is marked not dirty and then
the collector scans all marked objects on the card. If one of
them points to an object that has not been marked, then
the unmarked object and all its descendants are traced.
The card cleaning phase may run concurrently with the

program threads or while the program is halted. The com-
mon practice is to run one card cleaning phase concurrently
(and thus, the program continues to dirty cards during the
cleaning phase) and then another phase while the program
threads are stopped (and thus, the cleaning is guaranteed
to eliminate all dirty cards and finish the trace). During
the second (final) card cleaning phase, the roots are re-
scanned. Since the write barrier is not applied to the roots,
we must assume conservatively that they have been modi-
fied and scan them as if they were dirty. The second card
cleaning phase handles fewer cards (than the first), hence,
pause time of the program is short. Sweeping may run lazily
and concurrently afterwards. For more details, the reader is
referred to the original paper [9].
Note that when the collection cycle terminates, some marked

objects are no longer reachable. These objects will not be
reclaimed and are called Floating garbage [21]. All floating
garbage is reclaimed in the next GC cycle.

2.2 The Tracing Rate
An important parameter of the mostly concurrent collec-

tor (with respect to performance) is the tracing rate. This
parameter signifies how fast the concurrent collector works,
relative to the execution of the program. The common way
to run the mostly concurrent collector is to let the collector
run on an additional designated collector thread and let it
compete on CPU time with the program threads. If there is
a small number of program threads, the collector runs faster,
whereas with a large number of mutators, the collector runs
slower.
In the implementation we use as a basis for this work, the

collector is incremental, i.e., the program threads execute
some of the collector work within each allocation [6]. Thus,
the tracing rate becomes the ratio between collector work
and allocation work and may be determined by the user.
Specifically, each mutator, after allocating k bytes of new
objects, performs s·k steps of the collector code, where k is a
predetermined threshold and s is the tracing rate parameter
specified by the user. If s is large, the collector runs fast. In
this case, when the collector is on, the program runs much
slower (than when running without the collector). However,

this happens for a short while. The behavior of the collector
in this case is closer to a stop-the-world collector. When s
is small, the collector runs slowly and the program runs
with little interference. However, the collection runs for a
longer time. The latter mode is more representative of a
concurrent collector. In this mode (where s is small), our
new algorithmic improvement gives its best performance.
The two different modes are depicted in Figure 1. The

Y axis represents sharing of CPU resources and the X axis
represents time. The black area represents the time during
which the program is stopped and the CPU is devoted to
the final stage of the collection. It is denoted STW (the
stop-the-world phase). During the rest of the time period
the CPU is utilized by both the collector (the lighter gray
color), which is running concurrently with the program, and
the Java mutators (the darker gray color). The concurrent
collection can be run fast as depicted in the lower picture
(higher tracing rate), but it then uses a large share of the
CPU utilization. Alternatively, it may run concurrently
with the program for a long time, requiring less of the CPU
resource and allowing the program to run non-intrusively as
depicted in the upper picture (lower tracing rate).

Concurrent
tracing

 Final
 STW

Java 
mutation

Time

CPU

CPU

Low tracing rate

High tracing rate

Figure 1: Characteristics of different tracing rates

Note that our tracing rate specifies the ratio between col-
lection work and allocation work. The ratio between col-
lector work and overall program work (which include alloca-
tions, but also other computational tasks) is not determined
by the tracing rate and depends on how frequent alloca-
tions are in the program. For a typical benchmark, such as
SPECjbb2000, tracing rates translate to the following be-
havior: at tracing rate 8, 4, 2 and 1, the collector gets 72%,
58%, 42%, and 29% of the CPU, respectively. Thus, tracing
rate 8 may be thought of as running one program thread and
three collector threads, and letting the four threads share
the CPU time equally. This fraction of CPU given to the
collector is quite large, and may not be appropriate for ap-
plications. Tracing rate 1, in which we let the collector use
29% percent of the CPU, is a more reasonable choice for
a system. It is for this realistic choice of the tracing rate
parameter that our improvement does best. We do not con-
sider tracing rates higher than 8, since they are unlikely to
be used in practice.

3. IMPROVING THE COLLECTOR
In this section, we explain our algorithmic improvement

to the mostly concurrent collector. We start by pointing
out repetitive work that seems necessary for the correct-
ness of the collection. However, we are able to eliminate a
substantial fraction of the repetitive work while preserving
correctness. Next, we study ways to reduce the number of
dirty cards as much as possible, in order to keep the pause
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times low. Here, again, correctness is the main difficulty;
however, we are able to reduce a substantial fraction of the
dirty cards without foiling the correctness of the collector.

Repetitive work. We start by pointing out the extra work
done by the collector to achieve correctness. After executing
the tracing phase, the collector moves to the card cleaning
phase, in which it goes through all the dirty cards and scans
each marked object. The scanning of a marked object on a
dirty card consists of reading all references in the scanned
object and checking the mark bit of each referent object
(each child). If the mark bit of a child is clear, the child ob-
ject and its descendants must be traced. If the mark bit of
the child is marked, no further operation is required. Note
that when a child is discovered with its mark bit set, the
collection does not really gain anything from this discovery.
This operation is only required to assure correctness. Fur-
thermore, the scanned references get scanned twice (once
during the tracing phase and once again while cleaning the
cards). This extra work has a performance cost that we
would like to save. We do not see how it may be possible to
refrain from scanning the marked objects on all dirty cards,
since correctness dictates that we check all modified point-
ers. However, we suggest an improvement to the tracing
phase, which reduces the amount of repeated work. Instead
of cutting the work during card cleaning, we cut some of the
tracing work so most of the card cleaning work is no longer
repetitive.

