
Address Register Assignment for Reducing Code
Size

M. Kandemir1, M.J. Irwin1, G. Chen1, and J. Ramanujam2

1 CSE Department
Pennsylvania State University

University Park, PA 16802
{kandemir,mji,guilchen}@cse.psu.edu

2 ECE Department
Louisiana State University
Baton Rouge, LA 70803

jxr@ee.lsu.edu

Abstract. In DSP processors, minimizing the amount of address cal-
culations is critical for reducing code size and improving performance
since studies of programs have shown that instructions that manipulate
address registers constitute a significant portion of the overall instruc-
tion count (up to 55%). This work presents a compiler-based optimiza-
tion strategy to reduce the code size in embedded systems. Our strategy
maximizes the use of indirect addressing modes with post-increment and
post-decrement capabilities available in DSP processors. These modes
can be exploited by ensuring that successive references to variables ac-
cess consecutive memory locations. To achieve this spatial locality, our
approach uses both access pattern modification (program code restruc-
turing) and memory storage reordering (data layout restructuring).

1 Introduction

Address calculations play a key role in determining code quality in DSP proces-
sors since instructions that manipulate address registers constitute a significant
portion of overall instruction count. For example, it was found that for a set of
codes from MediaBench suite (a popular benchmark suite for embedded systems)
running on Motorola’s DSP56000 processor, nearly 55% of the instructions are
used to manipulate address registers through explicit loads and stores [15]. Con-
sequently, optimizing address code generation by eliminating as many explicit
address register loads as possible can result in significant improvements in code
size and performance. Note that code size improvements are very important not
only because code size directly determines the capacity of the customized in-
struction memory (hence, its cost) in an embedded system, but also because a
smaller instruction memory means lower power consumption.

Address calculations in modern DSPs such as NEC 7701, Motorola
DSP56000, Analog Devices ADSP21xx, and Texas Instruments TMS320C5x
are done in address generation units (AGUs). An AGU contains a number of

G. Hedin (Ed.): CC 2003, LNCS 2622, pp. 273–289, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.3 Für schnelle Web-Anzeige optimieren: Nein Piktogramme einbetten: Nein Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [2400 2400] dpi Papierformat: [595.276 841.889] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 2400 dpi Downsampling für Bilder über: 3600 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: AbbrechenEinbetten: Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Farbe nicht ändern Methode: StandardGeräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Ja PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Ja ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Ja DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja EPS-Info von DSC beibehalten: Ja OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: JaANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Error /ParseDSCComments true /DoThumbnails false /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize false /ParseDSCCommentsForDocInfo true /EmitDSCWarnings false /CalGrayProfile (Ø©M) /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue true /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.3 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends true /GrayImageDownsampleType /Bicubic /PreserveEPSInfo true /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /LeaveColorUnchanged /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 300 /EndPage -1 /AutoPositionEPSFiles true /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 2400 /AutoFilterGrayImages true /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 300 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [2400 2400]>> setpagedevice

274 M. Kandemir et al.

address registers, the contents of which can be incremented or decremented
in parallel with the ongoing activity in the main datapath. The instruction
format for such processors allows one to encode a CPU activity and a post-
increment/decrement of an address register in a single instruction. Thus, using
post-increment/decrement operations instead of explicit address register loads
enhances on-chip parallelism (performance) and reduces code size (as no separate
instruction is necessary to update the address register). Cintra and Araujo [3]
report that although some of the register increment/decrement operations can
be accommodated in VLIW instruction slots, modern VLIW DSP architectures
also have auto-increment and auto-decrement modes; this is because exploiting
these modes effectively saves one instruction slot which might be used for some
other operation.

An optimizing compiler can exploit these post-increment/decrement oper-
ations by performing computation and data transformations as well as by as-
signing variables to address registers optimally. Consider the following scenario
where three scalar variables c, a, and b are to be accessed in the order c,a,b in
a given DSP code. Also assume that the AGU in question has a single address
register that can be post-incremented/decremented by 1 and that these three
variables are stored in memory in the order a, b, c. The code for implementing
this sequence of accesses uses three steps. The first step loads the address regis-
ter with the address of c (the first variable in the access sequence). To access the
variable a next, the second step loads the address of a into the address register.
In accessing the variable a, a post-increment operation can be used to modify
the content of the address register so that it points to b which will be accessed
next. In the final step, the variable b is accessed. Overall, we need to perform two
explicit address register loads. In addition to being a waste of machine cycles,
this increases code size and thereby the instruction memory size, which is at a
premium in many embedded designs.

