
Robert Enenkel, Allan MartinRobert Enenkel, Allan Martin
IBMIBM®® Toronto Lab Toronto Lab

Speeding Up Floating-Speeding Up Floating-
Point Division With In-Point Division With In-
lined Iterative Algorithmslined Iterative Algorithms

© Copyright IBM Corp. 2005

OutlineOutline

Hardware floating-point divisionHardware floating-point division
The case for software divisionThe case for software division
Software division algorithmsSoftware division algorithms
Special cases/tradeoffsSpecial cases/tradeoffs
Performance resultsPerformance results
Automatic generationAutomatic generation

© Copyright IBM Corp. 2005

Hardware DivisionHardware Division

PPC fdiv, fdivsPPC fdiv, fdivs
AdvantagesAdvantages
ƒ accurate (correctly rounded)accurate (correctly rounded)
ƒ handles exceptional cases (Inf, NaN)handles exceptional cases (Inf, NaN)
ƒ lower latency than SWlower latency than SW

DisadvantagesDisadvantages
ƒ occupies FPU completelyoccupies FPU completely
ƒ inhibits parallelisminhibits parallelism

© Copyright IBM Corp. 2005

Alternatives to HW divisionAlternatives to HW division

Vector librariesVector libraries
ƒ MASSMASS
ƒ higher overhead, greater speeduphigher overhead, greater speedup

In-lined software divisionIn-lined software division
ƒ low overhead, medium speeduplow overhead, medium speedup

© Copyright IBM Corp. 2005

Rationale for Software DivisionRationale for Software Division

Write SW division algorithm in terms of Write SW division algorithm in terms of
HW arithmetic instructionsHW arithmetic instructions
ƒ Newton's method or Taylor seriesNewton's method or Taylor series

Latency will be higher than HW divisionLatency will be higher than HW division
But...SW instructions can be interleaved, so But...SW instructions can be interleaved, so
throughput may be betterthroughput may be better
Requires enough independent instructions Requires enough independent instructions
to interleaveto interleave
ƒ loop of divisionsloop of divisions
ƒ other workother work

© Copyright IBM Corp. 2005

Newton's MethodNewton's Method

To find x such that f(x) = 0,To find x such that f(x) = 0,
Initial guess xInitial guess x00

xxn+1n+1 = x = xnn - f(x - f(xnn)/f'(x)/f'(xnn), n=0, 1, 2,...), n=0, 1, 2,...
Provided xProvided x00 is close enough is close enough
ƒ xxnn converges to x converges to x
ƒ It converges quadratically |xIt converges quadratically |xn+1n+1-x| < c|x-x| < c|xnn-x|^2-x|^2
ƒ Number of bits of accuracy doubles with each Number of bits of accuracy doubles with each

iterationiteration

© Copyright IBM Corp. 2005

Newton's Method Newton's Method

© Copyright IBM Corp. 2005

Newton Iteration for DivisionNewton Iteration for Division

For 1/b, let f(x) = 1/x - bFor 1/b, let f(x) = 1/x - b
For a/b, use a*(1/b) or f(x) = a/x - bFor a/b, use a*(1/b) or f(x) = a/x - b
Algorithm for 1/bAlgorithm for 1/b
ƒ xx00 ~ 1/b initial guess ~ 1/b initial guess
ƒ ee00 = 1 - b*y = 1 - b*y00

ƒ xx11 = x = x00 + e + e00*x*x00

ƒ ee11 = e = e00*e*e00

ƒ xx22 = x = x11 + e + e11*x*x11

ƒ etc...etc...

© Copyright IBM Corp. 2005

How Many Iterations Needed?How Many Iterations Needed?
Power5 reciprocal estimate instructionsPower5 reciprocal estimate instructions
ƒ FRES (single precision), FRE (double prec.)FRES (single precision), FRE (double prec.)
ƒ |relative error| <= 2^(-8)|relative error| <= 2^(-8)

Floating-point precisionFloating-point precision
ƒ single:single: 24 bits24 bits
ƒ double:double: 53 bits53 bits

Newton iterationsNewton iterations
ƒ error: 2^(-16), 2^(-32), 2^(-64), 2^(-128)error: 2^(-16), 2^(-32), 2^(-64), 2^(-128)
ƒ single: single: 2 iterations for 1 ulp2 iterations for 1 ulp
ƒ double:double: 3 iterations for 1 ulp3 iterations for 1 ulp
ƒ +1 iteration for correct rounding (0.5 ulps)+1 iteration for correct rounding (0.5 ulps)

© Copyright IBM Corp. 2005

Taylor Series for ReciprocalTaylor Series for Reciprocal
xx00 ~ 1/b initial guess ~ 1/b initial guess
e = 1 - b xe = 1 - b x00

