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Abstract 
 

Smaller input data sets such as the test and the 
train input sets are commonly used in simulation to 
estimate the impact of architecture/micro-architecture 
features on the performance of SPEC benchmarks. 
They are also used for profile feedback compiler 
optimizations. 

In this paper, we examine the reliability of reduced 
input sets for performance simulation and profile 
feedback optimizations. We study the high level metrics 
such as IPC and procedure level profiles as well as 
lower level measurements such as execution paths 
exercised by various input sets on the SPEC2000int 
benchmark. 

Our study indicates that the test input sets are not 
suitable to be used for simulation because they do not 
have an execution profile similar to the reference input 
runs. The train data set is better than the test data sets 
at maintaining similar profiles to the reference input 
set. However, the observed execution paths leading to 
cache misses are very different between using the 
smaller input sets and the reference input sets. For 
current profile based optimizations, the differences in 
quality of profiles may not have a significant impact on 
performance, as tested on the Itanium processor with 
Intel compiler. However, we believe the impact of 
profile quality will be greater for more aggressive 
profile guided optimizations, such as cache 
prefetching.  
 
1 Introduction  

The SPEC benchmark suite [Henn2000] is a 
collection of CPU-intensive application programs. 
It has been widely used in the research community 
to evaluate architecture and micro-architecture 
designs and compiler optimizations.  From 
SPEC89 to SPEC2000, the number of benchmarks 
and the average execution time of each 
benchmark program have continuously been 
increased. On average, each SPEC92int program 
executes about 1.3 billion instructions [Yung96] 
while this number increased to 64 billion for 
SPEC95int programs. In SPEC2000int, the 

average number of dynamic instructions executed 
reached a few hundred billion instructions.  With 
significantly increasing execution times, and with 
more complex architecture/micro-architecture 
features to simulate, it is becoming increasingly 
difficult to simulate the complete SPEC 
benchmark suite.  As a result, a common practice 
in the research community is to apply techniques 
to a small snapshot of the execution trace, for 
example, the first 100 to 500 million instructions 
of the trace. Another common practice is to use 
smaller “test” or “train” input data sets to reduce 
simulation time1. In addition to the reference input 
sets, which give the complete run of each 
program, SPEC also provides the test data sets 
which give a quick test of the benchmark, and the 
train data sets which allow the compiler to 
generate training profiles used for PBO (Profile-
Based Optimization).  

With the execution of a few hundred billion 
instructions in each program, the first 100 million 
instructions contribute about 0.1% of the total 
runtime, and are likely to perform initializations 
instead of accurately representing typical program 
behavior. To avoid capturing non-representative 
initialization behavior, some researchers wait until 
the initializations are complete begin detailed 
simulation. However, this approach does not 
guarantee a representative snapshot of the 
program’s behavior, because some programs 
exhibit different execution phases, exercising 
completely different code and data behavior when 
it shifts from one phase to another. To accurately 
represent the execution of a benchmark program 
with multiple phases, at least one trace snapshot 
needs to be captured for each phase.  

Using reduced data sets may be more attractive 
than studying a snapshot of the reference set, 
                                                 
1 A survey of recent research publications shows that 
more than 60% of studies used reduced data sets. 
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because the smaller input sets may represent 
execution behavior similar to reference input sets. 
Since the test data sets and training data sets have 
shorter overall execution times than reference 
input, a large amount of research has been 
conducted using these smaller data sets in their 
simulations to conduct faster performance 
evaluations. However, since the test and the train 
data sets were not originally designed to serve as 
reduced data sets for the reference input, they may 
exercise different execution paths in the programs 
than the reference input sets. If this is indeed the 
case, the performance evaluation conducted based 
on such input sets could be misleading. For 
example, if the complete run with reference input 
would cause significant I-cache misses and D-
cache misses, but the run with test input incurs no 
cache misses, the evaluation results based on the 
test runs would be very misleading. 