We can reduce this overhead of explicitly updating the address register by
using a better choice of the order in which the variables are stored in data mem-
ory. Instead of the storage order a, b, c in the previous scenario, we can eliminate
one of the two address register loads if we use the storage order c, a, b. In this
case, first, we load the address register with the address of c and post-increment
the address register to make sure that, after the execution of the statement that
accesses c, it will point to the next location (which contains a). Next, we access
the variable a, and use again post-increment to make the address register point
to the variable b. Finally, we access the variable b. This problem of determin-
ing the most suitable storage order of variables is called the offset assignment
problem and has been partially addressed by Bartley [1], Liao et al. [10,11], and
others (e.g., [9,15]). Basically, these solutions first determine a suitable storage
order for variables and then assign address registers to these variables to mini-
mize the number of address register loads. In essence, since we are determining
the contents of the address register(s) before each variable access, this problem
can also be defined as the address register assignment problem.

Address Register Assignment for Reducing Code Size 275

A major limitation of the techniques proposed so far for the address register
assignment problem is that they either focus only on modifying the storage
order of variables (e.g., [10,11]) or only on modifying the intra-statement access
pattern using commutativity and associativity transformations (e.g., [13]). In
this work, we present a framework that considers both computation-based (intra-
statement and inter-statement) transformations and storage-based optimizations
in a unified setting for “reducing the code size of a given application;” that is,
our main objective is to save the code space. More specifically, this work makes
the following contributions.

(1) It presents an algorithm based on access pattern modification that makes
efficient use of post-increment/decrement addressing modes in DSPs. This al-
gorithm assumes a fixed storage order for variables and restructures the code
to exploit these addressing modes. This algorithm is more general than the one
proposed in [13] as it considers both intra-statement and inter-statement trans-
formations.

(2) It gives an algorithm that modifies an access pattern (access sequences),
given a partially-fixed storage order. A partially-fixed storage order is a storage
order in which the memory locations of only a subset of the variables are fixed.

(3) It combines these two algorithms with the storage order-based optimiza-
tion strategy (i.e., offset assignment) developed by Liao et al. [11], and presents
a unified approach (which is demonstrated to be superior) to handle the offset
assignment problem for a given control flow graph.

2 Review of Offset Assignment

The offset assignment problem [10] is one of assigning a frame-relative offset
(i.e., storage location) to each variable in the code in order to minimize the
number of address arithmetic instructions (that is, the instructions that load a
new value to the address register) required to execute the code. The cost of an
offset assignment is defined as the number of such instructions.

Given a code sequence, we can define a unique access sequence for it. In an
operation a = b op c, where ‘op’ is some binary operator, the access sequence
is given by b, c, a. The access sequence for an ordered set of operations is
simply the concatenated access sequences for each operation taken in order. For
example, for the code fragment

a = c + d
d = d + c + b + c + a

the access sequence is c, d, a, d, c, b, c, a, d, assuming that addition
is left-associative. Let us assume that the variables in this code fragment are
stored in memory in the following order: a, b, c, d. The cost of a given storage
sequence (offset assignment) is the number of consecutive accesses (in the access
sequence) for which the accessed variables are not assigned to adjacent locations
in memory. Therefore, the cost of the offset assignment given above is four as
there are four transitions in the access sequence between non-adjacent variables.

276 M. Kandemir et al.

The objective of the offset assignment problem is to determine a storage order
for variables such that the cost will be minimum. Liao [10] showed that the
offset assignment problem is equivalent to the Maximum Weighted Path Cover
(MWPC) problem and proved that it is NP-complete. His heuristic solution
was later improved by Leupers and Marwedel [9] who presented a tie-breaking
strategy for achieving better storage assignments.

3 Computation Restructuring for a Fully Fixed Storage
Sequence

Code size reduction using address register assignment is achieved by making the
access sequence (i.e., the order in which the variables are accessed) and the stor-
age sequence (i.e., the storage order of the variables in memory) compatible. In
practice, it is possible to do either of the following: modify the access sequence
for a fixed storage sequence, or modify the storage sequence for a given fixed
access sequence. In this section, we discuss a strategy that adopts the former
approach as opposed to Liao’s scheme [10] which takes the latter approach. In
this work, we apply code transformations to a high-level intermediate represen-
tation (IR) of the code where optimizations such as conventional (e.g., graph
coloring-based) register allocation and common subexpression elimination have
already been performed. This IR has statements very similar to high-level source
statements. In the remainder of this presentation, when we mention statement,
we actually refer to this IR-level statement. However, to make the presenta-
tion clear, we use source-level (C-like) statements. Consider, a statement of the
following form

a = b + c

Let us assume that the machine has a single address register and that the storage
sequence is c, b, a. The access sequence in this example is b, c, a, which is
different from the storage sequence. As a result of this, going from variable
c to variable a incurs an explicit address register load (since c and a are not
consecutive in the storage sequence, so we cannot use post-increment/decrement
mode). Liao’s approach [10] fixes this problem by modifying the storage sequence
from c, b, a to b, c, a. Changing the storage sequence is a viable option
provided that the variables have not yet been assigned to storage locations,
or (if they have already been assigned to locations) the cost of transforming
the storage sequence from one form to another (which may require copying
resulting in additional memory requirements) does not outweigh its benefits. An
access pattern-oriented approach, on the other hand, can optimize this code by
transforming this statement into

a = c + b

The new access sequence is c, b, a which is the same as the storage se-
quence. Note that, for this example, just applying commutativity transformation
(an intra-statement transformation) was sufficient to obtain the desired result.

