
 1

On the Predictability of Program Behavior Using Different
Input Data Sets

Wei Chung Hsu, Howard Chen, Pen Chung Yew Dong-Yuan Chen
Department of Computer Science Microprocessor Research Labs
University of Minnesota Intel

Abstract

Smaller input data sets such as the test and the
train input sets are commonly used in simulation to
estimate the impact of architecture/micro-architecture
features on the performance of SPEC benchmarks.
They are also used for profile feedback compiler
optimizations.

In this paper, we examine the reliability of reduced
input sets for performance simulation and profile
feedback optimizations. We study the high level metrics
such as IPC and procedure level profiles as well as
lower level measurements such as execution paths
exercised by various input sets on the SPEC2000int
benchmark.

Our study indicates that the test input sets are not
suitable to be used for simulation because they do not
have an execution profile similar to the reference input
runs. The train data set is better than the test data sets
at maintaining similar profiles to the reference input
set. However, the observed execution paths leading to
cache misses are very different between using the
smaller input sets and the reference input sets. For
current profile based optimizations, the differences in
quality of profiles may not have a significant impact on
performance, as tested on the Itanium processor with
Intel compiler. However, we believe the impact of
profile quality will be greater for more aggressive
profile guided optimizations, such as cache
prefetching.

1 Introduction

The SPEC benchmark suite [Henn2000] is a
collection of CPU-intensive application programs.
It has been widely used in the research community
to evaluate architecture and micro-architecture
designs and compiler optimizations. From
SPEC89 to SPEC2000, the number of benchmarks
and the average execution time of each
benchmark program have continuously been
increased. On average, each SPEC92int program
executes about 1.3 billion instructions [Yung96]
while this number increased to 64 billion for
SPEC95int programs. In SPEC2000int, the

average number of dynamic instructions executed
reached a few hundred billion instructions. With
significantly increasing execution times, and with
more complex architecture/micro-architecture
features to simulate, it is becoming increasingly
difficult to simulate the complete SPEC
benchmark suite. As a result, a common practice
in the research community is to apply techniques
to a small snapshot of the execution trace, for
example, the first 100 to 500 million instructions
of the trace. Another common practice is to use
smaller “test” or “train” input data sets to reduce
simulation time1. In addition to the reference input
sets, which give the complete run of each
program, SPEC also provides the test data sets
which give a quick test of the benchmark, and the
train data sets which allow the compiler to
generate training profiles used for PBO (Profile-
Based Optimization).

With the execution of a few hundred billion
instructions in each program, the first 100 million
instructions contribute about 0.1% of the total
runtime, and are likely to perform initializations
instead of accurately representing typical program
behavior. To avoid capturing non-representative
initialization behavior, some researchers wait until
the initializations are complete begin detailed
simulation. However, this approach does not
guarantee a representative snapshot of the
program’s behavior, because some programs
exhibit different execution phases, exercising
completely different code and data behavior when
it shifts from one phase to another. To accurately
represent the execution of a benchmark program
with multiple phases, at least one trace snapshot
needs to be captured for each phase.

Using reduced data sets may be more attractive
than studying a snapshot of the reference set,

1 A survey of recent research publications shows that
more than 60% of studies used reduced data sets.

Proceedings of the Sixth Annual Workshop on Interaction between Compilers and Computer Architectures (INTERACT�02)
0-7695-1534-7/02 $17.00 © 2002 IEEE

 2

because the smaller input sets may represent
execution behavior similar to reference input sets.
Since the test data sets and training data sets have
shorter overall execution times than reference
input, a large amount of research has been
conducted using these smaller data sets in their
simulations to conduct faster performance
evaluations. However, since the test and the train
data sets were not originally designed to serve as
reduced data sets for the reference input, they may
exercise different execution paths in the programs
than the reference input sets. If this is indeed the
case, the performance evaluation conducted based
on such input sets could be misleading. For
example, if the complete run with reference input
would cause significant I-cache misses and D-
cache misses, but the run with test input incurs no
cache misses, the evaluation results based on the
test runs would be very misleading.