In 1992, Fisher and Freudenberge [Fish92] 
reported that branch instructions could be 
predicted statically by using previous runs of a 
program. This provides evidence to support 
Profile Based Optimizations (PBO). Starting in 
SPEC92, training input sets have been provided 
by SPEC for compilers to generate execution 
profiles and perform profile directed optimization. 
The success of using small data sets to predict 
branch directions for future runs suggests that test 
or training input sets are capable of predicting the 
program behavior for the reference runs. 
However, some recent studies [Cohn98] on post-
link time optimizations report that an application 
may exercise different code when different users 
use the application. This observation is 
particularly common for general-purpose 
applications that are rich in features. Profiled 
based optimization has also advanced beyond 
static branch prediction. For example, some 
commercial compilers [Ayer98] have been using 
profiles to determine which procedures to 
optimize, which execution paths get a high 
priority on resource allocation [Holl96], and 
which region to allocate more optimization time. 
Furthermore, recent research suggests using path 
profiling for trace cache allocation [Rami99], 
using value profiling for value prediction 
optimization [Cald99], and using cache profiling 
for data layout optimization [Cald98]. It is 
therefore important to understand to what extent 

we may use one input data set to predict the 
program behavior of future runs. 

In this paper, we evaluate how reliably small input 
sets can be used in place of more time-consuming 
reference input sets. For some benchmark 
programs, small input sets exhibit the same 
execution behavior as the reference inputs, and the 
research community can comfortably use them to 
reduce simulation time. However, some programs 
do not have train or test input sets that are 
representative of their reference input set. We first 
examine the similarity of program behavior using 
high-level information such as execution profiles 
and IPC numbers. We then go into low-level 
analysis to investigate the frequent execution 
paths covered by each input data sets. Since the 
small and “light” input data sets generally do not 
stress the data cache as much as the reference 
input data set does, we also investigate whether 
different “heavy” input sets stress the data cache 
in a similar way. In other words, we would like to 
know how accurately and reliably we can use one 
input sets to predict the data cache behavior of a 
different set.  

This study has two goals. One goal is to provide 
the research community some guidelines on using 
smaller input sets in reducing simulation time for 
SPEC benchmarks without giving misleading 
performance results. The second goal is to 
examine program behavior under different input 
sets. The key question is whether the smaller data 
set exercises the same execution paths and 
exhibits the same behavior as the reference input 
sets do? If not, we may not use the simulation 
results from smaller input sets to indicate the 
performance impact of the Spec2000 benchmark. 
Also, we evaluate the performance impact of 
using different input sets on the Itanium processor 
using the Intel compiler.  

The remainder of this paper is organized as 
follows. In Section 2, we look at the high-level 
measures of execution profiles of Spec2000 
programs using different input sets. In Section 3, 
we describe how to use the branch trace buffer 
feature in the Itanium processor to look into 
frequently executed paths exercised by different 
input data sets. Section 4 compares the frequent 
execution paths sampled by running different 
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input data sets. Section 5 compares the execution 
paths for frequent data cache misses since many 
Spec2000int programs exhibit a high data cache 
miss rate. We evaluate the impact of different 
profiles on PBO performance in section 6, and the 
summary and conclusion are given in Section 7. 
 
2 Profile Comparisons 
 
2.1 Execution Profile Comparison 

We first examine the high-level performance 
characteristics of each benchmark program. This 
includes the gprof [Grah82] profiling and IPC 
information. In this study, we compile 
SPEC2000int benchmarks for a Pentium-III 
processor running on the Linux at O3 
optimization level. Table 1 shows the execution 
time distribution from gprof of program 181.mcf. 
With the reference input set, the mcf benchmark 
spends 50% of time in procedure price_out_impl, 
37.5% of time on procedure refresh_potential. 
When the train input is used, they are also the top 
two procedures in the profile. However, procedure 
refresh_potential now becomes the number one 
routine, while procedure price_out_impl reduces 
its execution time contribution from 50% to 31%. 
When the test input is used, the profile becomes 
very different. Now the top two procedures, 
price_out_impl and refresh_potential are 
insignificant, while procedure primal_bea_mpp 
and sort_basket became the top ones. 

When a reduced input data set is used, we would 
like to know whether it covers the important part 
of the program for the reference runs. In Table 2, 
we try to correlate procedure profiles among 
different input data sets. For example, in the first 
column, we compare profiles of train input to the 

reference input. In the column labeled as 50%, we 
take the top procedures accounting for 50% of 
runtime cumulatively from the train input run, and 
give the percent of runtime these procedures cover 
in the reference input run. As shown in Table 2, 
Test input sets do not cover procedures very well 
for the reference run of Mcf, Eon, Perl, Gap, and 
Bzip. The procedures accounting for 80% of 
execution time of test input runs cover only 
9.26%, 41.57%, 1.28%, 58.54%, and 53.45% of 
the reference run, respectively. 