Let us consider the following code fragment with two statements.

Address Register Assignment for Reducing Code Size 277

a = c + e
b = c + f

We assume a single address register and a storage sequence of a, b, c, d, e,
f. It should be noted that each variable access in this code fragment (under the
assumed storage sequence) will require a load to the address register. A storage
layout-oriented scheme would change the storage sequence of the variables, but
this may be too costly if the variables have already been assigned to storage
locations (for example, during the optimization of a different set of statements
that manipulate the same variables.) On the other hand, a commutativity trans-
formation would lead to

a = c + e
b = f + c

Note that this code fragment (which is obtained from the previous one by ap-
plying commutativity transformation to the right-hand side of the second as-
signment statement) eliminates one of the explicit loads to the address register.
That is, in going from c to b in the second assignment statement, we can make
use of the post-decrement mode (as these two variables are consecutive in mem-
ory). An inter-statement transformation, on the other hand, can generate the
following program fragment

b = f + c
a = c + e

Note that this code fragment is obtained from the original one by interchanging
the order of two statements and by applying commutativity transformation to
one of the statements. In this case, two variable accesses (i.e., going from c to
b in the first statement, and going from b in the first statement to c in the
second statement) can be satisfied using post-increment/decrement modes. This
is a simple example that illustrates the benefit of inter-statement optimization.
However, there are some cases where it is not possible to interchange the order
of statements due to data dependency constraints. For example, in the code
fragment

a = a + c
c = c + 1

interchanging two statements would give a wrong result as the value used for
c in a = a + c would be different than the one in the original case. Here, a
storage-oriented approach (e.g., [10]), on the other hand, could store a and c
in consecutive locations in memory, thereby leading to the effective use of post-
increment and decrement addressing modes.

The preceding examples show that neither storage based techniques nor ac-
cess sequence (computation) based techniques (intra and inter statement trans-
formations) dominate the other, and a unified framework that uses both the tech-
niques may be needed for better results. In the rest of this section, we formulate
the computation oriented transformations using a graph-based representation.

278 M. Kandemir et al.

3.1 Terminology

We represent a program using a control flow graph (CFG) which is a directed
graph in which each node denotes a basic block and an edge between two basic
blocks indicates that there is a possibility that the flow of control (during exe-
cution) may be transfered from one of these basic blocks to the other. A basic
block can be defined informally as a straight-line sequence of statements that
can be entered only at the beginning and exited only at the end [16].

Consider a graph G = (V, E) where V is the set of nodes (vertices) and E is
the set of edges. A path cover (or cover) C of a given graph G(V, E) is a set of
paths such that every node in V is incident at some edge belonging to the chosen
set of paths. In other words, we can think of a cover C(V ′, E′) as a subgraph of
G(V, E) where V ′ = V and E′ ⊆ E. The length of a path is the number of edges
in the path, and the length of a cover is the sum of the number of edges of each
constituent path. A path that has the maximum length (among all paths in the
cover) is referred to as the longest path.

3.2 Layout Transition Graph

Given a basic block, we use a layout transition graph (LTG) to show the con-
nections between elements that are stored consecutively in memory. The layout
transition graph of a basic block is a directed graph LTG(V, E), where each
node vi represents a variable that occurs in the basic block; and a directed edge
e = (vi, vj) from a node vi to a node vj indicates that the variable represented
by vi is stored (in memory) next to the variable represented by vj . Whether vi

comes before vj in the storage order or after vj is not important for the purposes
of this work (as long as they are consecutive in memory). An LTG also contains
an edge from vi to vj if these two nodes represent the occurrences of the same
variable. Note that the variable access pattern of a program touches all the nodes
of the corresponding LTG.

For ease of exposition, we divide a given LTG into layers, each layer cor-
responding to a statement in the basic block. If the basic block contains K
statements, each variable vi in the jth statement from top (denoted sj where
1 ≤ j ≤ K) is assumed to belong to the variable set of sj ; we express this as
vi ∈ sj . We will use sj to denote both the statement and its variable set, where
there is no confusion.

A given variable set si can also be divided into two logical subsets: one that
contains the variable on the left hand side (LHS), and one that contains the
variables on the right hand side (RHS). For a variable set si, the first subset is
denoted by siL and the second subset is denoted by siR.

To illustrate these concepts, consider the LTG shown in Figure 1(i) for the
statement a = b + c, assuming that the storage sequence is c, b, a. There
is a bi-directional edge between c and b (i.e., we have a directed edge from c
to b and one from b to c), and another bi-directional edge between b and a.
Labeling this statement by s1, we have s1L = {a} and s1R = {b, c}. Note
that the access sequence for this statement is b, c, a as shown in Figure 1(iii)

Address Register Assignment for Reducing Code Size 279

using dashed arrows. It should also be noted that a new access sequence can
be obtained by traversing the edges in the LTG in a different manner. If we
start from the variable c, we can first traverse the edge (c,b) and then the edge
(b,a), as depicted in Figure 1(iv). Note that this new traversal corresponds to
transforming the statement from a = b + c to a = c + b (i.e., a commutativity
transformation).

