Speeding Up FloatingPoint Division With Inlined Iterative Algorithms

Robert Enenkel, Allan Martin IBM® Toronto Lab

Outline

-Hardware floating-point division
-The case for software division
-Software division algorithms
-Special cases/tradeoffs
-Performance results
-Automatic generation

Hardware Division

-PPC fdiv, fdivs
-Advantages
f accurate (correctly rounded)
f handles exceptional cases (Inf, NaN)
f lower latency than SW
-Disadvantages
f occupies FPU completely
f inhibits parallelism
© Copyright IBM Corp. 2005

Alternatives to HW division

-Vector libraries
f MASS
f higher overhead, greater speedup
-In-lined software division
f low overhead, medium speedup

Rationale for Sofitware Division

-Write SW division algorithm in terms of HW arithmetic instructions
f Newton's method or Taylor series
-Latency will be higher than HW division
-But...SW instructions can be interleaved, so throughput may be better
-Requires enough independent instructions to interleave
f loop of divisions
f other work

Newton's Method

-To find x such that $\mathrm{f}(\mathrm{x})=0$,
-Initial guess x 0
${ }^{-X_{n+1}}=\mathbf{x}_{\mathrm{n}}-\mathrm{f}\left(\mathbf{x}_{\mathrm{n}}\right) / \mathrm{f}^{\mathbf{\prime}}\left(\mathbf{x}_{\mathrm{n}}\right), \mathrm{n}=\mathbf{0}, \mathbf{1 , 2 , \ldots}$
${ }^{\square}$ Provided x_{0} is close enough
$f \mathrm{X}_{\mathrm{n}}$ converges to x
f It converges quadratically $\left|\mathbf{x}_{n+1}-\mathbf{x}\right|<\mathrm{c}\left|\mathbf{x}_{n}-\mathrm{x}\right|^{\wedge} \mathbf{2}$
f Number of bits of accuracy doubles with each iteration

Newton's Method

© Copyright IBM Corp. 2005

Newton Iteration for Division

-For $1 / b, \operatorname{let} f(x)=1 / x-b$
-For a / b, use $a^{* *}(1 / b)$ or $f(x)=a / x-b$
-Algorithm for 1/b
$f \times 0 \sim 1 / b$ initial guess
$f \mathrm{e}_{0}=1-\mathrm{b}^{*} \mathrm{y}_{0}$
$f_{\mathrm{x}}=\mathbf{x} 0+\mathrm{e}_{0}{ }^{*} \mathbf{x} \mathbf{0}$
$f \mathrm{e}_{1}=\mathrm{e} \mathbf{o}^{*} \mathrm{e} 0$
$f \mathbf{x}_{2}=\mathbf{x}_{1}+\mathrm{e}_{1}{ }^{*} \mathbf{x}_{1}$
f etc...

How Many Iterations Needed?

-Power5 reciprocal estimate instructions f FRES (single precision), FRE (double prec.) f |relative error| <= 2^(-8)
-Floating-point precision
f single: 24 bits
f double: 53 bits

- Newton iterations
f error: $2^{\wedge}(-16), 2^{\wedge}(-32), 2^{\wedge}(-64), 2^{\wedge}(-128)$
f single: $\quad \mathbf{2}$ iterations for $\mathbf{1 u l p}$
f double: $\mathbf{3}$ iterations for $\mathbf{1 u l p}$
$f+1$ iteration for correct roundfing (0.5^{2} Hfips $)^{305}$

Taylor Series for Reciprocal

-x0 $\sim 1 / b$ initial guess

- $\mathrm{e}=1$ - b x 0
$-1 / b=x 0 /(b \mathbf{x} 0)=x 0(1 /(1-\mathrm{e}))$
$=\mathrm{x} 0\left(1+\mathrm{e}+\mathrm{e}^{\wedge} \mathbf{2}+\mathrm{e}^{\wedge} 3+\mathrm{e}^{\wedge} 4+\ldots\right)$
-Algorithm (6 terms)

$$
\begin{aligned}
& f \mathbf{e}=1-\mathrm{d}^{*} \mathbf{x} \mathbf{0} \\
& f \mathrm{t}_{1}=0.5+\mathrm{e} \text { * } \mathrm{e} \\
& f \mathbf{q}_{1}=\mathbf{x} 0+\mathbf{x}_{0}{ }^{*} \mathbf{e} \\
& f \mathbf{t}_{\mathbf{2}}=\mathbf{0 . 7 5}+\mathbf{t}_{1}{ }^{*} \mathbf{t}_{1} \\
& f \mathrm{t}_{3}=\mathbf{q} \mathbf{1}^{*} \mathbf{e} \\
& f \mathbf{q}_{2}=\mathbf{x} 0+\mathrm{t}_{2}{ }^{*} \mathrm{t}_{3}
\end{aligned}
$$

Speed/Accuracy tradeoff

-IBM compilers have -qstrict/-qnostrict
--qstrict: SW result should match HW division exactly
--qnostrict: SW result may be slightly less accurate for speed

Exceptions

-Even when a/b is representable...
-1/b may underflow
$f \mathbf{a} \sim \mathbf{b} \sim$ huge, $\mathbf{a} / \mathbf{b} \sim \mathbf{1}, \mathbf{1 / b}$ denormalized f Causes loss of accuracy
-1/b may overflow
$f \mathbf{a}, \mathbf{b}$ denormalized, $\mathbf{a} / \mathbf{b} \sim \mathbf{1}, \mathbf{1 / b}=\mathbf{I n f}$
f Causes SW algorithm to produce NaN
-Handle with tests in algorithm f Use HW divide for exceptional cases

Algorithm variations

-User callable built-in functions
f swdiv(a,b): double precision, checking f swdivs(a,b): single precision, checking f swdiv_nochk(a,b): double, non-checking f swdivs_nochk(a,b): single, non-checking
-Accuracy of swdiv, swdiv_nochk depends on -qstrict/-qnostrict
"_nochk versions faster but have argument restrictions

Accuracy and Performance

	Power5 speedup ratio	Power4 speedup ratio	Power5 ulps max error	Power4 ulps max error
swdivs	1.07	1.05	0.5	0.5
swdivs_nochk	1.46	1.28	0.5	0.5
swdiv strict	1.05		0.5	
swdiv nostrict	1.50		1.5	
swdiv_nochk strict	1.51		0.5	
swdiv_nochk nostrict	1.77		1.5	

Automatic Generation of Software Division

-The swdivs and swdiv algorithms can also be automatically generated by the compiler
-Compiler can detect situations where throughput is more important than latency

Automatic Generation of Software Division

-In straight-line code, we use a heuristic that calculates how much FP can be executed in parallel
f independent instructions are good, especially other divides
f dependent instructions are bad (they increase latency)

Automatic Generation of Software Division

-In modulo scheduled loops software-divide code can be pipelined, interleaving multiple iterations
-Divides are expanded if divide does not appear in a recurrence (cyclic datadependence)

Summary

-Software divide algorithms f user callable
f compiler generated
-Loops of divides
f up to 1.77x speedup
-UMT2K benchmark
f 1.19x speedup