3.1 Reducing Tracing Work
Recall that the objects that get scanned twice are marked

objects on dirty cards. These objects are first scanned (and
marked) by the collector during the tracing phase and then
re-scanned during card cleaning, since they reside on dirty
cards. Our first idea is to avoid tracing through dirty cards.
When the collector traces an object and discovers that this
object resides on a dirty card, scanning it is redundant. It is
enough to mark the object. Since the card is dirty, we know
that this (marked) object will be scanned during the card
cleaning phase. This way, we avoid much of the repeated
work, although not all of it. Objects that are scanned before
a card is made dirty will still go through double scanning.
However, we eliminate double scanning for objects that are
traced after the card got dirty. Recall that the card clean-
ing phase also involves tracing operations. The same rule
(i.e., not tracing through dirty cards) also applies for the
card cleaning phase (for the same reason). It turns out that
this method reduces a substantial amount of collector work.
Furthermore, it yields a significant reduction in the memory
footprint and a significant reduction in the cache miss rate.

3.2 Reducing the Number of Dirty Cards
Having made this improvement with respect to collector

efficiency, we now turn our attention to the pause times. The
pause times are dominated by the number of dirty cards that
need to be cleaned when the program is stopped. Thus, we
would like to keep only the minimum number of dirty cards
necessary, those which are required for correctness. Let us
say a few words on the correctness analysis and then observe
what is actually required to make the collector correct. A
simple way to claim correctness for the mostly concurrent
collector is to claim that all objects that are reachable at the
time the program is stopped for the final stop-the-world card

cleaning must have been marked by the end of the stop-the-
world card cleaning phase. This can be shown by induction
on the distance of the objects from the roots. The base
follows from the fact that the roots are scanned during the
final (stop-the-world) phase of the collection. Now, consider
an object A that is reachable at the stop-the-world phase
and let B be a reachable parent of A that is closer to the
roots (one must exist). By induction, B is marked by the
end of the stop-the-world phase. We need to show that the
reference of B to A is scanned at some point in the collection.
If the reference of B to A existed when B was first traced,
then it must have been scanned at that time1. Otherwise,
this reference has been written to B after it has been traced.
Consider the last time this reference was written to B. At
that time, the card associated with B was marked dirty with
B already being marked. Thus, A must have been traced
during the following card cleaning phase.
Note that what is really needed for the above proof is that

the program marks a card dirty if the modified reference has
already been traced by the collector. However, if the modified
reference has not yet been traced, then the collector will
notice the new child in any case and there is no need to
mark the card dirty. This is the main idea behind the second
modification.
The straightforward implementation of this idea requires

a modification of the write barrier. Instead of simply mark-
ing a card dirty upon a modification of a reference on the
card, the write barrier first checks if the modified object has
been traced (marked). If not, no card marking is required.
Such a check may hinder the efficient write barrier (see [27]
for a description of the original write barrier). We chose two
different implementations of this idea, keeping the write bar-
rier unchanged. These two implementations are described
in the following two subsections. One may choose to run
one of them or both.

3.2.1 Undirtying via scanning
Instead of avoiding marking a card dirty when the mod-

ified object has not yet been traced, we do mark the card
dirty, but return to check this mark at a later time and
clear the mark if possible. To this end, we keep a second
card table signifying for each card if it contains an object
that has been traced. The collector marks a card in this ta-
ble as traced, before tracing an object on the card. “Once in
a while” (e.g., after each m allocations for some parameter
m) we run the procedure below. In this procedure, we say
that a card is dirty if it was marked dirty by the write bar-
rier when a mutator modified a pointer on the card, and we
say that a card is traced if it was marked by the collector (in
the second card table) when the collector traced an object
on the card.

for each dirty card C {

if C is not traced {

clear dirty mark of C

check C again

if C is traced, mark C as dirty

}

}

1This claim should be modified when the collector is modi-
fied so that it does not trace through dirty cards. However,
if B resides on a dirty card when first traced, then it is
marked and a later card cleaning phase should spot A.
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Note that we need to run the two checks of the traced
bit, since a collector thread might be tracing concurrently
with this procedure and setting the trace bit of card C, right
before the dirty mark of C is cleared. Without the additional
check, a correctness problem may occur if (in addition to
the collector tracing into this card) a mutator modifies an
object on this card. It is easy to see that with the above
order of instructions, any card is made not dirty only if at
the time it is made not dirty no object on it was traced.
We remark on platforms that allow instruction reordering
in Section 3.3 below. This procedure turned out to be very
effective at removing the dirty marks from many dirty cards,
and keeping the pause times short.

3.2.2 Undirtying via allocation caches
In typical programs, a lot of the pointer modification ac-

tivity on the heap happens while newly created objects are
initialized. This activity creates a lot of dirty cards. Also,
most new objects are not traced immediately upon creation.
Thus, a great opportunity to undo dirty marks on cards oc-
curs just after new objects are initialized. At the JVM level
it is not possible to tell when an object has been initial-
ized. However, in the special case where allocation caches
are used, an approximation of this idea is possible. In this
section, we elaborate on this special case, explaining what
allocation caches are and how they can be used. We also
implemented our ideas for this special case and provide mea-
surements in Section 4 below.
Allocation caches are used in several modern JVMs [10,

1]. The idea is to reduce synchronization in heap access, by
letting each thread hold a local allocation cache in which it
can allocate small objects. When the program thread has
finished allocating on an allocation cache, it requests an-
other allocation cache. We claim that this is an ideal time
to try to undo all dirty cards that are contained in the allo-
cation cache. Usually, at this time, all the new objects have
been initialized and there is only a small probability that
the collector has made its way to these new objects during
the short time in which the allocation cache was active.
Furthermore, instead of keeping the additional card table

(in which the collector marks traced cards) it is possible to
keep a bit for each object to signify whether it is part of an
active allocation cache. If this bit is set, then the collector
refrains from tracing the object immediately, and it defers
the tracing of this object to a later time. A designated list
may be used to remember objects whose trace was deferred.
When the allocation cache is filled and becomes inactive,
the mutator clears the dirty bits for all cards in the allo-
cation cache and then clears also these “defer” bits for all
objects contained in the allocation cache. We observed that
it seldom happens that the collector actually reaches an ob-
ject on an active allocation cache, i.e., our designated list
for postponed tracing is almost empty. In particular, in our
SPECjbb2000 runs, out of millions of traced objects we saw
only 18 deferred objects on average in each GC cycle (the
maximal number was 287). The guarantee that objects on
active allocation caches are not traced, ensures that all the
dirty cards (that are contained in an allocation cache) may
be undirtied when a thread stops using this allocation cache.
We have implemented both these methods and compare

their results in Section 4.6 below.