We need to emphasize that it may not always be possible to transform a state-
ment based on its LTG. Further, not every traversal of the edges in the LTG is
legal. For example, going from a to b using the edge (a,b) is not acceptable (see
Figure 1(v)) as all the right-hand side references should be accessed before the
left hand side reference. We can prevent some of the transitions such as this by
eliminating edges from the LTG that would lead to unacceptable or infeasible
transformations. For example, in order to prevent a transformation from a to b,
we eliminate the directed edge from a to b as shown in Figure 1(ii). Obviously,
given the two legal traversals in Figures 1(iii) and (iv), we prefer the one in
Figure 1(iv) as all transitions between variables in this figure are between con-
secutive memory locations, meaning that we can use post-increment/decrement
mode for these transitions. Another way of expressing this is that both the
edges visited during the traversal in Figure 1(iv) belong to the LTG given in
Figure 1(ii). On the other hand, one of the transitions taken during the traversal
in Figure 1(iii) (the transition from c to a) does not have any corresponding
edge in the LTG. Therefore, the objective of a traversal must be minimizing the
number of transitions that do not correspond to an edge in the LTG. We will
formalize this concept later.

Now, let us consider the LTG given in Figure 1(vi) for the following program
fragment.

a = c + e
b = c + f

It is assumed here that the storage sequence is a, b, c, d, e, f. As before,
a traversal of the nodes of this LTG corresponds to a specific access sequence.
The default access sequence is c, e, a, c, f, b as shown in Figure 1(viii).
Note that a different traversal of the nodes corresponds to a transformation
of the code sequence. Here, an important point should be noted. In traversing
the nodes (or edges), we have a restriction in the sense that once we are in a
statement we need to finish all the nodes in the statement before moving to a
node in another statement. That is, we are not allowed to go from a node in skR

to a node in sk′R if k �= k′, assuming that each statement has a left hand side
variable.

The preceding discussion indicates that we need some restrictions on the
traversal order of the nodes in the LTG. For this purpose, we use a modified form
of the LTG called constrained layout transition graph (CLTG), and perform our
traversal on this graph. Simply, in those cases where the compiler can detect that
variable vi in statement sk cannot be accessed immediately after the variable vj

in statement sk′ (sk and sk′ are not necessarily distinct here), the corresponding
edge (if any) from vj to vi in the LTG should be removed when constructing

280 M. Kandemir et al.

the CLTG (Instead of deleting edges from the LTG to construct the CLTG,
it is possible to directly construct the CLTG using the necessary edges, albeit
using somewhat more complicated rules. The correctness of the algorithms is not
affected by the choice of either method to construct the CLTG).

A constrained layout transition graph, written CLTG(V ′, E′), is a subgraph
of the LTG(V, E) such that V ′ = V and E′ contains all the edges in E ex-
cept those that can lead to an incorrect or infeasible code transformation. The
construction of the CLTG subsumes both the intra-statement constraints (i.e.,
evaluation rules that need to be obeyed when processing an RHS expression)
and the inter-statement constraints (i.e., dependence and other constraints be-
tween statements). For example, a CLTG cannot contain an edge between the
variable occurrences of the right hand sides of two different assignment state-
ments. In mathematical terms, an edge e = (vi, vj) ∈ E does not belong to
E′ if vi ∈ skR and vi ∈ sk′R, where k �= k′. Figure 1(vii) depicts the CLTG
for the LTG in Figure 1(vi). Note that the default traversal (access sequence)
given in Figure 1(viii) does not use any of the edges in the underlying CLTG.
Consequently, an explicit address register load is necessary prior to each variable
access. Now consider the traversal given in Figure 1(ix). In this case, the new
access sequence corresponds to a transformation in which the right hand side
of the second statement is transformed using commutativity. Note that one of
the transitions in this traversal (i.e., the one from c to b) has a corresponding
edge in the CLTG given in Figure 1(vii). Finally, let us focus on the traversal
given in Figure 1(x). The transformation corresponding to this traversal is one of
interchanging the order of the two statements and applying the commutativity
transformation to one of the statements. In this traversal, two transitions, one
going from c to b and the other going from b to c have corresponding edges in
the CLTG. These two examples in Figure 1 show that the preferred traversal
must maximize the number of transitions that have corresponding edges in the
underlying CLTG. In other words, it should minimize the number of transitions
that do not have corresponding edges in the CLTG.

It should be noted, however, that although a given CLTG shows possible
legal transitions between nodes, it is still possible to generate an illegal traversal
(access sequence) on the CLTG. For example, by itself, accessing two nodes vi

and vj consecutively may not break any dependence; however, after this modified
access sequence, it may not be possible to generate legal code due to a new
restriction (in the access order) resulting from the said transition between vi

and vj .