In general, train input runs have good procedure 
coverages. For Gzip, Vpr, Gcc, Mcf, Parser, Gap, 
and Twolf, the procedures accounting for 80% of 
execution time of train input runs cover similar 
execution percentages for reference input runs; in 
Perl, Eon, and Bzip the coverage is less than 50%. 
The compiler must be careful when training 
profiles are used to determine which procedures to 
optimize for these three programs. For example, 
Perl spends about 20% of time on procedure 
regmatch, but this procedure does not even show 
up in the gprof result for the training run. 
Therefore, using the training profile, the compiler 
may decide not to optimize the regmatch 
procedure. 

 
2.2 IPC comparison 

In this section, we measure the IPC (Instruction 
Per Cycle) for each benchmark program using all 
three different input data sets. Several 
SPEC2000int programs, such as gzip, vpr, mcf, 
bzip and twolf, spend 90% of execution time on a 
very small number of procedures (less than 10), so 
the relative procedure coverage reported in the 
previous section is very high. However, it is not 

 Table 2. Procedure coverage from one input set to the other 
Table 1. Execution time distribution of 181.mcf   

with different input sets Gprof Train vs Ref Test vs Ref Test vs Train 
Procedure Name Ref Input Train Input Test Input 50% 80% 90% 50% 80% 90% 50% 80% 90% 
price_out_impl 50.29% 31.06% 3.49% Gzip 71.00 87.18 93.30 71.00 85.83 91.95 51.19 72.97 86.00 
refresh_potential 37.54% 39.24% 8.72% Vpr 29.65 73.61 83.58 55.19 78.20 86.06 59.75 84.55 92.31 
primal_bea_mpp 8.47% 19.14% 54.65% GCC 64.45 84.86 91.04 66.15 85.24 90.82 55.89 76.91 86.99 
replace_weaker_arc 1.09% 1.99% 0.00% MCF 37.64 88.06 96.56 8.49 9.26 97.74 19.30 21.89 92.79 
sort_basket 0.76% 2.57% 18.02% Crafty 42.20 67.88 78.38 41.58 67.36 77.77 48.72 78.22 88.33 

Parser 47.56 80.41 88.76 28.05 62.11 73.45 36.40 66.70 76.03 
Eon 41.57 45.28 47.25 19.99 41.57 41.57 20.51 56.89 64.30 
Perl 25.37 29.71 33.10 0.00 1.28 1.28 0.00 7.27 7.27 
Gap 48.63 85.02 95.39 44.38 58.54 65.84 43.13 63.65 70.80 
Vortex 33.86 53.56 68.87 37.85 65.80 71.58 48.50 73.50 87.99 
Bzip2 5.57 49.29 59.03 27.27 53.45 67.93 24.56 40.79 93.34 
Twolf 46.43 79.53 90.49 44.40 74.25 83.85 49.29 74.70 84.66 
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clear whether the execution behavior inside each 
procedure is similar under different input data 
sets. In this section, we examine the IPC numbers 
and in the next two sections, we sample the 
execution paths for a more detailed comparison. 

We use hardware performance counters to report 
IPC numbers. The same set of benchmarks is 
compiled for Itanium using a beta version of the 
Electron compiler from Intel at O2 optimization 
level. For programs that have multiple reference 
input files, we average the IPC for each individual 
runs. 

Figure 1 shows that the IPC numbers of vpr, mcf, 
perlmark, and twolf change significantly from one 
input set to the other.  Consider vpr, for example, 
the IPC for the test run is about two times the IPC 
of the reference input. Mcf has an IPC number 
using test run more than three times the IPC using 
the reference input. In these benchmarks, different 
input sets exposed very different performance 
characteristics. For programs that have similar 
IPC numbers, such as gcc, gap, and gzip, it is not 
guaranteed that different input sets for such 
programs exercise the same execution paths and 
exhibit the same cache behavior. We will examine 
the sampled execution paths of each program to 
verify their behavior in following sections. 