In 1992, Fisher and Freudenberge [Fish92]
reported that branch instructions could be
predicted statically by using previous runs of a
program. This provides evidence to support
Profile Based Optimizations (PBO). Starting in
SPEC92, training input sets have been provided
by SPEC for compilers to generate execution
profiles and perform profile directed optimization.
The success of using small data sets to predict
branch directions for future runs suggests that test
or training input sets are capable of predicting the
program behavior for the reference runs.
However, some recent studies [Cohn98] on post-
link time optimizations report that an application
may exercise different code when different users
use the application. This observation is
particularly common for general-purpose
applications that are rich in features. Profiled
based optimization has also advanced beyond
static branch prediction. For example, some
commercial compilers [Ayer98] have been using
profiles to determine which procedures to
optimize, which execution paths get a high
priority on resource allocation [Holl96], and
which region to allocate more optimization time.
Furthermore, recent research suggests using path
profiling for trace cache allocation [Rami99],
using value profiling for value prediction
optimization [Cald99], and using cache profiling
for data layout optimization [Cald98]. It is
therefore important to understand to what extent

we may use one input data set to predict the
program behavior of future runs.

In this paper, we evaluate how reliably small input
sets can be used in place of more time-consuming
reference input sets. For some benchmark
programs, small input sets exhibit the same
execution behavior as the reference inputs, and the
research community can comfortably use them to
reduce simulation time. However, some programs
do not have train or test input sets that are
representative of their reference input set. We first
examine the similarity of program behavior using
high-level information such as execution profiles
and IPC numbers. We then go into low-level
analysis to investigate the frequent execution
paths covered by each input data sets. Since the
small and “light” input data sets generally do not
stress the data cache as much as the reference
input data set does, we also investigate whether
different “heavy” input sets stress the data cache
in a similar way. In other words, we would like to
know how accurately and reliably we can use one
input sets to predict the data cache behavior of a
different set.

This study has two goals. One goal is to provide
the research community some guidelines on using
smaller input sets in reducing simulation time for
SPEC benchmarks without giving misleading
performance results. The second goal is to
examine program behavior under different input
sets. The key question is whether the smaller data
set exercises the same execution paths and
exhibits the same behavior as the reference input
sets do? If not, we may not use the simulation
results from smaller input sets to indicate the
performance impact of the Spec2000 benchmark.
Also, we evaluate the performance impact of
using different input sets on the Itanium processor
using the Intel compiler.

The remainder of this paper is organized as
follows. In Section 2, we look at the high-level
measures of execution profiles of Spec2000
programs using different input sets. In Section 3,
we describe how to use the branch trace buffer
feature in the Itanium processor to look into
frequently executed paths exercised by different
input data sets. Section 4 compares the frequent
execution paths sampled by running different

Proceedings of the Sixth Annual Workshop on Interaction between Compilers and Computer Architectures (INTERACT�02)
0-7695-1534-7/02 $17.00 © 2002 IEEE

 3

input data sets. Section 5 compares the execution
paths for frequent data cache misses since many
Spec2000int programs exhibit a high data cache
miss rate. We evaluate the impact of different
profiles on PBO performance in section 6, and the
summary and conclusion are given in Section 7.

2 Profile Comparisons

2.1 Execution Profile Comparison

We first examine the high-level performance
characteristics of each benchmark program. This
includes the gprof [Grah82] profiling and IPC
information. In this study, we compile
SPEC2000int benchmarks for a Pentium-III
processor running on the Linux at O3
optimization level. Table 1 shows the execution
time distribution from gprof of program 181.mcf.
With the reference input set, the mcf benchmark
spends 50% of time in procedure price_out_impl,
37.5% of time on procedure refresh_potential.
When the train input is used, they are also the top
two procedures in the profile. However, procedure
refresh_potential now becomes the number one
routine, while procedure price_out_impl reduces
its execution time contribution from 50% to 31%.
When the test input is used, the profile becomes
very different. Now the top two procedures,
price_out_impl and refresh_potential are
insignificant, while procedure primal_bea_mpp
and sort_basket became the top ones.

When a reduced input data set is used, we would
like to know whether it covers the important part
of the program for the reference runs. In Table 2,
we try to correlate procedure profiles among
different input data sets. For example, in the first
column, we compare profiles of train input to the

reference input. In the column labeled as 50%, we
take the top procedures accounting for 50% of
runtime cumulatively from the train input run, and
give the percent of runtime these procedures cover
in the reference input run. As shown in Table 2,
Test input sets do not cover procedures very well
for the reference run of Mcf, Eon, Perl, Gap, and
Bzip. The procedures accounting for 80% of
execution time of test input runs cover only
9.26%, 41.57%, 1.28%, 58.54%, and 53.45% of
the reference run, respectively.