3.3 Traversing the CLTG

We formulate the problem of modifying a given basic block code for effective
use of the address register(s) as one of determining a path cover and a traversal
order in the CLTG. We assume for now that the AGU has only a single address
register.

Address Register Assignment for Reducing Code Size 281

a b c(i) b ca(ii) a b c(iii)

b ca(iv) b ca(v)

a c e

b fc

(vi)
a c e

b fc

(vii)
a c e

fcb
(viii)

c e

b fc

a
(ix)

a c e

fcb

(x)

Fig. 1. (i-v) LTG, CLTG, and different traversals for an assignment statement under
the storage sequence c, b, a. (vi-x) LTG, CLTG, and different traversals for a program
fragment under the storage sequence a, b, c, d, e, f.

Legality. In order to generate correct code (that is, to preserve the original
semantics of the basic block), we impose the following conditions on the traversal
order:

(1) Each node in the LTG (i.e., a variable occurrence in the basic block)
should be visited.

(2) For a given layer in the LTG corresponding to the statement sk, all nodes
in skR should be visited before any node in skL.

(3) Once the traversal reaches the layer corresponding to the statement sk, it
should finish all the variables in that layer (i.e., the set skL ∪skR) before moving
to another layer.

(4) All the data dependences and other restrictions such as latency con-
straints or expression evaluation constraints should be observed.
Condition (1) indicates that each variable should be touched (by any legal exe-
cution of the code). We enforce Condition (4) by ensuring that we do not make
a transition from a vi ∈ sk to a vj ∈ sk′ (even if vi and vj are consecutive in
memory) when there is a data dependence from sk′ to sk. To enforce Condition
(2), we do not allow a transition from the node vi ∈ skL to a node vj ∈ skR. To
enforce Condition (3), we disallow transitions between node vi ∈ skR and any
node vj ∈ sk′R for k �= k′. A transition from a node vi ∈ skL to a node vj ∈ sk′L
(where k �= k′) is allowed only if sk′ has no variables on the right hand side (i.e.,
sk′R = ∅). Also, there cannot be a transition from a node vi ∈ skR to a node

282 M. Kandemir et al.

vj ∈ sk′L (where k �= k′) unless sk′ has no variable on the right hand side (i.e.,
sk′R = ∅) and sk has no LHS variable, which cannot occur in our framework.

a b

f d e

a

c

d d

da

a

(i)

c

f

f

a b

f d e

a d

c

d d a

a

f

c

(ii)

f

c a b

f d e

a a d

c

d f a

f

d

* *

*

* *
*

*

*

(iii)
c a b

d e

a d

c

d d f a

f

*a

f

*

**

(iv)

c a b

f d e

a d

d d a

a

f

c

(v)

f

1st path

5th path

3rd path

2nd path

4th path

Fig. 2. (i) LTG and (ii) CLTG for a given basic block. (iii) Default access sequence.
(iv) Optimized access sequence. (v) Example paths in the CLTG.

Profitability. The objective of the traversal of the nodes in the CLTG is to
minimize the cost of the traversal, which is defined as the number of transitions
from a node vi to a node vj such that vi and vj are not consecutive in the storage
sequence (i.e., there is no edge (vi, vj) in the CLTG) for all i and j. It should be
noted that a storage sequence imposes constraints on the CLTG. If a transition
from vi to vj does not use an edge in the CLTG, this means that a post-increment
or a post-decrement cannot be used for this transition; thus, new value should
be loaded in the address register (using an explicit load instruction), thereby
increasing the code size. As a result, the cost of a traversal can be viewed as

Address Register Assignment for Reducing Code Size 283

the number of transitions in the access sequence that do not use an edge in the
CLTG. Thus, the address register assignment problem can be re-expressed as

determining a traversal of the nodes in the CLTG—subject to the four
legality conditions listed above—that minimizes the number of transitions
that do not correspond to an edge in the CLTG.

It can be shown that this problem is NP-complete; but, we omit the proof due
to lack of space.

Let us now concentrate on the larger basic block given below assuming a
storage sequence of a, b, c, d, e, f.

c = a + b
f = d - e - 2
a = a + 3d
c = 2f + 4
d = d + f + a

Figures 2(i) and (ii) show the LTG and CLTG, respectively, for this code
fragment under the assumed storage sequence. Note that, in going from the
LTG to the CLTG, many edges are dropped as they are not possible for any
legal traversal. Figure 2(iii) shows the default access sequence (i.e., without any
optimization). This access sequence has a cost of eight, and the transitions that
contribute to this cost are marked using the symbol ‘*’. Our approach, on the
other hand, results in the access sequence (traversal) given in Figure 2(iv). We see
that the cost of this access sequence is four (again, the transitions that contribute
to the cost are marked using the symbol ‘*’). In other words, we are able to
eliminate four address register loads in the code. This traversal corresponds to
the following transformed program:

c = a + b
f = d - e - 2
c = 2f + 4
a = 3d + a
d = a + f + d

Note that this optimized code is obtained from the original one through one
statement reordering (inter-statement transformation) and a number of intra-
statement transformations.