3.3 Dealing with Weakly Consistent Platforms
Our first method, not tracing through dirty cards, is not

vulnerable to a change in the order of memory access. If the
collector reads a wrong value from the card table showing
that a card is not dirty, then, at worst, this only means
that the collector does not gain the advantage of not tracing
through a dirty card. We expect this to happen infrequently.
On the other hand, if a card appears to be dirty while it has
not yet been modified, then we know that the modification
will be seen by the collector when all program threads are
stopped for the final stop-the-world phase. At that time,
the dirty card will be scanned properly.
Next, we note that it is easy to deal with weakly con-

sistent platforms in the special case in which the allocator
uses local caches. In this case, whenever the mutators fill
an allocation cache, they perform a synchronization barrier
after undoing the dirty cards and before allowing the collec-
tor to trace through the objects on the allocation cache (i.e.,
before resetting the “in active cache” bits of the objects).
The generic case does require a modification that has a

(small) performance cost. There, the order of operation is
used to synchronize the operations of the collector (marking
a card traced) and the operations of the undirtying proce-
dure (checking whether the card has already been traced).
The naive approach is to let the collector run a synchroniza-
tion barrier after it marks a card traced (and before actu-
ally tracing an object in the card), and to let the undirty-
ing procedure run a synchronization barrier on each dirty
card (before checking whether it is traced). This solution is
not so bad, since a synchronization barrier is run at most
once by the collector and at most once for each invocation
of the undirtying routine. (Note that the mutator is not
involved in these costs.) We also propose an alternative
method that runs only a few synchronization barriers, but
requires a handshake between the collector and the undirty-
ing procedure for each invocation of the undirtying proce-
dure.
The alternative method is as follows. The undirtying

procedure starts by running sequentially on the card table
and marking all the dirty-and-not-yet-traced cards as not
dirty. The procedure records the cards whose dirty bits were
cleared (by making a list or using an additional card table).
Next, the procedure needs to cooperate on a synchroniza-
tion barrier with the collector. To this end, a handshake
with the collector is used: the procedure runs a synchro-
nization barrier and requests the concurrent collector to run
a synchronization barrier in its code. When both have run
the handshake, the undirtying procedure runs again over all
cards whose dirty bit was cleared. For each such card that
is now marked traced, the undirtying procedure makes the
card dirty again.

4. RESULTS
In this section, we present the results of implementing our

improved mostly concurrent collector. We start by describ-
ing our implementation and test environment. We then com-
pare the results of the reference collector to those of our im-
proved implementation. In particular, we present through-
put, pause times, and heap consumption measurements on
both platforms. We continue with a discussion on the effect
of our improvements on L2 cache behavior. Next, we provide
measurements for each of our improvements separately (i.e.,
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the improvement of not tracing through dirty cards and the
improvement of undoing dirty cards). These measurements
show how each improvement impacts the reference collec-
tor as a stand alone. Finally, we compare the two proposed
methods for undoing of the dirty state of cards.

4.1 Implementation of Our Improvements
Our reference collector is the IBM mostly-concurrent col-

lector; this collector is part of the IBM JVM 1.4.0. The
IBM JVM is a production level JVM, which employs highly
optimized memory management techniques and uses an op-
timizing JIT compiler to deliver high performance execution
of Java server applications. We refer to this reference col-
lector as the base collector. A detailed description of this
collector appears in [27].
We have incorporated our improvements into this refer-

ence collector. We used the same parameter tuning as in
the original (highly optimized) collector. In particular, the
card size used is 512 bytes. We have reduced tracing work
by avoiding the tracing through dirty cards (as described in
Section 3.1) and we have reduced the number of dirty cards
(as described in Section 3.2). We refer to the resulting col-
lector as the improved collector.
In the latter improvement, we combined the two proposed

implementations: all through the concurrent collection cy-
cle we undirty cards via allocation caches (as described in
Section 3.2.2). In addition we scan the whole card table
and undirty all the cards which were not traced yet (as de-
scribed in Section 3.2.1) once during each collection: after
the concurrent tracing phase is over and before starting the
concurrent card cleaning phase.
For the first improvement (not tracing through dirty pages)

there are two possibilities regarding when to check if the ob-
ject resides on a dirty card. The first option is to avoid
pushing an object to the mark-stack when it is on a dirty
card during the push time. The second option is to avoid
tracing a popped object if it resides on a dirty card when it
is popped from the mark-stack. The advantage in checking
the dirty card before pushing the object into the stack is
that we do not need to spend time on pushing and popping
objects that will later not be traced. However, checking the
dirty card upon popping the object occurs at a later time
after more pages have been marked dirty and so may spare
double tracing of more objects. We have implemented both
options and did not see any difference in performance. Our
reported results are for the version that checks the dirty card
when popping the object from the mark-stack.
We also created implementations of each improvement

separately in order to analyze their specific impact. These
partial implementations are discussed in Section 4.5.
In some parts of this discussion, we compare various re-

sults to those of the mark and sweep stop-the-world collec-
tor, which is also part of the IBM JVM. We refer to this
collector as MS STW.
We stress that our algorithm did not require any extra

auxiliary data structures in addition to the ones already ex-
isting in the previous algorithm. The same card table has
been used. The only part of the algorithm that seems to re-
quire an additional structure is the second part of the algo-
rithm as described in Subsection 3.2. There, we need a card
table signifying which cards contain objects that have been
traced already. However, our base collector keeps a mark-bit
table for which a card is reflected by two long words. In-

stead of creating a new table, we use the existing mark-bit
table and for each card we checked that its corresponding
two long words contained no set mark bits.