In general, train input runs have good procedure
coverages. For Gzip, Vpr, Gcc, Mcf, Parser, Gap,
and Twolf, the procedures accounting for 80% of
execution time of train input runs cover similar
execution percentages for reference input runs; in
Perl, Eon, and Bzip the coverage is less than 50%.
The compiler must be careful when training
profiles are used to determine which procedures to
optimize for these three programs. For example,
Perl spends about 20% of time on procedure
regmatch, but this procedure does not even show
up in the gprof result for the training run.
Therefore, using the training profile, the compiler
may decide not to optimize the regmatch
procedure.

2.2 IPC comparison

In this section, we measure the IPC (Instruction
Per Cycle) for each benchmark program using all
three different input data sets. Several
SPEC2000int programs, such as gzip, vpr, mcf,
bzip and twolf, spend 90% of execution time on a
very small number of procedures (less than 10), so
the relative procedure coverage reported in the
previous section is very high. However, it is not

 Table 2. Procedure coverage from one input set to the other
Table 1. Execution time distribution of 181.mcf

with different input sets Gprof Train vs Ref Test vs Ref Test vs Train
Procedure Name Ref Input Train Input Test Input 50% 80% 90% 50% 80% 90% 50% 80% 90%
price_out_impl 50.29% 31.06% 3.49% Gzip 71.00 87.18 93.30 71.00 85.83 91.95 51.19 72.97 86.00
refresh_potential 37.54% 39.24% 8.72% Vpr 29.65 73.61 83.58 55.19 78.20 86.06 59.75 84.55 92.31
primal_bea_mpp 8.47% 19.14% 54.65% GCC 64.45 84.86 91.04 66.15 85.24 90.82 55.89 76.91 86.99
replace_weaker_arc 1.09% 1.99% 0.00% MCF 37.64 88.06 96.56 8.49 9.26 97.74 19.30 21.89 92.79
sort_basket 0.76% 2.57% 18.02% Crafty 42.20 67.88 78.38 41.58 67.36 77.77 48.72 78.22 88.33

Parser 47.56 80.41 88.76 28.05 62.11 73.45 36.40 66.70 76.03
Eon 41.57 45.28 47.25 19.99 41.57 41.57 20.51 56.89 64.30
Perl 25.37 29.71 33.10 0.00 1.28 1.28 0.00 7.27 7.27
Gap 48.63 85.02 95.39 44.38 58.54 65.84 43.13 63.65 70.80
Vortex 33.86 53.56 68.87 37.85 65.80 71.58 48.50 73.50 87.99
Bzip2 5.57 49.29 59.03 27.27 53.45 67.93 24.56 40.79 93.34
Twolf 46.43 79.53 90.49 44.40 74.25 83.85 49.29 74.70 84.66

Proceedings of the Sixth Annual Workshop on Interaction between Compilers and Computer Architectures (INTERACT�02)
0-7695-1534-7/02 $17.00 © 2002 IEEE

 4

clear whether the execution behavior inside each
procedure is similar under different input data
sets. In this section, we examine the IPC numbers
and in the next two sections, we sample the
execution paths for a more detailed comparison.

We use hardware performance counters to report
IPC numbers. The same set of benchmarks is
compiled for Itanium using a beta version of the
Electron compiler from Intel at O2 optimization
level. For programs that have multiple reference
input files, we average the IPC for each individual
runs.

Figure 1 shows that the IPC numbers of vpr, mcf,
perlmark, and twolf change significantly from one
input set to the other. Consider vpr, for example,
the IPC for the test run is about two times the IPC
of the reference input. Mcf has an IPC number
using test run more than three times the IPC using
the reference input. In these benchmarks, different
input sets exposed very different performance
characteristics. For programs that have similar
IPC numbers, such as gcc, gap, and gzip, it is not
guaranteed that different input sets for such
programs exercise the same execution paths and
exhibit the same cache behavior. We will examine
the sampled execution paths of each program to
verify their behavior in following sections.