The Algorithm and Transformations. We now present an algorithm that
takes as input a CLTG and generates as output a traversal (an access sequence)
and all the necessary (inter-statement and intra-statement) transformations to
obtain this access sequence. Given a CLTG, the algorithm first detects the
longest directed path (i.e., the path that contains the maximum number of edges
in the same direction).1 It then transforms the portion of the CLTG (which con-
tains a subset of the statements in the original basic block) in accordance with
1 Note that the longest path detection problem is a hard problem in general. Here, we

are employing a heuristic.

284 M. Kandemir et al.

this longest path. Finding the longest path in a given directed graph is straight-
forward, and takes O(N3) time, where N is the number of nodes in the graph
[5]. Transforming the program code in accordance with the longest path is more
challenging. Consider the abstract CLTG in Figure 3 and the longest path shown.
Note that each layer in the CLTG is labeled with a different statement id. The
desired access sequence here is a, c, h, d, f, g, b, e. To achieve this access
sequence, the following transformations need to be performed:

(1) The variable a should be made the last variable accessed on the RHS of
the statement s1;

(2) In statement s2: (i) the variable h should be made the first variable
accessed on the RHS; (ii) the variable h should be made to immediately precede
the variable d;

(3) Statement s4 should be made to immediately follow the statement s2;
and

(4) In Statement s4: (i) the access of variable b should be made to immedi-
ately follow the variable g; (ii) the variable e should be made to immediately
follow the variable b.
In addition to these transformations, the transformed program should not modify
the following properties of the input code (CLTG):

(1’) Statement s2 immediately follows statement s1.
(2’) d is the last variable accessed on the RHS of Statement s2.
(3’) g is the first variable accessed on the RHS in Statement s4.
If the compiler can find a series of transformations to satisfy all these con-

straints, we achieve the best possible access sequence (for this path). In many
cases, however, this may not be possible due to inconsistencies between the re-
quirements given above, or due to a situation that does not involve the variables
on the longest path. An example of the former is the inconsistency between con-
ditions (2.i), (2’), and (2.ii) above. That is, if we make the variable h the first
variable on the RHS of the statement s2 and insist on keeping the variable d as
the last variable on the RHS, it is not possible to access h and d successively as
there are two more variables on the RHS. We assume that these other variables
are different from those labeled in the figure. An example of the second type
of difficulty is the possibility that it may not be legal to access the statement
s4 immediately after the statement s2 (as required by the condition(3)). This
may occur for example if the statement s3 writes a variable x (assumed to be a
different variable from the ones shown in the figure) that is subsequently read
by the statement s4. Although it may not always be possible to achieve all of
the desired transformations, our approach attempts to achieve as many of the
desired transformations as possible. Note that this strategy helps to use as many
edges in the CLTG as possible.

After the longest path has been determined and the portion of the CLTG
that contains the longest path (that is, a subset of the statements in the origi-
nal basic block) has been transformed, our approach continues by selecting the
second longest path and transforming the relevant parts of the CLTG. A special
attention is paid to ensure that we do not modify any parts of the basic block

Address Register Assignment for Reducing Code Size 285

c a

df

be

h

g

1s

s2

s3

s4

Fig. 3. An abstract CLTG and the longest path.

that have already been transformed in accordance with a longer path considered
earlier. In this way, our approach selects the next longest path in each step and
transforms the relevant portions of the basic block. The process stops when it
is not possible to transform the basic block any further (without distorting the
previous transformations). In case we have two paths of the same length, the
current implementation favors the one that leads to minimal modification to the
original code.

In the example in Figure 2, following the construction of the CLTG shown in
Figure 2(ii), our approach determines the longest path marked as the 1st path in
Figure 2(v). Based on this path, it builds an access sub-sequence a, b, c, d, e, f,
f. This sub-sequence completely specifies the transformations required for three
of the five statements in the code (i.e., the first, second, and fourth statements
in the original code). Note also that the transformations performed along this
path include an inter-statement transformation. Next, it finds the path a, a, a
(marked as the 2nd path). Note that this path fixes the access sequence for the
third statement in the original code completely as d, a, a. It also specifies that
the variable a should be the first variable accessed in fifth statement. After that,
the approach selects the path c, d, d. The (c,d) part of this path says that the
fifth statement should follow the fourth statement in the transformed program,
but this is not possible as the fourth statement has already been transformed,
and it now (in the transformed code) comes before the third statement (in the
original program). The (d,d) part of the path, on the other hand, is feasible, and
indicates that d should be the last variable accessed in the fifth statement. The
next path is c, d; but, the transformation implied by this is not possible. The
last path is the one between c and d (marked as the 5th path in the figure).
It implies that d should be the first variable accessed in the third statement,
and the third and fourth statement should be interchanged. At this point, the
algorithm has traversed all the paths. It next visits each statement, and fixes
the access order for the variable whose order has not been fixed yet. It visits the
fifth statement (in the original code) and makes f the second variable accessed
on the RHS. The final access sequence is shown in Figure 2(iv).

