Speeding Up Floating-Point Division With Inlined Iterative Algorithms

Robert Enenkel, Allan Martin IBM® Toronto Lab

Outline

Hardware floating-point division
The case for software division
Software division algorithms
Special cases/tradeoffs
Performance results
Automatic generation

Hardware Division

- PPC fdiv, fdivs
- Advantages
 - f accurate (correctly rounded)
 - f handles exceptional cases (Inf, NaN)
 - f lower latency than SW
- Disadvantages
 - f occupies FPU completely
 - f inhibits parallelism

Alternatives to HW division

Vector libraries

- f MASS
- f higher overhead, greater speedup
- In-lined software division
 - f low overhead, medium speedup

Rationale for Software Division

- Write SW division algorithm in terms of **HW** arithmetic instructions f Newton's method or Taylor series Latency will be higher than HW division But...SW instructions can be interleaved, so throughput may be better Requires enough independent instructions to interleave
 - f loop of divisions
 - f other work

Newton's Method

- •To find x such that f(x) = 0,
- Initial guess x0
- $x_{n+1} = x_n f(x_n)/f'(x_n), n=0, 1, 2,...$
- Provided x₀ is close enough
 - f xn converges to x
 - f It converges quadratically $|x_{n+1}-x| < c|x_n-x|^2$
 - f Number of bits of accuracy doubles with each iteration

Newton's Method

Newton Iteration for Division

•For 1/b, let f(x) = 1/x - b•For a/b, use $a^{(1/b)}$ or f(x) = a/x - b•Algorithm for 1/b $f x_0 \sim 1/b$ initial guess $f e_0 = 1 - b^* y_0$ $f x_1 = x_0 + e_0 x_0$ $f e_1 = e_0 * e_0$ $f \mathbf{x}_2 = \mathbf{x}_1 + \mathbf{e}_1 \mathbf{x}_1$ **f** etc...

How Many Iterations Needed?

Power5 reciprocal estimate instructions *f* FRES (single precision), FRE (double prec.) f |relative error| $\leq 2^{(-8)}$ Floating-point precision f single: 24 bits f double: 53 bits Newton iterations f error: $2^{(-16)}$, $2^{(-32)}$, $2^{(-64)}$, $2^{(-128)}$ f single: 2 iterations for 1 ulp f double: 3 iterations for 1 ulp f + 1 iteration for correct rounding (0.5 ups)²⁰⁰⁵

Taylor Series for Reciprocal

- **x**₀ ~ 1/b initial guess
- $\mathbf{e} = \mathbf{1} \mathbf{b} \mathbf{x}_0$
- $1/b = x_0/(b x_0) = x_0 (1/(1-e))$ = x_0 (1 + e + e^2 + e^3 + e^4 + ...)
- Algorithm (6 terms)
 - $f e = 1 d^*x_0$
 - $f t_1 = 0.5 + e * e$
 - $f q_1 = x_0 + x_0 * e$
 - $f t_2 = 0.75 + t_1 * t_1$
 - f t₃ = q₁*e
 - $f q_2 = x_0 + t_2 * t_3$

Speed/Accuracy tradeoff

IBM compilers have -qstrict/-qnostrict
-qstrict: SW result should match HW division exactly
-qnostrict: SW result may be slightly less accurate for speed

Exceptions

Even when a/b is representable... 1/b may underflow $f a \sim b \sim huge$, $a/b \sim 1$, 1/b denormalized f Causes loss of accuracy 1/b may overflow f a, b denormalized, $a/b \sim 1$, 1/b = Inff Causes SW algorithm to produce NaN Handle with tests in algorithm f Use HW divide for exceptional cases © Copyright IBM Corp. 2005

Algorithm variations

User callable built-in functions f swdiv(a,b): double precision, checking f swdivs(a,b): single precision, checking f swdiv nochk(a,b): double, non-checking f swdivs nochk(a,b): single, non-checking Accuracy of swdiv, swdiv nochk depends on -qstrict/-qnostrict

nochk versions faster but have argument restrictions

Accuracy and Performance

	Power5 speedup ratio	Power4 speedup ratio		Power4 ulps max error
swdivs	1.07		0.5	
swdivs_nochk	1.46	1.28	0.5	0.5
swdiv strict	1.05		0.5	
swdiv nostrict	1.50		1.5	
swdiv_nochk strict	1.51		0.5	
swdiv_nochk nostrict	1.77		1.5	

Automatic Generation of Software Division

The swdivs and swdiv algorithms can also be automatically generated by the compiler
Compiler can detect situations where throughput is more important than latency

Automatic Generation of Software Division

In straight-line code, we use a heuristic that calculates how much FP can be executed in parallel

- f independent instructions are good, especially other divides
- f dependent instructions are bad (they increase latency)

Automatic Generation of Software Division

- In modulo scheduled loops software-divide code can be pipelined, interleaving multiple iterations
- Divides are expanded if divide does not appear in a recurrence (cyclic datadependence)

Summary

Software divide algorithms f user callable f compiler generated Loops of divides f up to 1.77x speedup •UMT2K benchmark f 1.19x speedup