 Figure 1. IPC numbers collected on Itanium for different input data
sets on SPEC200int

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

gzip vpr gcc mcf parser perlmark gap vortex bzip2 twolf
Benchmarks

IPC

Test
Train
Reference

3 Using Branch Trace Buffer to examine

frequently executed paths

The Itanium processor defines and supports a rich
set of performance monitoring features that can be
used to characterize workload and to profile
application execution [Itan00a, Itan00b]. Itanium
has four performance-counter registers that can be

programmed to measure stall cycles in eight
different categories as well as to count
occurrences of over a hundred events.
Furthermore, Itanium supports Event Address
Registers (EARs) for both Data and Instruction
events as well as an eight-entry Branch Trace
Buffer (BTB). The Instruction EAR can capture
the addresses of instructions that trigger I-cache or
ITLB misses. The Data EAR can capture the
addresses of load instructions that cause D-cache
or DTLB misses together with the target addresses
of these loads. The Branch Trace Buffer is an 8-
entry circular buffer that can capture information
on the most recent branch instructions and their
outcomes. These performance-monitoring features
enable us to gain a detailed understanding of the
dynamic execution behavior of the running
application. Since each retired branch instruction
that is recorded in the Branch Trace buffer may
take up to two entries, one entry for the address of
the branch instruction and another entry for the
address of the branch target, we can program the
Branch Trace Buffer to capture the most recent
four taken branch instructions for each sample.

A profiling tool that utilizes the performance
monitoring features, called Itanium Profiling Tool
(or IPT), has been developed on Itanium running
64-bit Linux in the MRL of Intel. IPT required a
customized performance monitor device driver
(PMU driver) that runs as part of the Linux. IPT
supports various modes of profiling on a running
application, including the measurement of stall
accounting, the counting of all performance
events supported by the Itanium processors, and
the collection of samples on various events. The
IPT program interacts with the PMU driver to
configure the performance monitoring registers
and to receive profiling or sampling data from the
PMU driver and store them in a profiling file.

To sample execution paths for this study, we used
IPT to collect branch trace information for
SPEC2000 integer benchmarks. We configure the
Branch Trace Buffer to capture only the taken
branches regardless of their branch prediction
outcomes. While running the integer benchmarks
with reference input, one branch trace sample was
taken every one million cycles and every ten
thousand D1 cache misses. For test and training
input, one branch trace sample was taken for

Proceedings of the Sixth Annual Workshop on Interaction between Compilers and Computer Architectures (INTERACT�02)
0-7695-1534-7/02 $17.00 © 2002 IEEE

 5

every ten thousands clock cycles and every one
hundred D1 misses. This is because we try to
maintain roughly the same number of samples
between reference, test, and training runs. The
sampling rates used is faster than the sampling
rate usually used by gprof in all cases. Although a
faster sample rate will obtain more unique
execution paths, the most frequently sampled
execution paths of each program remain the same
as with the slower sampling rate. Since this study
focus on the most frequently executed paths, we
do not collect data on various sampling rates.
Each branch trace sample was captured by the IPT
program and stored to disk for offline processing.
Offline, all branch trace samples were sorted to
count the number of times each branch trace path
was executed.

4 Execution Path Analysis for Different

Input Sets

As we stated earlier, even if a program has similar
procedure coverage and IPC numbers for different
input data sets, the execution paths exercised by
the different input sets may be different. If
different execution paths are exercised under
different input sets, using one input set may not
reliably predict the performance of other runs. For
the same reason, aggressive PBO based on one
input set may not be effective for other runs.

We use the IPT tool described in Section 3 to
study the frequent execution paths for each
program under different input sets. We first select

the top three frequently executed paths from the
reference input runs. For each path, we report its
percentage in the total sampled paths. For
example, as shown in Figure 2, the number 1 path
of Gzip accounts for 27.69% of total sampled
paths. We also report their respective percentage
for test and train input runs. The number 1 path
selected from the reference run of Gzip accounts
for only 0.26% from all the sampled paths for the
test run, and 20.71% for the train input.

Figure 2 shows that the top three paths of Gcc
using reference input account for about 30% of
execution time. This seems to contradict with the
common sense that Gcc tends to have a very flat
profile. The hot execution paths come from the
memcpy and the memset library routines. These
two routines also account for 30% of execution
time on both Pentium-III based and Sun Ultra
SparcIIe based systems, using gprof with
reference input.

In Figure 2, we can see that some important
execution paths for the reference runs are
insignificant for the train or the test runs. From the
high-level comparisons in Section 2, we may
believe Crafty, Gcc and Gap can reliably take
advantage of reduced input data sets. However,
Figure 2 shows that there are substantial
variations on the relative importance of the
frequently executed paths for these three
programs.