1/b = x1/b = x00/(b x/(b x00) = x) = x00 (1/(1-e)) (1/(1-e))
 = x = x00 (1 + e + e^2 + e^3 + e^4 + ...) (1 + e + e^2 + e^3 + e^4 + ...)
Algorithm (6 terms)Algorithm (6 terms)
ƒ e = 1 - d*xe = 1 - d*x00

ƒ tt11 = 0.5 + e * e = 0.5 + e * e
ƒ qq11 = x = x00 + x + x00 * e * e
ƒ tt22 = 0.75 + t = 0.75 + t11*t*t11

ƒ tt33 = q = q11*e*e
ƒ qq22 = x = x00 + t + t22*t*t33

© Copyright IBM Corp. 2005

Speed/Accuracy tradeoffSpeed/Accuracy tradeoff

IBM compilers have -qstrict/-qnostrictIBM compilers have -qstrict/-qnostrict
-qstrict: SW result should match HW -qstrict: SW result should match HW
division exactlydivision exactly
-qnostrict: SW result may be slightly less -qnostrict: SW result may be slightly less
accurate for speedaccurate for speed

© Copyright IBM Corp. 2005

ExceptionsExceptions

Even when a/b is representable...Even when a/b is representable...
1/b may underflow1/b may underflow
ƒ a ~ b ~ huge, a/b ~ 1, 1/b denormalizeda ~ b ~ huge, a/b ~ 1, 1/b denormalized
ƒ Causes loss of accuracyCauses loss of accuracy

1/b may overflow1/b may overflow
ƒ a, b denormalized, a/b ~ 1, 1/b = Infa, b denormalized, a/b ~ 1, 1/b = Inf
ƒ Causes SW algorithm to produce NaNCauses SW algorithm to produce NaN

Handle with tests in algorithmHandle with tests in algorithm
ƒ Use HW divide for exceptional casesUse HW divide for exceptional cases

© Copyright IBM Corp. 2005

Algorithm variationsAlgorithm variations

User callable built-in functionsUser callable built-in functions
ƒ swdiv(a,b): double precision, checkingswdiv(a,b): double precision, checking
ƒ swdivs(a,b): single precision, checkingswdivs(a,b): single precision, checking
ƒ swdiv_nochk(a,b): double, non-checkingswdiv_nochk(a,b): double, non-checking
ƒ swdivs_nochk(a,b): single, non-checkingswdivs_nochk(a,b): single, non-checking

Accuracy of swdiv, swdiv_nochk depends on Accuracy of swdiv, swdiv_nochk depends on
-qstrict/-qnostrict-qstrict/-qnostrict
_nochk versions faster but have argument _nochk versions faster but have argument
restrictionsrestrictions

© Copyright IBM Corp. 2005

Accuracy and PerformanceAccuracy and Performance
Power5
speedup ratio

Power4
 speedup ratio

Power5
ulps max error

Power4
ulps max error

swdivs 1.07 1.05 0.5 0.5

swdivs_nochk 1.46 1.28 0.5 0.5

swdiv strict 1.05 0.5

swdiv nostrict 1.50 1.5

swdiv_nochk
 strict

1.51 0.5

swdiv_nochk
 nostrict

1.77 1.5

© Copyright IBM Corp. 2005

Automatic Generation of Automatic Generation of
Software DivisionSoftware Division
The swdivs and swdiv algorithms can also The swdivs and swdiv algorithms can also
be automatically generated by the compilerbe automatically generated by the compiler
Compiler can detect situations where Compiler can detect situations where
throughput is more important than latencythroughput is more important than latency

© Copyright IBM Corp. 2005

Automatic Generation of Automatic Generation of
Software DivisionSoftware Division
In straight-line code, we use a heuristic that In straight-line code, we use a heuristic that
calculates how much FP can be executed in calculates how much FP can be executed in
parallelparallel
ƒ independent instructions are good, especially independent instructions are good, especially

other dividesother divides
ƒ dependent instructions are bad (they increase dependent instructions are bad (they increase

latency)latency)

© Copyright IBM Corp. 2005

Automatic Generation of Automatic Generation of
Software DivisionSoftware Division
In modulo scheduled loops software-divide In modulo scheduled loops software-divide
code can be pipelined, interleaving multiple code can be pipelined, interleaving multiple
iterationsiterations
Divides are expanded if divide does not Divides are expanded if divide does not
appear in a recurrence (cyclic data-appear in a recurrence (cyclic data-
dependence)dependence)

© Copyright IBM Corp. 2005

SummarySummary

Software divide algorithmsSoftware divide algorithms
ƒ user callableuser callable
ƒ compiler generatedcompiler generated

Loops of dividesLoops of divides
ƒ up to 1.77x speedupup to 1.77x speedup

UMT2K benchmarkUMT2K benchmark
ƒ 1.19x speedup1.19x speedup