4.2 Platform, Benchmarks, and Methodology
Our measurements were taken primarily on a pSeries server,

with six 600 MHz PowerPC RS64 III processors (64 bit) and
5 GB of RAM running AIX 5.1. We refer to this machine as
AIX-6. We repeated these measurements on an IBM Netfin-
ity 7000 server, with four 550 MHz Pentium III XeonTM
processors (32 bit) and 2 GB of RAM, running Windows NT
4.0. We refer to this machine as NT-4. The improvements
on the IBM Netfinity 7000 server are smaller than those of
the pSeries server, and are discussed in Section 4.3.2.
The single-threaded client-side benchmarks were measured

on an IBM ThinkPad A31p, with a 2.00 GHz Pentium 4
processor and 512 MB of RAM, running Windows XP Pro-
fessional.

Benchmarks. We used two benchmarks: SPECjbb2000, and
the SPECjvm98 benchmark suite.

SPECjbb2000 [32] is a Java business benchmark inspired
by TPC-C. It emulates a 3-tier transaction system, concen-
trating on the middle tier. SPECjbb is throughput oriented;
it measures the amount of work done during a given time.
The result is given in TPM (transaction per minute). On
a 6-way multiprocessor, an official run of SPECjbb includes
twelve short cycles of two minutes each. The first cycle
creates a single warehouse (thread), and each successive cy-
cle increases the number of warehouses by one, ending with
twelve warehouses (on an N-way machine the benchmark
is usually run from one warehouse to twice the number of
processors). Each warehouse is represented by a separate
thread, and thus, the number of program threads equals the
number of warehouses. Adding warehouses increases the
amount of live objects, the object allocation rate, and the
level of GC activity. SPECjbb issues a score for each cycle,
and a total score for the entire run.
We will sometimes use the SPECjbb averaging convention
for computing the total score to produce a similar single
score for memory consumption, pauses, etc. Specifically,
on a 6-way multiprocessor, a simplified method to approxi-
mate the total score out of the twelve separate scores, is to
average over the scores from six warehouses and upwards.
We use exactly the same method to calculate a single value
from the set of per-warehouse results. For example, when we
quote the average heap residency of a set of tests, we mean
that we have calculated the average heap residency for six
warehouses and up, over all these tests. On the 4-way NT
machine, we average from four warehouses and up.

SPECjvm98 [33] is a benchmark suite that measures com-
puter system performance for Java Virtual Machine (JVM)
client platforms. It consists mostly of single-threaded bench-
marks that use relatively small heaps (typically, less than
50 MB). We measured this benchmark suite in order to pro-
vide some insight into the behavior of our improvements for
small applications. The performance measure of SPECjvm98
is execution time. These benchmarks were run with the de-
fault input size parameter 100.

Test rules. In order to test the garbage collection mecha-
nism under a reasonably heavy load when running SPECjbb,
we aimed at achieving a 60% heap residency at the maximal
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number of warehouses, and therefore used a 448 MB heap
for the 6-way (64 bit) machine, and 256 MB for the 4-way
(32 bit) machine. Note that the heap size is also influenced
by the architecture used, as 64 bit objects are bigger. For
the same reasons, we used a smaller heap when measuring
the SPECjvm98 benchmarks. The entire suite was run with
the 32 MB heap. Except where noted otherwise, results are
averaged over five runs.

4.3 Comparing the Base and Improved Col-
lectors

When evaluating a mostly concurrent garbage collector,
a major concern is its effect on the performance, pause
time, and heap residency of the application. In this sec-
tion, we present detailed comparisons of the base implemen-
tation and improved implementations. We present the re-
sults of runs with various tracing rates (1, 2, 4, & 8). Recall
that tracing rate 8, 4, 2 and 1 mean that the collector gets
72%, 58%, 42%, and 29% of the CPU, respectively. We feel
that tracing rate 1 is more interesting for a concurrent col-
lector since it lets the program run non-disruptively. Our
improvement works best at the lower tracing rates.

4.3.1 SPECjbb2000 on pSeries server (AIX-6)

Run W 2 W 4 W 6 W 8 W 10 W 12
Base Tr1 20.0 31.2 34.2 29.3 26.0 22.8
Imp. Tr1 20.9 35.6 42.7 37.1 32.8 29.4
Base Tr2 20.5 33.6 38.6 32.2 27.8 23.2
Imp. Tr2 21.0 36.0 44.2 38.7 34.7 20.4
Base Tr4 20.8 35.0 41.9 35.6 31.5 26.8
Imp. Tr4 21.1 36.3 44.4 39.3 35.3 31.4
Base Tr8 20.9 35.8 43.6 38.2 34.4 29.9
Imp. Tr8 21.2 36.7 45.3 40.0 36.3 32.2

Table 1: SPECJbb (AIX-6): Throughput compari-
son of the base and improved collectors, for all trac-
ing rates and for 2,4,6,8,10 and 12 warehouses. Val-
ues in thousands of TPMs.
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Figure 2: SPECJbb (AIX-6): Throughput change
between the base collector and the improved collec-
tor, for all tracing rates