 Figure 1. IPC numbers collected on Itanium for different input data  
sets on SPEC200int 
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3 Using Branch Trace Buffer to examine 

frequently executed paths 

The Itanium processor defines and supports a rich 
set of performance monitoring features that can be 
used to characterize workload and to profile 
application execution [Itan00a, Itan00b]. Itanium 
has four performance-counter registers that can be 

programmed to measure stall cycles in eight 
different categories as well as to count 
occurrences of over a hundred events. 
Furthermore, Itanium supports Event Address 
Registers (EARs) for both Data and Instruction 
events as well as an eight-entry Branch Trace 
Buffer (BTB). The Instruction EAR can capture 
the addresses of instructions that trigger I-cache or 
ITLB misses. The Data EAR can capture the 
addresses of load instructions that cause D-cache 
or DTLB misses together with the target addresses 
of these loads. The Branch Trace Buffer is an 8-
entry circular buffer that can capture information 
on the most recent branch instructions and their 
outcomes. These performance-monitoring features 
enable us to gain a detailed understanding of the 
dynamic execution behavior of the running 
application. Since each retired branch instruction 
that is recorded in the Branch Trace buffer may 
take up to two entries, one entry for the address of 
the branch instruction and another entry for the 
address of the branch target, we can program the 
Branch Trace Buffer to capture the most recent 
four taken branch instructions for each sample. 

A profiling tool that utilizes the performance 
monitoring features, called Itanium Profiling Tool 
(or IPT), has been developed on Itanium running 
64-bit Linux in the MRL of Intel. IPT required a 
customized performance monitor device driver 
(PMU driver) that runs as part of the Linux. IPT 
supports various modes of profiling on a running 
application, including the measurement of stall 
accounting, the counting of all performance 
events supported by the Itanium processors, and 
the collection of samples on various events. The 
IPT program interacts with the PMU driver to 
configure the performance monitoring registers 
and to receive profiling or sampling data from the 
PMU driver and store them in a profiling file. 

To sample execution paths for this study, we used 
IPT to collect branch trace information for 
SPEC2000 integer benchmarks.  We configure the 
Branch Trace Buffer to capture only the taken 
branches regardless of their branch prediction 
outcomes. While running the integer benchmarks 
with reference input, one branch trace sample was 
taken every one million cycles and every ten 
thousand D1 cache misses.  For test and training 
input, one branch trace sample was taken for 
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every ten thousands clock cycles and every one 
hundred D1 misses. This is because we try to 
maintain roughly the same number of samples 
between reference, test, and training runs. The 
sampling rates used is faster than the sampling 
rate usually used by gprof in all cases. Although a 
faster sample rate will obtain more unique 
execution paths, the most frequently sampled 
execution paths of each program remain the same 
as with the slower sampling rate. Since this study 
focus on the most frequently executed paths, we 
do not collect data on various sampling rates. 
Each branch trace sample was captured by the IPT 
program and stored to disk for offline processing.  
Offline, all branch trace samples were sorted to 
count the number of times each branch trace path 
was executed. 

 
4 Execution Path Analysis for Different 

Input Sets 

As we stated earlier, even if a program has similar 
procedure coverage and IPC numbers for different 
input data sets, the execution paths exercised by 
the different input sets may be different. If 
different execution paths are exercised under 
different input sets, using one input set may not 
reliably predict the performance of other runs. For 
the same reason, aggressive PBO based on one 
input set may not be effective for other runs. 

We use the IPT tool described in Section 3 to 
study the frequent execution paths for each 
program under different input sets. We first select 

the top three frequently executed paths from the 
reference input runs. For each path, we report its 
percentage in the total sampled paths. For 
example, as shown in Figure 2, the number 1 path 
of Gzip accounts for 27.69% of total sampled 
paths. We also report their respective percentage 
for test and train input runs. The number 1 path 
selected from the reference run of Gzip accounts 
for only 0.26% from all the sampled paths for the 
test run, and 20.71% for the train input. 

Figure 2 shows that the top three paths of Gcc 
using reference input account for about 30% of 
execution time. This seems to contradict with the 
common sense that Gcc tends to have a very flat 
profile. The hot execution paths come from the 
memcpy and the memset library routines. These 
two routines also account for 30% of execution 
time on both Pentium-III based and Sun Ultra 
SparcIIe based systems, using gprof with 
reference input.  

In Figure 2, we can see that some important 
execution paths for the reference runs are 
insignificant for the train or the test runs. From the 
high-level comparisons in Section 2, we may 
believe Crafty, Gcc and Gap can reliably take 
advantage of reduced input data sets. However, 
Figure 2 shows that there are substantial 
variations on the relative importance of the 
frequently executed paths for these three 
programs. 