286 M. Kandemir et al.

4 Computation Restructuring: Partially Fixed Storage
Sequence Case

So far, we have assumed that the storage sequence (storage pattern) of variables
is fixed completely. That is, a storage location is assigned to each program vari-
able. In this section, we describe how to optimize an access sequence when only
a subset of the variables have fixed memory locations. This is called the partially
fixed storage. Specifically, given a partially fixed storage pattern of a basic block,
we address two subproblems:

(1) Determining the best access sequence for all variables in the basic block,
and

(2) Determining the storage sequence for the variables in the basic block
whose memory locations are yet to be determined.
This problem is important because the compiler employs it during procedure-
wide optimization (as will be discussed in the next section). Our approach to
the problem involves the following three steps:

(1) Determine the best access (possibly partial) pattern for the partial storage
order given,

(2) Determine the storage sequence for the variables whose memory locations
are yet to be determined, and

(3) If there is further flexibility, then determine the best access pattern for
the portions of the basic block that involves the variables whose storage sequence
was determined in Step (2).

Consider the following program fragment assuming a single address register
and a partially fixed storage sequence of e, b, d.

e = e + d
a = d + c
f = 3c + b
a = (a * c) + (a * g)

Figure 4(i) shows the CLTG for this basic block, under the given partial storage
sequence. Clearly, there is just one path in this case. Transforming the code in
accordance with this path gives us:

e = d + e
f = b + 3c
a = d + c
a = (a * c) + (a * g)

Note that this transformation (which corresponds to Step (1) above) involves
one statement interchange and one commutativity transformation. In the next
step (which is Step (2) above), the compiler attempts to determine a storage
sequence for the variables whose storage locations are yet to be determined. We
achieve this using a modified version of Liao’s heuristic [10]. Liao summarizes the
access sequence using a graph called the access graph. In this graph, each variable
is represented by a node and a weighted edge between two variables corresponds
to the number of transitions between them. Liao then runs an algorithm on this

Address Register Assignment for Reducing Code Size 287

graph to select a path cover, with no node having more than two selected edges
incident on it.

The variables represented by the nodes connected by a selected edge are
assigned to consecutive memory locations. The objective is to maximize the
total weight of the edges selected (which corresponds to capturing the most
frequent transitions). We modify this heuristic as follows. Let L = {vi} be the
set of all variables vi that have already been assigned to consecutive storage
locations. Let us assume for now that there is only a single such set. We use bL
to denote the first (start) node of L, and tL to denote the last (terminal) node.
Each node in the modified access graph corresponds to either a single node vj

such that vj /∈ L or a block node vL that represents L. There exists an edge
between vj (/∈ L) and vL if and only if there is an edge between vj and bL or an
edge between vj and tL. We also keep track of whether the edge between vj and
vL is due to (incident on) bL or tL.

Figure 4(ii) shows this modified access graph for our example. Note that this
access graph is constructed by taking into account the transformations (both
inter-statement and intra-statement) done in the previous step. Next, we run
Liao’s heuristic [10] on this access graph. Figure 4(iii) show the maximum weight
cover detected by the heuristic. Afterwards, we determine the complete storage
order (sequence) for the variables. In our example, this sequence is e, b, d, f,
c, a, g. Although it does not occur in this example, in some cases, the compiler
may have additional scope, and may apply Step (3) above to further modify
the access pattern to accommodate the needs of the variables whose storage
locations have been determined in Step (2). Note that although we explain this
strategy assuming that there is a single block node (L), it is straightforward to
extend the approach to multiple block nodes. Note also that since our approach
is essentially basic block oriented, we can expect its effectiveness to increase
when it is used in conjunction with techniques that increase basic block sizes
(e.g., superblocks/hyperblocks).

e e d

ca d

f c b

c a

(i)

aa
f

a g

c

3

2

1

1

1

(ii)

ebd

fc

a g

ebd

(iii)

Fig. 4. (i) An example CLTG. (ii) An access graph for partially fixed storage sequence.
(iii) Selected maximum weight cover.

5 Intra-procedural Optimization Strategy

We now present a unified strategy that employs both access sequence and storage
sequence transformations to make effective use of address registers. The approach

288 M. Kandemir et al.

works on a representation called weighted control flow graph (WCFG), which is a
CFG with weighted nodes (basic blocks). A node weight specifies the number of
times the corresponding basic block is entered (dynamic execution frequency).
This is typically calculated by considering the execution frequencies of edges and
branch probabilities.

Our approach to this global (procedure-wide) optimization problem is as
follows. After determining the execution frequencies of basic blocks and labeling
them, we visit basic blocks one-by-one, and optimize a basic block completely
before moving to the next one. The optimization order is determined by the
weights (i.e., basic block labels).