Table 1 shows the throughput scores of SPECjbb for both
the base collector and our improved one. The results are
shown for 2,4,6,8,10, and 12 warehouses and for tracing rates
1, 2, 4, and 8. The standard deviation values (in thousands

of TPMs) for these results were 0.2 on average (maximum
0.5) for the base collector, and 0.3 on average (maximum
0.7) for the improved collector.
Figure 2 graphically depicts the improvement, for all ware-

houses and for all tracing rates.
We can see that there is a significant increase in scores

from the fourth warehouse and upwards. Note that our im-
proved collector achieves an average throughput increase of
26.7% at tracing rate 1. The scoring convention by which
we average the twelve numbers into one is explained in Sec-
tion 4.2 above. When switching to higher tracing rates, the
improvement becomes smaller. For tracing rate 8 the aver-
age improvement is only 5.4%.
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Figure 3: SPECJbb (AIX-6): Average pause time
comparison for all tracing rates

In Figure 3, we present the average pause times of the
improved collector and the base collector. The standard
deviation values (in milliseconds) for these results were 1.5
on average (maximum 5.9) for the base collector, and 2.8
on average (maximum 4.8) for the improved collector. The
improved collector managed to reduce the pause times for
tracing rates 1 and 2. For higher tracing rates the pause
times increased slightly. Figure 4 shows the maximal pause
times. The pattern of change in the maximal pause times is
similar to that of the average pause times. The standard de-
viation values (in milliseconds) for the maximal pause times
results were 3.3 on average (maximum 9.8) for the base col-
lector, and 5.5 on average (maximum 13.9) for the improved
collector.
Finally, we checked the impact of our improvements on the

heap residency, which is defined as the total amount mem-
ory on the Java heap which is not reclaimed. Measuring the
heap residency is important, since it influences the required
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Figure 4: SPECJbb (AIX-6): Maximal pause time
comparison for all tracing rates

size for the Java heap and therefore the footprint of the
JVM. In addition to all the objects that are reachable, heap
residency consists of two other elements: objects that were
traced by the concurrent collector, but became unreachable
later in the collection cycle, and gaps between objects that
were too small to be reused. The former is called floating
garbage, and the latter is the fragmentation inside the heap,
and is also known as dark matter. As the amount of reach-
able objects (in a stable state of a SPECjbb execution) does
not depend on the nature of the garbage collector, it fol-
lows that the differences in heap residency come from the
collector’s influence on the amount of floating garbage and
fragmentation.

Run W 2 W 4 W 6 W 8 W 10 W 12
Base Tr1 80.0 139.6 193.4 231.4 271.8 305.4
Imp. Tr1 65.8 113.0 157.8 197.8 237.0 276.0
Base Tr2 74.8 127.0 176.6 220.6 262.0 300.8
Imp. Tr2 66.0 111.4 155.2 194.4 235.2 273.8
Base Tr4 69.0 116.8 163.0 204.0 244.6 285.2
Imp. Tr4 63.6 110.2 154.2 193.0 232.4 270.2
Base Tr8 65.4 112.4 156.6 195.8 235.0 273.2
Imp. Tr8 63.4 109.0 152.8 192.4 230.0 267.4

Table 2: SPECJbb (AIX-6): Heap residency com-
parison of the base and improved collectors, for all
tracing rates. Values in Mbytes, for warehouses
2,4,6,8,10 and 12.

Table 2 shows how our improvements reduced the heap
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Figure 5: SPECjbb (AIX-6): Heap residency change
between the base collector and the improved collec-
tor, for all tracing rates.

residency, for warehouses 2, 4, 6, 8, 10, and 12, and for
tracing rates 1, 2, 4, and 8. The standard deviation values
(in Mbytes) for these results were 1.0 on average (maximum
2.7) for the base collector, and 1.1 on average (maximum
3.0) for the improved collector.
Figure 5 graphically depicts the changes. The average

reduction in tracing rate 1 is 13.4%. As the tracing rate in-
creases, we see a gradual decline in this reduction, until the
average drops to 2.1% when using tracing rate 8. We com-
pared the heap residency when using a MS STW collector
(which has no floating garbage) to our results. Relative to
the MS STW collector, the base mostly concurrent collec-
tor added 20.1% to the heap residency, with tracing rate 1;
and 3.0% with tracing rate 8. Our improved collector added
only 4.0% to the heap residency with tracing rate 1, and
0.7% with tracing rate 8. We conclude that our improve-
ment eliminates most of the floating garbage created by the
concurrent collector.

Varying the heap size. As discussed in Section 4.1, most
of our measurements were run with a heap of size 448 MB,
in order to set the heap residency to 60% at the maximal
number of warehouses. As a sanity check, we also mea-
sured performance on a larger heap to verify that our im-
provements do not misbehave in a different environment. In
particular, we ran the base and improved collector using a
heap of (double) size 896 MB. Our expectations were met by
these measurements: when the heap gets larger, the number
of collections is reduced, and so our improvement has less
effect on the overall throughput.
In Table 3 we compare the improvement of our algorithm

in both sizes of the heap, and report the reduction in the
number of garbage collections. The improvements in the
pause times (in the lower tracing rates) and the reduction in
heap residency were not substantially affected by the move
to a larger heap, and are not reported. These findings con-
firm the expected. Our ability to improve the efficiency of
the collection and eliminate most of the floating garbage is
not restricted to smaller heap size. The influence on the
overall throughput depends on the percentage of time spent
on garbage collection during program run.