Figure 2. Comparison of frequent execution paths using different input sets

0

10

20

30

40

50

60

70

80

90

gzip_ref

gzip_test

gzip_train
vpr_ref

vpr_test

vpr_train
gcc_ref

gcc_test

gcc_train
mcf_

ref

mcf_
test

mcf_
train

crafty_
ref

crafty_
test

crafty_
train

parser_ref

parser_test

parser_train
Eon_ref

Eon_test

Eon_train
perl_ref

perf_test

perf_train
gap_ref

gap_test

gap_train

vortex_ref

vortex_test

vortex_train

bzip2_ref

bzip2_test

bzip2_train

twolf_ref

twolf_test

twolf_train

Benchmarks & Input sets

%
 o

f s
am

pl
ed

 p
ath

s
Path-1 Path-2 Path-3

Proceedings of the Sixth Annual Workshop on Interaction between Compilers and Computer Architectures (INTERACT�02)
0-7695-1534-7/02 $17.00 © 2002 IEEE

 6

Readers may wonder how important the relative
order and their respective weight for those
frequently executed paths are. For example, if for
training input, path-1 accounts for 40%, and path-
2 accounts for 10% of the execution time, and if
the distribution becomes path-1, 10% and path-2,
40% for the reference input, would it make a big
difference in PBO optimization? The answer
depends on how the profile is actually used in
optimization. If the optimizer uses the profiles to
select all important paths, the relative order may
not matter much. Eventually, both path-1 and
path-2 will be selected and optimized. However, if
PBO takes weight into account, it may decide to
optimize only the number 1 path (due to compile
time consideration), the outcome could be very
different. Furthermore, when using small input
sets for performance projection in simulations, the
relative weight of different execution paths do
make a difference.

The compiler may choose to take the top 80% of
execution paths of the profile as optimization
candidates. We are interested to know how much
execution time these selected candidates may
cover the run time of the full reference input run.
Table 3 shows the possible coverage. For
example, if we take the top 90% (accumulative) of
execution paths from the profile collected with the
Test input on Gzip, these paths may cover only
28.5% of the run time for the reference input run.
In Table 3, we can see more than half of the
benchmarks have very poor coverage if Test
profile is used. In general, profiles using train
input sets have better coverage than the test input
sets.

Table 3. Coverage of execution paths using one input run to predict the other
CPU Train Vs Ref Test Vs Ref Test Vs Train

50% 80% 90% 50% 80% 90% 50% 80% 90%
Gzip 59.55 76.82 89.32 16.21 22.77 28.05 28.11 39.28 44.08
Vpr 48.01 64.89 69.89 47.01 80.80 92.06 65.70 91.10 96.09
GCC 69.69 85.99 91.32 76.65 88.70 91.59 64.46 84.08 88.77
MCF 66.16 91.72 96.59 2.83 18.79 18.86 9.11 26.18 26.69
Crafty 34.17 51.70 59.33 26.45 38.55 44.38 36.74 54.85 60.03
Parser 50.93 81.19 90.32 27.79 76.62 89.39 26.20 77.57 89.53
Eon 47.82 76.93 88.82 48.84 76.76 84.97 51.83 81.15 89.61
Perl 47.25 68.32 76.14 - - - - - -
Gap 34.96 67.09 75.70 34.56 42.78 52.76 39.93 73.32 82.84
Vortex 41.40 80.61 89.03 63.21 84.17 91.66 44.99 75.00 87.03
Bzip2 26.99 52.24 72.07 26.99 44.59 56.58 36.41 69.16 82.02
Twolf 45.19 79.34 90.44 42.07 71.71 79.25 45.03 71.58 77.64

5 Comparison of Frequent Execution
Paths for Data Cache misses

5.1 Path coverage analysis

Figure 3 compares frequent paths leading to data
cache misses. For programs without many data
cache misses, it is not important to study such
paths. However, since many SPEC2000int
programs have a high D1-cache miss rate running
on Itanium, it is important to understand whether
such paths can be predicted using profiles
generated from smaller input data sets. Figure 3
does not contain all the programs-- some
programs with insufficient data cache miss
samples were not included.

Figure 3 shows variations of such execution paths
are far greater than the variations in Figure 2. For
example, the path that accounts for the highest
data cache misses in Vortex (responsible for
61.85% of D1-cache misses) does not even show
up in the train input run (it covers 0.0% of
sampled execution paths for data cache misses).
Figure 3 shows that the test input is almost useless
in predicting frequent D-cache miss paths except
for Crafty. The train input can be used to predict
data cache miss paths for Vpr and Parser. It may
also capture frequent data cache miss paths for
Gcc, Mcf, with substantially different weights on
the paths. Train inputs predict data cache miss
paths poorly for Gap, Vortex and Bzip2.