 

Figure 2. Comparison of frequent execution paths using different input sets
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Readers may wonder how important the relative 
order and their respective weight for those 
frequently executed paths are. For example, if for 
training input, path-1 accounts for 40%, and path-
2 accounts for 10% of the execution time, and if 
the distribution becomes path-1, 10% and path-2, 
40% for the reference input, would it make a big 
difference in PBO optimization? The answer 
depends on how the profile is actually used in 
optimization. If the optimizer uses the profiles to 
select all important paths, the relative order may 
not matter much. Eventually, both path-1 and 
path-2 will be selected and optimized. However, if 
PBO takes weight into account, it may decide to 
optimize only the number 1 path (due to compile 
time consideration), the outcome could be very 
different. Furthermore, when using small input 
sets for performance projection in simulations, the 
relative weight of different execution paths do 
make a difference. 

The compiler may choose to take the top 80% of 
execution paths of the profile as optimization 
candidates. We are interested to know how much 
execution time these selected candidates may 
cover the run time of the full reference input run. 
Table 3 shows the possible coverage. For 
example, if we take the top 90% (accumulative) of 
execution paths from the profile collected with the 
Test input on Gzip, these paths may cover only 
28.5% of the run time for the reference input run. 
In Table 3, we can see more than half of the 
benchmarks have very poor coverage if Test 
profile is used. In general, profiles using train 
input sets have better coverage than the test input 
sets. 
 
Table 3. Coverage of execution paths using one input run to predict the other
CPU Train Vs Ref Test Vs Ref Test Vs Train

50% 80% 90% 50% 80% 90% 50% 80% 90%
Gzip 59.55 76.82 89.32 16.21 22.77 28.05 28.11 39.28 44.08
Vpr 48.01 64.89 69.89 47.01 80.80 92.06 65.70 91.10 96.09
GCC 69.69 85.99 91.32 76.65 88.70 91.59 64.46 84.08 88.77
MCF 66.16 91.72 96.59 2.83 18.79 18.86 9.11 26.18 26.69
Crafty 34.17 51.70 59.33 26.45 38.55 44.38 36.74 54.85 60.03
Parser 50.93 81.19 90.32 27.79 76.62 89.39 26.20 77.57 89.53
Eon 47.82 76.93 88.82 48.84 76.76 84.97 51.83 81.15 89.61
Perl 47.25 68.32 76.14 - - - - - -
Gap 34.96 67.09 75.70 34.56 42.78 52.76 39.93 73.32 82.84
Vortex 41.40 80.61 89.03 63.21 84.17 91.66 44.99 75.00 87.03
Bzip2 26.99 52.24 72.07 26.99 44.59 56.58 36.41 69.16 82.02
Twolf 45.19 79.34 90.44 42.07 71.71 79.25 45.03 71.58 77.64  
 

5 Comparison of Frequent Execution 
Paths for Data Cache misses   

 
5.1 Path coverage analysis 
 
Figure 3 compares frequent paths leading to data 
cache misses. For programs without many data 
cache misses, it is not important to study such 
paths. However, since many SPEC2000int 
programs have a high D1-cache miss rate running 
on Itanium, it is important to understand whether 
such paths can be predicted using profiles 
generated from smaller input data sets. Figure 3 
does not contain all the programs-- some 
programs with insufficient data cache miss 
samples were not included. 
 

Figure 3 shows variations of such execution paths 
are far greater than the variations in Figure 2. For 
example, the path that accounts for the highest 
data cache misses in Vortex (responsible for 
61.85% of D1-cache misses) does not even show 
up in the train input run (it covers 0.0% of 
sampled execution paths for data cache misses). 
Figure 3 shows that the test input is almost useless 
in predicting frequent D-cache miss paths except 
for Crafty. The train input can be used to predict 
data cache miss paths for Vpr and Parser. It may 
also capture frequent data cache miss paths for 
Gcc, Mcf, with substantially different weights on 
the paths. Train inputs predict data cache miss 
paths poorly for Gap, Vortex and Bzip2. 