4.3.2 SPECjbb2000 on Netfinity 7000 server (NT-4)
In this section, we report measurements for the 4-way

IBM Netfinity 7000 server. Figure 6 shows the throughput
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Tr1 Tr2 Tr4 Tr8
Throughput improve-
ment in 448 MB 26.7% 21.2% 10.9% 5.4%
Throughput improve-
ment in 896 MB 13.9% 7.9% 4.5% 2.9%
Drop in throughput
improvement 47.9% 62.9% 58.9% 45.2%
Drop in number of
GC cycles 55.9 % 55.6% 56.9% 57.3%

Table 3: SPECjbb (AIX-6): Throughput improve-
ment when using a 448 MB heap and an 896 MB
heap, and the drop in the number of GC cycles,
when switching to the 896 MB heap, for all tracing
rates

improvement (in scores) of the improved collector over the
base collector for each warehouse and for all tracing rates.
The overall pattern resembles the results on the AIX-6, but
the improvement is smaller; the best average throughput in-
crease is 16.5% (in tracing rate 1) and the smallest average
improvement is 2.8%. We believe the difference between the
two machines emanates from different cache behavior.
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Figure 6: SPECJbb (NT-4): Throughput change be-
tween the base collector and the new collector, for
all tracing rates

Figures 7 and 8 present the average and maximum pause
times of the improved collector and the base collector. The
results are similar to those on the AIX-6 machine; the im-
proved collector reduces the pause times in tracing rates
1 and 2, but slightly increases the pause times in tracing
rates 4 and 8. The change in heap residency is presented
in Figure 9, and is similar to the AIX-6 results. All stan-
dard deviation values of the Netfinity 7000 server results are
smaller (as percentage of the actual results) than those of
the AIX-6 results.

4.3.3 Measurements of SPECjvm98
In this section, we present the results of the base collector

and our improved collector running the SPECjvm98 bench-
marks suite. Our modifications are not expected to help
small client applications. The reason is that such small ap-
plications do not create many dirty cards and much floating
garbage. However, as a sanity check we measured our im-
provement also on a client setting. Indeed it turns out that
our improvement does not cause harm for client benchmarks.
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Figure 7: SPECJbb (NT-4): Average pause times
comparison for all tracing rates
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Figure 8: SPECJbb (NT-4): Maximum pause times
comparison for all tracing rates

We ran all the suite on a 2.00 GHz Pentium 4 uniprocessor
running Windows XP. This is a customary setting for client
side Java applications. As required for a legal SPECjvm98
run, we used the same set of the runtime parameters for all
the benchmarks in the suite, including the heap size param-
eter which was set to 32 MB. We have chosen to use 32 MB
heaps in order to accommodate the largest of the bench-
marks (javac) with a live heap occupancy of about 60%
of the total heap. We do not report results for the mpe-
gaudio benchmark. This benchmark is known to have no
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Figure 9: SPECjbb (NT-4): Heap residency change
between the base collector and the improved collec-
tor, for all tracing rates

substantial allocation activity ([33]) and indeed the modified
collector had no effect on the behavior of this benchmark.
All results reported below were very steady. For all of them,
the standard deviation did not exceed 1% of the result mea-
sured.
In Table 4, we present the execution times of the SPECjvm98

test programs for the base and the improved collectors for
different tracing rates. The numbers are reported in seconds
as measured by the benchmarks. At the low tracing rate,
the improved collector runs faster than the base collector
for up to 6%. At the higher tracing rates, we get almost no
influence on the execution time.

Run com jess ray db javac mtrt jack
press trace

Tr1
Base 6.1 4.7 2.4 12.6 11.1 3.2 4.7
Imp. 5.8 4.4 2.3 12.5 10.5 3.1 4.6
Tr2
Base 5.9 4.6 2.4 12.8 9.9 3.1 4.5
Imp. 5.9 4.5 2.3 12.5 9.8 3.0 4.7
Tr4
Base 5.8 4.6 2.3 12.5 9.3 3.0 4.5
Imp. 5.9 4.6 2.3 12.9 9.4 3.4 4.5
Tr8
Base 5.8 4.6 2.3 12.5 8.9 3.0 4.5
Imp. 5.8 4.5 2.3 12.5 9.0 3.0 4.5

Table 4: SPECjvm98: Execution times in seconds
for all the programs, base and improved collectors,
tracing rates 1, 2, 4 and 8.

In Table 5, we present the maximal pause times in mil-
liseconds. There is no substantial difference between the col-
lectors in terms of pause times. In Table 6, we present the
average heap occupancy in Mbytes for all the benchmarks.
Here, also, there is no notable change in the benchmarks
behavior.
Finally, in Table 7 we report the number of GC cycles

executed during the run of each benchmark. This number
was not affected by the improvement, and therefore we only
report it for the base collector. Note that although these are
client (small) benchmarks, all of them execute at least four
collections, and thus, the results are meaningful.

Run com jess ray db javac mtrt jack
press trace

Tr1 base 3 6 4 3 31 173 9
Tr1 imp. 3 6 5 3 29 172 8
Tr2 base 3 5 5 5 20 169 6
Tr2 imp. 3 6 4 4 23 168 7
Tr4 base 4 6 4 3 14 167 5
Tr4 imp. 6 6 4 3 13 168 5
Tr8 base 6 7 5 3 14 169 4
Tr8 imp. 5 6 4 3 14 172 4

Table 5: SPECjvm98: The maximal pause times in
milliseconds for all the programs, base and improved
collectors, tracing rates 1, 2, 4 and 8.

Run com jess ray db javac mtrt jack
press trace

Tr1
Base 9.8 6.5 5.7 10.4 20.1 14.6 4.7
Imp. 10.0 6.3 5.7 10.4 19.3 14.8 4.7
Tr2
Base 6.3 6.4 5.7 10.1 18.9 14.3 4.8
Imp. 6.3 6.4 5.7 10.0 18.9 14.3 4.8
Tr4
Base 7.1 6.5 5.7 10.1 18.1 14.0 3.6
Imp. 5.5 6.4 5.7 10.0 18.4 14.3 3.7
Tr8
Base 5.9 6.5 5.7 10.0 18.1 14.6 3.7
Imp. 5.9 6.5 5.7 10.1 17.9 14.5 3.7

Table 6: SPECjvm98: The average live objects in
Mbytes for all the programs, base and improved col-
lectors, tracing rates 1, 2, 4 and 8.