Figure 3. Comparison of frequent execution paths leading to data
cache misses using different input sets

0

10

20

30

40

50

60

70

80

90

100

Vpr
_r

ef

Vpr
_t
es

t

Vpr
_t
ra

in

G
CC_r

ef

G
CC_t

es
t

G
CC_t

ra
in

M
CF_r

ef

M
CF_t

es
t

M
CF_t

ra
in

Cra
fty

_re
f

Cra
fty

_te
st

Cra
fty

_tra
in

Par
se

r_
re
f

Par
se

r_
te
st

Par
se

r_
tra

in

G
ap

_r
ef

G
ap

_t
es

t

G
ap

_t
ra

in

Vo
rte

x_
re

f

Vor
te
x_

te
st

Vo
rte

x_
tra

in

Bzip
2_r

ef

Bzip
2_t

es
t

Bzip
2_t

ra
in

Benchmarks & input sets

%
 o

f
s

a
m

p
le

d
 p

a
th

s

Path-3

Path-2

Path-1

Proceedings of the Sixth Annual Workshop on Interaction between Compilers and Computer Architectures (INTERACT�02)
0-7695-1534-7/02 $17.00 © 2002 IEEE

 7

Table 4 shows the similarity of the top branch
paths leading up to D-cache misses for the
different input sets. The execution path coverage
in Table 4 is in general lower than the coverage in
Table 3. In particular, if the threshold is 50%, the
prediction for reference run can be very poor.
Table 4 shows test data sets can capture many
frequent execution paths leading to data cache
misses for Parser. However, from Figure 3, we
have observed that the top three paths for data
cache misses in Parser do not stand out during test
data set runs. This shows a difference of using test
data sets for PBO and for reducing simulation
time. If the PBO compiler takes 90% of observed
paths from one run to optimize for the other run,
the relative weights of each path become less
important. As long as the frequent executed paths
are optimized, PBO has achieved its goal.
However, the relative weights and order of such
paths are important when simulation time is
considered.

Table 4. Coverage of execution paths leading to data cache misses using one input run to predict the other
D1 Train Vs Ref Test Vs Ref Test Vs Train

50% 80% 90% 50% 80% 90% 50% 80% 90%
Vpr 37.02 76.93 78.17 20.23 20.23 21.47 27.85 27.85 35.92
GCC 15.06 73.92 92.12 0.00 0.00 0.00 0.02 0.06 0.07
MCF 82.70 85.33 93.51 2.18 85.44 86.07 25.83 84.12 88.29
Crafty 36.72 66.81 79.64 36.72 59.29 68.14 40.09 74.36 83.36
Parser 54.07 82.56 91.85 60.83 81.10 88.29 58.38 81.37 88.37
Gap 17.96 55.21 70.06 16.35 20.80 43.53 38.01 71.69 81.24
Vortex 16.95 25.37 28.61 13.84 24.18 30.88 35.07 71.84 83.78
Bzip2 14.44 31.86 51.97 14.44 29.97 35.84 50.21 65.77 73.25

5.2 Small Vs large input data sets

From Table 4, we might conclude that for data
cache profiling, using small input data sets may
misrepresent the projected performance. It seems
like the compiler should avoid using small input
data sets to collect data cache miss profiles
because reduced memory accesses are less likely
to generate frequent data cache misses. However,
the remaining questions are a) is it practical to use
large input data sets to collect profiles for PBO,
and b) Even if a large input data set is used for
profiling, can it reliably identify execution paths
to the data cache misses for the other input set.
For question (a), we shall leave it to software
vendors to decide how much profiling overhead
they can tolerate. For question (b), we looked at
the predictability of using one reference input to
predict for future runs with different input sets.

Note that in this case both input data sets are from
reference sets, not from the small data sets.

For those programs that incur frequent data cache
misses on the Itanium and have multiple reference
input files, we compare their most frequent paths
leading to data cache misses in Figure 4. It shows
that even if the full reference input is used to
collect data cache miss path profiles, the variation
is still large from one input to another. The
number one execution path to data cache misses in
Vortex account for 71.5% of all sampled paths
when the input lendian1.raw is used. However,
this path does not appear when input lendian2.raw
and lendian3.raw are used. On the other hand, a
path that accounts for 16% of the sampled paths
for input lendian2.raw and lendian3.raw,
contributes only 4% when lendian1.raw is used.
Similar results can be found for Bzip2 and Gcc.
Using different input sets, no matter whether they
are reduced size or regular size, may not reliably
predict the paths leading to data cache misses for
Spec2000int benchmarks.