Figure 3. Comparison of frequent execution paths leading to data 
cache misses using different input sets
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Table 4 shows the similarity of the top branch 
paths leading up to D-cache misses for the 
different input sets. The execution path coverage 
in Table 4 is in general lower than the coverage in 
Table 3. In particular, if the threshold is 50%, the 
prediction for reference run can be very poor. 
Table 4 shows test data sets can capture many 
frequent execution paths leading to data cache 
misses for Parser. However, from Figure 3, we 
have observed that the top three paths for data 
cache misses in Parser do not stand out during test 
data set runs. This shows a difference of using test 
data sets for PBO and for reducing simulation 
time. If the PBO compiler takes 90% of observed 
paths from one run to optimize for the other run, 
the relative weights of each path become less 
important. As long as the frequent executed paths 
are optimized, PBO has achieved its goal. 
However, the relative weights and order of such 
paths are important when simulation time is 
considered. 

Table 4. Coverage of execution paths leading to data cache misses using one input run to predict the other
D1 Train Vs Ref Test Vs Ref Test Vs Train

50% 80% 90% 50% 80% 90% 50% 80% 90%
Vpr 37.02 76.93 78.17 20.23 20.23 21.47 27.85 27.85 35.92
GCC 15.06 73.92 92.12 0.00 0.00 0.00 0.02 0.06 0.07
MCF 82.70 85.33 93.51 2.18 85.44 86.07 25.83 84.12 88.29
Crafty 36.72 66.81 79.64 36.72 59.29 68.14 40.09 74.36 83.36
Parser 54.07 82.56 91.85 60.83 81.10 88.29 58.38 81.37 88.37
Gap 17.96 55.21 70.06 16.35 20.80 43.53 38.01 71.69 81.24
Vortex 16.95 25.37 28.61 13.84 24.18 30.88 35.07 71.84 83.78
Bzip2 14.44 31.86 51.97 14.44 29.97 35.84 50.21 65.77 73.25  
 
5.2 Small Vs large input data sets 

From Table 4, we might conclude that for data 
cache profiling, using small input data sets may 
misrepresent the projected performance. It seems 
like the compiler should avoid using small input 
data sets to collect data cache miss profiles 
because reduced memory accesses are less likely 
to generate frequent data cache misses. However, 
the remaining questions are a) is it practical to use 
large input data sets to collect profiles for PBO, 
and b) Even if a large input data set is used for 
profiling, can it reliably identify execution paths 
to the data cache misses for the other input set. 
For question (a), we shall leave it to software 
vendors to decide how much profiling overhead 
they can tolerate. For question (b), we looked at 
the predictability of using one reference input to 
predict for future runs with different input sets. 

Note that in this case both input data sets are from 
reference sets, not from the small data sets. 

For those programs that incur frequent data cache 
misses on the Itanium and have multiple reference 
input files, we compare their most frequent paths 
leading to data cache misses in Figure 4. It shows 
that even if the full reference input is used to 
collect data cache miss path profiles, the variation 
is still large from one input to another. The 
number one execution path to data cache misses in 
Vortex account for 71.5% of all sampled paths 
when the input lendian1.raw is used. However, 
this path does not appear when input lendian2.raw 
and lendian3.raw are used. On the other hand, a 
path that accounts for 16% of the sampled paths 
for input lendian2.raw and lendian3.raw, 
contributes only 4% when lendian1.raw is used. 
Similar results can be found for Bzip2 and Gcc. 
Using different input sets, no matter whether they 
are reduced size or regular size, may not reliably 
predict the paths leading to data cache misses for 
Spec2000int benchmarks. 

Figure 4. Frequent execution paths to data cache misses 
comparison using different reference input files.
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6 Performance Impact of Different Profiles 

on Profile Based Optimization 

Although our study indicates one input set does 
not always accurately predict the program 
behavior for another, it is not necessarily a 
problem in PBO because a) the compiler may 
select a set of inputs with different behaviors to 
generate profiles; b) some PBO transformations 
are less aggressive so that they depend less on the 
execution path or memory access behavior. In this 
section, we evaluate the performance impact of 
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PBO based on profiles generated from the test, the 
train and the reference input sets. The experiment 
was conducted on the Itanium processor, where 
PBO is regarded as very important. 

