
A Probabilistic Pointer Analysis
for Speculative Optimization

A Probabilistic Pointer Analysis
for Speculative Optimization

Jeff DaSilva
Greg Steffan
Jeff DaSilva
Greg Steffan

Electrical and Computer Engineering
University of Toronto
Toronto, ON, Canada
Oct 17th, 2005

Electrical and Computer Engineering
University of Toronto
Toronto, ON, Canada
Oct 17th, 2005

2University Of Toronto

Pointers Impede OptimizationPointers Impede Optimization

Many optimizations come to a halt when
they encounter an ambiguous pointer

foo(int *a) {
…
while(…)
{

x = *a;
…

}
}

Loop Invariant
Code Motion

Parallelize

Pointer Analysis is Important

3University Of Toronto

Pointer AnalysisPointer Analysis

Do pointers a and b point to the same location?
Do this for every pair of pointers at every program point

*a = ~
~ = *b

*a = ~ ~ = *b

Definitely Not

Definitely

Maybe

Pointer
Analysis

optimize

4University Of Toronto

Pointer analysisPointer analysis is a difficult problem
scalablescalable and overly conservativeoverly conservative

failsfails--toto--scalescale and accurateaccurate

Ambiguous pointers will persist
even when using the most accurate accurate of algorithms

output is often unavoidable

What can be done with ?

Pointer Analysis is DifficultPointer Analysis is Difficult

Maybe

Maybe

oror

5University Of Toronto

Lets SpeculateLets Speculate

Compilers make conservativeconservative assumptions
They must alwaysalways preserve program correctness

“It's easier to apologize than ask for permission.”
Author: Anonymous

Implement a potentially unsafeunsafe optimization
VerifyVerify and RecoverRecover if necessary

6University Of Toronto

Speculation applied to PointersSpeculation applied to Pointers

int *a, x;
…
while(…)
{

x = *a;
…

}

a is probably
loop invariant

int *a, x, tmp;
…
tmp = *a;
while(…)
{

x = tmp;
…

}
<verify, recover?><verify, recover?>

7University Of Toronto

Data Speculative OptimizationsData Speculative Optimizations
The EPIC Instruction set

Explicit support for speculative load/store instructions (eg. Itanium)

Speculative compiler transformations
Dead store elimination, redundancy elimination, copy propagation,
strength reduction, register promotion

Thread-level speculation (TLS)
Hardware support for tracking speculative parallel threads

Transactional programming
Rollback support for aborted transactions

When to speculate? Techniques rely on profiling

8University Of Toronto

Quantitative Output RequiredQuantitative Output Required

Estimate the potential benefit for speculating:

SPECULATE?

ExpectedExpected
speedupspeedup
(if successful)(if successful)

RecoveryRecovery
penaltypenalty

(if unsuccessful)(if unsuccessful)
OverheadOverhead
for verifyfor verify

Probabilistic output neededMaybe

Maybe

Maybe

ProbabilityProbability
of successof success

9University Of Toronto

Conventional Pointer AnalysisConventional Pointer Analysis

Do pointers a and b point to the same location?
Do this for every pair of pointers at every program point

*a = ~
~ = *b

*a = ~ ~ = *b

Definitely Not

Definitely

Maybe

Pointer
Analysis

optimizeoptimize

10University Of Toronto

*a = ~
~ = *b

*a = ~ ~ = *b

optimize

Probabilistic Pointer Analysis Probabilistic Pointer Analysis (PPA)(PPA)

PPA
pp = 0.0
pp = 1.0

0.0 < pp < 1.0

With what probability pp, do pointers a and b point
to the same location?

Do this for every pair of pointers at every program point

optimize

11University Of Toronto

PPA Research ObjectivesPPA Research Objectives
Accurate points-to probability information

at every static pointer dereference

Scalable analysis
Goal: The entire SPEC integer benchmark suite

Understand scalabilityscalability/accuracyaccuracy tradeoff
through flexible static memory model

Improve our understanding of programs

12University Of Toronto

Algorithm Design ChoicesAlgorithm Design Choices
FixedFixed

Bottom Up / Top Down Approach
LinearLinear transfer functions (for scalability)

One-level contextcontext and flowflow sensitive
FlexibleFlexible

Edge profiling (or static prediction)

Safe (or unsafe)

Field sensitive (or field insensitive)

13University Of Toronto

Traditional PointsTraditional Points--To GraphTo Graph
int x, y, z, *b = &x;
void foo(int *a) {

if(…)
b = &y;

if(…)
a = &z;

else(…)
a = b;

while(…) {
x = *a;
…

}
}

y UND

a

z

b

x

= pointer

= pointed at

Definitely

Maybe

=

=

Results are inconclusive

14University Of Toronto

Probabilistic PointsProbabilistic Points--To GraphTo Graph
int x, y, z, *b = &x;
void foo(int *a) {

if(…)
b = &y;

if(…)
a = &z;

else(…)
a = b;

while(…) {
x = *a;
…

}
}

y UND

a

z

b

x

0.10.1 takentaken((edgeedge profileprofile))

0.20.2 takentaken((edgeedge profileprofile))