Figure 4. Frequent execution paths to data cache misses
comparison using different reference input files.

0

10

20

30

40

50

60

70

80

90

100

vorte
x_

lendian1.r
aw

vorte
x_

lendian2.ra
w

vorte
x_

lendian3.ra
w

bzip_
gra

ph
ic

bz
ip_sou

rce

gcc_
Inte

gra
te.i

gcc_
expr

.i

gcc
_20

0.i

Benchmarks & input sets

%
 o

f s
am

pl
ed

 p
at

hs

Path-3

Path-2

Path-1

6 Performance Impact of Different Profiles

on Profile Based Optimization

Although our study indicates one input set does
not always accurately predict the program
behavior for another, it is not necessarily a
problem in PBO because a) the compiler may
select a set of inputs with different behaviors to
generate profiles; b) some PBO transformations
are less aggressive so that they depend less on the
execution path or memory access behavior. In this
section, we evaluate the performance impact of

Proceedings of the Sixth Annual Workshop on Interaction between Compilers and Computer Architectures (INTERACT�02)
0-7695-1534-7/02 $17.00 © 2002 IEEE

 8

PBO based on profiles generated from the test, the
train and the reference input sets. The experiment
was conducted on the Itanium processor, where
PBO is regarded as very important.

We compiled Spec2000int programs, using the
Intel C/C++ compiler, on the RedHat 7.1 Linux.
We used the performance of programs compiled
at O2 as the base. We then compiled our
benchmarks using IPO (Inter-Procedural
Optimization) and PGO (Profile Guided
Optimization, in Intel’s term). Note that PGO is
the same as PBO, so we call it PBO here. When
compiled with IPO/PBO, we use profiles collected
from test, train and reference input sets. The
performance relative to the base performance is
reported in Table 5. All performance reported in
Table 5 are relative to the base performance. As
shown in Table 5, Gzip, Gap, Vortex, Bzip and
Twolf can benefit from train profiles. This is no
surprise; because Table 3 shows that train profiles
cover the runtime of reference input better than
test profiles on the aforementioned programs.
Table 3 also shows that using profiles collected
from reference inputs in PBO does not increase
performance much. One thing worth noting is that
the test profile of Mcf does not represent reference
input at all. However, there is no performance
difference for Mcf when more accurate profiles
are used. This is because the performance of Mcf
is dominated by several link-list chasing loops
that have intensive data cache misses. Several
existing effective PBO transformations would not
improve those loops. However, if cache profile
guided prefetching is implemented, using train
profiles may expose such optimization
opportunities.

Table 5 shows PBO can benefit from better
profiles. The performance gain from using better
profiles is not very significant, except for Gzip,
which could gain 10% of performance if the train
profile is used instead of the test profile. The
performance impact of different profiles is not as
significant as we expected. This is because Vpr,
Mcf, Parser, Gap, Vortex and Bzip suffer
significantly from frequent data cache misses on
Itanium. When the performance is dominated by
data cache misses, non-cache related PBO would
not change performance much. When cache
profile guided optimizations are adopted by

compilers, different profiles may have a higher
impact on performance.

7 Summary and Conclusion

It has been a common practice to use smaller
input sets to estimate the performance of a
benchmark or to generate profiles for PBO. In this
paper, we look at how reliable this approach is.
We have studied the high level metrics such as
IPC and procedure level profiles and the low level
measurement such as execution paths exercised by
various input sets on SPEC2000int programs.

Our study indicates that the test input sets are not
suitable to be used for simulation because they do
not have an execution profile similar to the
reference input runs. The train input is far better
than the test data sets at maintaining similar
profiles. However, there are significant
differences between train profiles and reference
profiles for Perl, Eon, Bzip2, and Vortex. We
recommend cautiousness in using train input to
project simulation performance for Vpr, Mcf,
Gap, Gcc and Perl. We have observed significant
variations in respective weights of those
frequently executed paths using different input
sets. Such relative weights could be critical when
aggressive PBO is used. Profiles from train input
could be reliable when predicting branch
directions for other runs, but they could be
misleading if the relative weights are used to
guide optimizations.