We compiled Spec2000int programs, using the 
Intel C/C++ compiler, on the RedHat 7.1 Linux. 
We used the performance of programs compiled 
at O2 as the base. We then compiled our 
benchmarks using IPO (Inter-Procedural 
Optimization) and PGO (Profile Guided 
Optimization, in Intel’s term).  Note that PGO is 
the same as PBO, so we call it PBO here. When 
compiled with IPO/PBO, we use profiles collected 
from test, train and reference input sets. The 
performance relative to the base performance is 
reported in Table 5. All performance reported in 
Table 5 are relative to the base performance. As 
shown in Table 5, Gzip, Gap, Vortex, Bzip and 
Twolf can benefit from train profiles. This is no 
surprise; because Table 3 shows that train profiles 
cover the runtime of reference input better than 
test profiles on the aforementioned programs. 
Table 3 also shows that using profiles collected 
from reference inputs in PBO does not increase 
performance much. One thing worth noting is that 
the test profile of Mcf does not represent reference 
input at all. However, there is no performance 
difference for Mcf when more accurate profiles 
are used. This is because the performance of Mcf 
is dominated by several link-list chasing loops 
that have intensive data cache misses. Several 
existing effective PBO transformations would not 
improve those loops. However, if cache profile 
guided prefetching is implemented, using train 
profiles may expose such optimization 
opportunities. 

Table 5 shows PBO can benefit from better 
profiles. The performance gain from using better 
profiles is not very significant, except for Gzip, 
which could gain 10% of performance if the train 
profile is used instead of the test profile. The 
performance impact of different profiles is not as 
significant as we expected. This is because Vpr, 
Mcf, Parser, Gap, Vortex and Bzip suffer 
significantly from frequent data cache misses on 
Itanium. When the performance is dominated by 
data cache misses, non-cache related PBO would 
not change performance much. When cache 
profile guided optimizations are adopted by 

compilers, different profiles may have a higher 
impact on performance. 

 
7 Summary and Conclusion 

It has been a common practice to use smaller 
input sets to estimate the performance of a 
benchmark or to generate profiles for PBO. In this 
paper, we look at how reliable this approach is. 
We have studied the high level metrics such as 
IPC and procedure level profiles and the low level 
measurement such as execution paths exercised by 
various input sets on SPEC2000int programs.  

Our study indicates that the test input sets are not 
suitable to be used for simulation because they do 
not have an execution profile similar to the 
reference input runs. The train input is far better 
than the test data sets at maintaining similar 
profiles. However, there are significant 
differences between train profiles and reference 
profiles for Perl, Eon, Bzip2, and Vortex. We 
recommend cautiousness in using train input to 
project simulation performance for Vpr, Mcf, 
Gap, Gcc and Perl. We have observed significant 
variations in respective weights of those 
frequently executed paths using different input 
sets. Such relative weights could be critical when 
aggressive PBO is used.  Profiles from train input 
could be reliable when predicting branch 
directions for other runs, but they could be 
misleading if the relative weights are used to 
guide optimizations.  

Table 5. Performance of PBO on Itanium using different 
profiles 

Program IPO IPO+PBO 
(test) 

IPO+PBO 
(train) 

IPO+PBO 
(reference) 

164.gzip 1.07 1.19 1.31 1.29

175.vpr 1.15 1.19 1.19 1.19

181.mcf 1.03 1.04 1.03 1.03

186.crafty 1.25 1.29 1.3 1.32

197.parser 1.08 1.11 1.11 1.11

254.gap 1.08 1.2 1.25 1.28

255.vortex 1.1 1.3 1.36 1.35

256.bzip 1.18 1.15 1.17 1.18

300.twolf 1.05 1.1 1.14 1.15

Average 1.11 1.17 1.21 1.21
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A common practice has been adopted in PBO is to 
merge profiles from several different training 
input sets. However, most SPEC2000int programs 
have only one training input (only Perl and Eon 
have more than one training input files). In 
general, identifying representative small input sets 
for an application is not easy, even ISVs 
(Independent Software Vendors) have difficulties 
identifying representative sets. We have evaluated 
the impact of different profiles on PBO 
performance using the Itanium processor. While 
more accurate profiles lead to higher performance, 
the overall performance impact has not been 
shown to be very significant. Our study shows 
that smaller data sets do not predict frequent data 
cache miss paths in the reference input runs. We 
have also shown that data cache miss paths may 
not be predicted using a different reference input 
set. Since the profiled execution paths using small 
data sets often carry weights significantly 
different from paths in full runs, and since data 
cache miss paths are difficult to predict using 
different input sets, it would be a challenge to use 
profiles from small inputs to guide cache 
prefetching related optimizations. 
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