The first (most frequently executed) basic block is optimized using Liao’s
heuristic (explained in Section 2). After optimizing this basic block, we determine
a storage sequence for all the variables accessed by this basic block. Note that this
step determines only a partial storage sequence (called the storage subsequence)
as the variables accessed by this block form, in general, a subset of all the
variables declared in the program. Then, we move to the next most frequently
executed basic block, and optimize it using the approach explained in Section 3
or Section 4 depending on whether all the variables manipulated by this basic
block has already fixed memory (storage) locations or not. After optimizing this
basic block, new storage subsequences (for the variables accessed by this second
most frequently executed basic block, but not accessed by the most frequently
executed basic block) are determined. Afterwards, we move to the third most
frequently executed basic block and, in optimizing it (using the techniques given
in Section 3 and Section 4), we take into account all the storage sequences
determined so far. In this way, our approach handles the basic blocks one-by-
one, and in optimizing each of them, it considers the storage sequences found so
far. If at a given point, the storage location for each variable in the code is fixed
(i.e., a complete storage sequence is determined), the remaining basic blocks are
optimized using the technique discussed in Section 3. At the end of the process,
if the storage sequences found do not form a single connected component, they
are made so using a post-processing pass.

6 Summary

In this work, we have presented a compilation framework that employs both
program restructuring and storage order optimizations to reduce the size of the
generated code for embedded processors by eliminating as many explicit address
register loads as possible. Reducing code size is extremely important as in many
embedded systems a reduction in code size means a reduction in memory size.
Work in progress includes the investigation of different ways of combining stor-
age layout and code restructuring transformations, incorporating partitioning
of variables among different address registers, and studying the impact of SSA
transformation on code size. We also plan to make experiments with different
architectures as different instruction set architectures (ISA) can lead to different
code sizes [6].

Address Register Assignment for Reducing Code Size 289

References

1. D. Bartley. Optimizing stack frame accesses for processors with restricted address-
ing modes. Software – Practice and Experience, 22(2):101–110, February 1992.

2. P. Briggs. Register Allocation via Graph Coloring, Ph.D. Thesis, Computer Science
Department, Rice University, Houston, TX, April 1992.

3. M. Cintra and G. Araujo. Array reference allocation using SSA-form and live range
growth. In Proc. ACM SIGPLAN 2000 Workshop on Languages, Compilers, and
Tools for Embedded Systems (LCTES), June 2000, Vancouver B. C., Canada.

4. K. Cooper and P. Schielke. Non-local instruction scheduling with limited code
growth. In Proc. Workshop on Languages, Compilers, and Tools for Embedded
Systems (LCPC), pp. 193–207, June 1998.

5. T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms, MIT Press,
Cambridge, Massachusetts, 1990.

6. J. W. Davidson and R. A. Vaughan. The effect of instruction set complexity on pro-
gram size and memory performance. In Proc. International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (ASPLOS),
1987, pp. 60–64.

7. M. Kandemir. A compiler technique for improving whole program locality. In Proc.
28th Annual ACM Symposium on Principles of Programming Languages (POPL),
London, UK, January, 2001.

8. C. Lee, M. Potkonjak, and W. Mangione-Smith. MediaBench: A tool for evaluat-
ing and synthesizing multimedia and communications systems. In Proc. the 30th
International Symposium on Microarchitecture (MICRO), pp. 330–335, 1997.

9. R. Leupers and P. Marwedel. Algorithms for address assignment in DSP code gener-
ation. In Proc. the International Conference on Computer Aided Design (ICCAD),
pp. 109–112, November 1996.

10. S. Liao. Code Generation and Optimization for Embedded Digital Signal Proces-
sors, Ph.D. Thesis. MIT, June 1996.

11. S. Liao, S. Devadas, K. Keutzer, S. Tjiang, and A. Wang. Storage assignment to
decrease code size. ACM Transactions on Programming Languages and Systems
(TOPLAS), 18(3):235–253, 1996.

12. S. S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kauf-
mann Publishers, 1st edition, July 1997.

13. A. Rao and S. Pande. Storage assignment optimizations to generate compact and
efficient code on embedded DSPs. In Proc. ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI), May 1999.

14. R. Wilson et al. SUIF: An infrastructure for research on parallelizing and optimiz-
ing compilers. SIGPLAN Notices, 29(12):31–37, December 1994.

15. S. Udayanarayanan and C. Chakrabarti. Address code generation for DSPs. In
Proc. the 38th Design Automation Conference (DAC), June 2001.

16. M. Wolfe. High Performance Compilers for Parallel Computing, Addison Wesley
Publishing Company, 1996.

	Introduction
	Review of Offset Assignment
	Computation Restructuring for a Fully Fixed Storage Sequence
	Terminology
	Layout Transition Graph
	Traversing the CLTG

	Computation Restructuring: Partially Fixed Storage Sequence Case
	Intra-procedural Optimization Strategy
	Summary