Run com jess ray db javac mtrt jack
press trace

Tr1 5 12 4 4 11 7 6
Tr2 4 12 4 4 9 7 6
Tr4 4 12 4 4 9 7 5
Tr8 4 12 4 4 8 7 5

Table 7: SPECjvm98: The number of GC cycles for
all the programs, tracing rates 1, 2, 4 and 8.

4.4 Cache Misses
Cache behavior has a significant impact on performance.

It is therefore interesting to investigate the influence of our
improvements on the cache. We concentrated on L2 cache
misses, measured on the 4-way IBM Netfinity 7000 server.
This machine has a 2 MB 4-way associative L2 cache. We
used VTune [30] to measure data accesses and cache misses
on SPECjbb. To focus on the cache misses inside the mea-
sured part of the cycle, we reduced the relative amount of
terminal rampup by running a single long cycle of five min-
utes with six warehouses. We chose six warehouses, as this
is the middle warehouse in the range of warehouses used for
calculating the official score. We concentrate on tracing rate
1, as this rate is the more interesting one for a concurrent
collector and the impact of our improvements is more no-
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ticeable. The metrics we use is cache miss rate, which is the
rate between cache misses and data access operations.
Table 8 shows the L2 cache miss rate for the base and

improved collectors in tracing rate 1. As one can see, the
improved collector reduces the cache miss rate by 6.4%.
The improvement may come from two factors. First, col-

lector’s work is more likely to increase the cache misses.
Thus, reducing the collector’s work and letting mutators get
more CPU time should result in reduced cache miss rate.
However, there is an interesting additional factor: elimina-
tion of coherency cache misses.
As described in [28], there are cache misses which relate

to cache line traffic (i.e., Compulsory, Capacity, and Con-
flict), and cache misses which result from maintaining cache
coherency on multiple caches. We refer to the former type
of cache misses as Access misses and to the latter as Co-
herency misses. In MS STW collection, object tracing does
not generate coherency misses, as the parallel tracing is done
while the Java mutators are suspended, and is a read-only
operation. However, a concurrent tracing thread may trace
into objects while they are modified by mutators executing
on another processor. This will create coherency misses.

Run 4 processors single processor
Base 1.38% 1.18%
Improved 1.30% 1.15%
Change -6.43% -2.73%

Table 8: SPECjbb (NT-4): L2 cache miss rates
comparisons between the base collector and the im-
proved collector, for tracing rate 1. Done both when
using all processors and only a single processor

In order to check the effect of our improvements on co-
herency misses, we repeated the measurement on the same
machine, when the SPECjbb run was restricted to a single
processor. As only a single cache was used, all coherency
misses are eliminated and only access misses remain. Obvi-
ously, the benchmark runs much slower, but this is filtered
out by the cache miss rate metrics. The results of these
runs are shown at the bottom of Table 8; once again, the
improved collector reduces the cache miss rate. However,
the reduction in cache miss rate introduced by our improve-
ments is much greater when running on all the processors
of a 4-way machine than when running on a single proces-
sor, where no coherency misses occur. When comparing
Base and Improved, there is a 6.43% reduction; but when
running on a single processor, the reduction is only 2.73%.
These results may imply that our improvements are also
effective in reducing coherency misses. The measurements
were extremely steady over the five runs. The standard de-
viation was smaller than 0.0042 in all runs, i.e., it was less
than 0.32% of the actual results.
Not tracing through dirty cards may be effective in re-

ducing the cost of maintaining cache coherency on multiple
caches for the following reason. Dirty cards tend to be “hot”
in the cache. These are cards that are more likely to be mod-
ified by the mutators. Thus, when the collector reads them
(to trace marked objects), the program is likely to be writing
them and coherency misses occur more frequently.

4.5 Impact of Each of the Improvements
In this work, we present two novel techniques for improv-

ing the mostly concurrent collector: the elimination of repet-
itive collector work by restricting the trace through dirty
cards, and the reduction in the number of dirty cards by
undoing the dirty marks. In this section, we study the char-
acteristics of each of these methods by running each of them
separately and comparing the results to running both of
them, or none of them.
We start with the throughput measurements, using the

scoring convention described in Section 4.2. Figure 10 presents
the throughput for four different collectors: the original us-
ing none of our improvements (denoted Base); a collector
that runs only undoing of dirty cards (denoted UndoDirty);
a collector that only restricts tracing through dirty cards
(denoted Restrict); and the improved collector, that runs
both improvements (denoted Combined). The results are
provided for the tracing rates 1, 2, 4, and 8. The standard
deviation values for Base and Combined were already given
in Section 4.3.1. For both the UndoDirty and the Restrict
collectors, these values (in thousands of TPMs) were 0.3 on
average (maximum 0.6).
One can see that the impact of UndoDirty on the through-

put is smaller than that of Restrict. However, both meth-
ods are beneficial to the throughput, even when they stand
alone.
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Figure 10: SPECjbb (AIX-6): Throughput com-
parisons between different configurations of our im-
provements

Figure 11 shows the average pause time values. The stan-
dard deviation values (in milliseconds) for these results were
0.8 on average (maximum 2.1) for the UndoDirty collector,
and 4.5 on average (maximum 21.3) for the Restrict collec-
tor. Here we get the complementary results. UndoDirty
has a clear positive impact with all tracing rates and is do-
ing better than Restrict. Restrict has a positive impact only
with the lower tracing rate, but a negative impact on tracing
rates 2 and above.
Figure 12 shows the average heap residency when using

none of our improvements (the base version), and when using
each of UndoDirty, Restrict, and Combined. The results are
displayed for all tracing rates. The standard deviation val-
ues (in Mbytes) for these results were 0.9 on average (max-
imum 1.9) for the UndoDirty collector, and 1.0 on average
(maximum 2.2) for the Restrict collector.
The UndoDirty improvement has a small impact on reduc-
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Figure 11: SPECjbb (AIX-6): Pause time com-
parisons between different configurations of our im-
provements
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Figure 12: SPECjbb (AIX-6): Heap residency com-
parisons between different configurations of our im-
provements