Table 5. Performance of PBO on Itanium using different
profiles

Program IPO IPO+PBO
(test)

IPO+PBO
(train)

IPO+PBO
(reference)

164.gzip 1.07 1.19 1.31 1.29

175.vpr 1.15 1.19 1.19 1.19

181.mcf 1.03 1.04 1.03 1.03

186.crafty 1.25 1.29 1.3 1.32

197.parser 1.08 1.11 1.11 1.11

254.gap 1.08 1.2 1.25 1.28

255.vortex 1.1 1.3 1.36 1.35

256.bzip 1.18 1.15 1.17 1.18

300.twolf 1.05 1.1 1.14 1.15

Average 1.11 1.17 1.21 1.21

Proceedings of the Sixth Annual Workshop on Interaction between Compilers and Computer Architectures (INTERACT�02)
0-7695-1534-7/02 $17.00 © 2002 IEEE

 9

A common practice has been adopted in PBO is to
merge profiles from several different training
input sets. However, most SPEC2000int programs
have only one training input (only Perl and Eon
have more than one training input files). In
general, identifying representative small input sets
for an application is not easy, even ISVs
(Independent Software Vendors) have difficulties
identifying representative sets. We have evaluated
the impact of different profiles on PBO
performance using the Itanium processor. While
more accurate profiles lead to higher performance,
the overall performance impact has not been
shown to be very significant. Our study shows
that smaller data sets do not predict frequent data
cache miss paths in the reference input runs. We
have also shown that data cache miss paths may
not be predicted using a different reference input
set. Since the profiled execution paths using small
data sets often carry weights significantly
different from paths in full runs, and since data
cache miss paths are difficult to predict using
different input sets, it would be a challenge to use
profiles from small inputs to guide cache
prefetching related optimizations.

8 References

[Ayer98] Andrew Ayers, Stuart deJong, John
Peyton and Richard Schooler; “Scalable Cross-
module Optimization”, Proceedings of the ACM
SIGPLAN '98 conference on Programming
language design and implementation, 1998.

[Burg97] D. Burger, and T. Austin, “The
SimpleScalar Tool Set, Version 2.0” Technical
report 1342, Computer Sciences Department,
University of Wisconsin Madison, June 1997.

[Cald99] B. Calder, P. Feller, and A. Eustace,
“Value Profiling and Optimization”, Jounal of
Instruction Level Parallelism, March, 1999

[Cald98] B. Calder, C. Krintz, S. John, and T.
Austin, “Cache-conscious data placement”, In
Proceedings of the the 8th nternational Conference
on Architectural Support for Programming
Languages and Operating Systems (ASPLOS
VIII) Oct. 1998.

[Cohn98] Robert S. Cohn, David W. Goodwin, P.
Geoffrey Lowney, “Optimizing Alpha
Executables on Windows NT with Spike”, Digital
Technical Journal, Vo l 9 No 4, June, 1998

[Fish92] J. A. Fisher, and S. Freudenberger,
“Predicting Conditional Branch Directions From
Previous Runs of a Program,” Proceedings of the
5th International Conference on Architectural
Support for Programming Languages and
Operating Systems, Oct., 1992

[Grah82] Graham, S. L., P. B. Kessler, M.K.
McKusick, “gprof: A Call Graph Execution
Profiler”, Proceedings of the SIGPLAN ’82
Symposium on Compiler Construction, 1982.

[Henn2000] Henning, John L., “SPEC CPU2000:
Measuring CPU Performance in the New
Millennium,” IEEE Computer, Vol. 33, No. 7,
July 2000.

[Holl96] Anne M. Holler “Optimization for a
Superscalar Out-of-Order Machine”, Proceedings
of the 29th annual IEEE/ACM international
symposium on Microarchitecture, 1996.

[Itan00a] Intel Itanium Architecture Software
Developer’s Manual Vol. 4 rev.1.1: Itanium
Processor Programmer’s Guide. Intel Corp. July
2000.

[Itan00b] Intel Itanium Architecture Software
Developer's Manual: Specification Update. Intel
Corp. August 2001.

[Rami99] Alex Ramirez, Josep-L. Larriba-Pey,
Carlos Navarro, Josep Torrellas, and Mateo
Valero, “Software Trace Cache”, 1999 ACM
International Conference on Supercomputing
(ICS), June 1999.

[Yung96] Robert Yung, “Design Decisions
Influencing the UltraSPARC Instruction Fetch
Architecture,” Proceedings of the 29th annual
IEEE/ACM international symposium on
Microarchitecture, 1996

Proceedings of the Sixth Annual Workshop on Interaction between Compilers and Computer Architectures (INTERACT�02)
0-7695-1534-7/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