ing the heap residency, whether used alone or when added to
Restrict. The dominant method in reducing heap residency
(and thus also floating garbage and dark matter) is Restrict.
Why is this impact so large? Our proposed explanation is

as follows. The fact that the floating garbage was reduced by
not tracing through dirty cards means that marked objects
on dirty cards were modified after they were traced by the
base collector. When the base collector re-traced them, they
contained more descendants to trace. The base collector had
to trace the descendants of the original children as well as
the descendants of the newly assigned children, whereas the
improved collector traced only the latter. It turned out that
many of the descendants of the original children became
unreachable before the end of the cycle. An implication of
this observation is that objects that reside on dirty cards are
likely to be modified and furthermore, are likely to have their
descendants become unreachable soon. This may explain
why deferring the trace of objects on dirty cards eliminates
much of the floating garbage.
Another interesting point to note in these measurements is

that lower tracing rates cause the heap residency to increase.
This is because the collector runs for a longer time, so it
may produce more floating garbage and fragmentation. Our
improvement significantly reduces this effect.

Finally, reducing the floating garbage is a meaningful ad-
vantage. Our collector gains from eliminating repeated scans.
But it also gains from the fact that it traces fewer objects:
the (unreachable) floating garbage objects that the original
collector has to trace. It is not clear (and it is not easy
to measure) which of these benefits provides a higher im-
provement for the throughput of the improved collector. An
additional benefit of reducing floating garbage is that the
heap is better utilized with live objects and thus less collec-
tions are necessary during the run.
We can deduce that the method of not tracing through

dirty cards has multiple effects on throughput:

1. It does a more efficient tracing by eliminating the dou-
ble handling of reachable objects in dirty cards.

2. It reduces the amount of objects that are traced, by
reducing the floating garbage.

3. It produces more free space, and thus reduces the num-
ber of garbage collections.

4. It reduces the rate of L2 cache misses, especially those
that are introduced in order to maintain cache co-
herency (as described in Section 4.4).

4.6 Comparing Card Undirtying Methods
In Section 3.2.2 above, we described how to undo dirty

cards when allocation caches are in use by the allocator.
Recall that with this method, all cards in a full local alloca-
tion cache are marked as not dirty, before any tracing into
their objects is allowed. We implemented this method, to-
gether with restricting the trace through dirty cards. This
implementation is denoted AllocationUndo. We also imple-
mented the undirtying via scanning method described in
Section 3.2.1 (which is also appropriate for collectors that
do not use allocation caches), again with restricting the trace
through dirty cards. This implementation is denoted Sca-
nUndo. We compared AllocationUndo, and ScanUndo, with
the collector that only restricts tracing through dirty cards
(denoted Restrict). The measurements were done on the
IBM Netfinity 7000 server.
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Figure 13: SPECjbb (NT-4): The number of dirty
cards traced by the collector when using different
Undo methods

Figure 13 shows, for all methods and all tracing rates,
the number of dirty cards that are cleaned by the collector
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through the collection cycle. One can see that Allocatio-
nUndo reduces the number of dirty cards by roughly 40%
compared to the Restrict collector, whereas ScanUndo re-
duces it much more, by roughly 70%. Clearly, both meth-
ods do very well. The reason that ScanUndo does better
is probably because it is not limited to new objects and it
runs repeatedly. Yet when comparing the performance of
these two methods, we could not measure a significant dif-
ference in throughput or in pause time. This can be seen
in Table 9, which shows the change between the Restrict
collector and both methods of undoing dirty cards. This
relative change is shown for all tracing rates. The likely rea-
son for the throughput similarity is that the gain from less
dirty cards (with ScanUndo) is balanced by the cost of the
repetitive scans of the card tables.
In our improved collector we combined the use of these

two methods, as described in Section 4.1. The change be-
tween this collector (denoted Improved) and Restrict is also
presented in Table 9.

Change in Tr1 Tr2 Tr4 Tr8
Throughput
ScanUndo 2.1% 2.3% 1.8% 1.0%
AllocationUndo 2.3% 2.4% 1.8% 1.5%
Improved 4.0% 3.0% 2.0% 1.5%
Pause time
ScanUndo -8.9% -12.8% -7.7% -11.4%
AllocationUndo -2.4% -13.9% -9.4% -4.2%
Improved -6.0% -15.6% -6.2% -4.1%

Table 9: SPECjbb (NT-4): Change in throughput
and pause time (relative to the base collector) with
different Undo methods and tracing rates

5. CONCLUSION
In this paper, we presented two basic improvements of

the mostly concurrent collector that reduce repetitive col-
lector work and the number of dirty cards the collector
needs to scan. These improvements significantly increase
the throughput. Furthermore, they reduce the heap con-
sumption (by eliminating much of the floating garbage) and
they reduce the L2 cache miss rate. We obtained these im-
provements without impairing the other good benefits of the
collector, such as its short pause times and its scalability.
We have implemented our improvements on top of the

mostly concurrent collector that is part of the IBM produc-
tion JVM 1.4.0. We used the SPECjbb2000 benchmark and
the SPECjvm98 benchmark suite and ran it on both an IBM
6-way pSeries server and an IBM 4-way Netfinity server.
Our measurements show a performance improvement of up
to 26.7%, a reduction in heap consumption of up to 13.4%,
and no substantial change in pause times. The performance
improvement of 26.7% is obtained at a low tracing rate,
when the collector runs concurrently with the mutator at
a slow pace. We believe that this is the more important
case, in which the collector runs non-intrusively. Allowing
the collector to run at a the high tracing rate (while hinder-
ing concurrent program activity), our improvements obtain
a smaller performance advantage (of around 4%). Subse-
quently, the improved algorithm has been incorporated into
IBM’s production JVM.
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