= pointer

= pointed at

p = 1.0

0.0<p< 1.0

=

=p

0.10.9
0.72

0.08

0.2

Results provide more information

15University Of Toronto

LOLLOLLLIPIPOOPP
Our PPA AlgorithmOur PPA Algorithm

LLinear inear
OOne ne --
LLevel evel
IInterprocedural nterprocedural
PProbabilistic robabilistic
PPointer Analysisointer Analysis

16University Of Toronto

PointsPoints--To MatrixTo Matrix

Location Sets

Area
Of

Interest

I

1

2

…

N-1

N

…

M-1 M

All matrix rows sum to 1.0

Location Sets

Pointer Sets

17University Of Toronto

PointsPoints--To Matrix ExampleTo Matrix Example

y UNDzx

y

UND

z

x

a

b

0.72 0.08 0.20
0.90 0.10

1.0

1.0

1.0

1.0

Iy UND

a

z

b

x

0.10.9
0.72

0.08

0.2

18University Of Toronto

Solving for a PointsSolving for a Points--To MatrixTo Matrix

I
Any InstructionAny Instruction

I

Points-To
Matrix In

Points-To
Matrix Out

19University Of Toronto

The Fundamental PPA EquationThe Fundamental PPA Equation

Points-To
Matrix Out

Points-To
Matrix In

Transformation
Matrix=

This can be applied to any instruction (incl. function calls)

20University Of Toronto

Transformation MatrixTransformation Matrix

1

2

N-1 N

ø I

1 2 3 …

…

N-1

N

…

Area of Interest

Location SetsPointer Sets

All matrix rows sum to 1.0

Location Sets

Pointer Sets

21University Of Toronto

Transformation Matrix ExampleTransformation Matrix Example

y

UND

z

x

a

b

y UNDzxa b

1.0

1.0

1.0

1.0

1.0

1.0

S1:S1: a = &z;a = &z;

=TS1

22University Of Toronto

1.0

1.0

1.0

1.0

1.0
1.0

Example Example -- The PPA EquationThe PPA Equation
S1:S1: a = &z;a = &z;PTout = TS1 PTin

0.72 0.08 0.20
0.90 0.10

1.0

1.0

1.0

1.0

=PTout

23University Of Toronto

Example Example -- The PPA EquationThe PPA Equation

y UNDzx

y

UND

z

x

a

b

1.0
0.90 0.10

1.0

1.0

1.0

1.0

y UNDz

b

x

0.10.9

a

S1:S1: a = &z;a = &z;PTout = TS1 PTin

=PTout

24University Of Toronto

Combining Transformation MatricesCombining Transformation Matrices

I
Basic Block

S1: S1: InstrInstr

S2: S2: InstrInstr

S3: S3: InstrInstr

I

PTout TS1=

PTin

TS3 PTin

PTout = TBB

TS1

25University Of Toronto

Control flow Control flow -- if/elseif/else

YYXX

TX TY= +

p q

p q

p + q = 1.0

26University Of Toronto

Control flow Control flow -- loopsloops

TX=XX
N N

∑
=

U

Li
TY=

1
U-L+1

i
<L,U>

YY

Both operations can be implemented efficiently

<L,U> <min,max>

27University Of Toronto

Safe vs. Unsafe Safe vs. Unsafe
Pointer Assignment InstructionsPointer Assignment Instructions

Store Assignment*x = y

Load Assignmentx = *y

Copy Assignmentx = y

Address-of Assignmentx = &y
Safe?

28University Of Toronto

LOLLOLLLIPIPOOPP ImplementationImplementation

.spd

Edge
Profile

Results

SUIF Infrastructure

Static
Memory

Model

MATLAB
C Library

TF-Matrix
Collector

Points-To
Matrix

Propagator Stats

ICFGICFG SMMSMM BUBU TDTD .spx

29University Of Toronto

MeasuringMeasuring
LOLLOLLLIPIPOOPP’’s s

EfficiencyEfficiency and and AccuracyAccuracy

30University Of Toronto

SPEC2000 Benchmark DataSPEC2000 Benchmark Data

Experimental Framework: 3GHz P4 with 2GB of RAM

PPA Analysis Time

[Safe]
PPA Analysis Time

[Unsafe]
Matrix
Size N

LOCBenchmark

30.72 seconds273211402Parser

16.59 seconds261120469Twolf

9.33 seconds197617750Vpr

5.49 seconds191721297Crafty

0.71 seconds5638616Gzip

0.39 seconds3542429Mcf

0.3 seconds2514686Bzip2

50.04 seconds
20.64 seconds
10.34 seconds
5.51 seconds
0.77 seconds
0.61 seconds
0.3 seconds

5hour 10 min4210922225Gcc

44min 15seconds2092285221Perlbmk

54min 56seconds2588271766Gap

3min 59seconds1101867225Vortex

Still Running…
89min 43seconds
83min 38seconds
4min 56seconds

Scales to all of SPECint

31University Of Toronto

Comparison with Comparison with DasDas’’ss GOLFGOLF

YesNoProbabilistic

YesYesSafe

> 5 hours< 10 secondsAnalysis Time on GCC

ProfiledSolvedIndirect Calls

Modeled SomeModeled AllLibrary Calls

Callsite AllocCallsite AllocHeap Model

Turned OffNoField Sensitive

YesNoFlow Sensitive

One-levelOne-levelContext Sensitive

LOLLIPOPGOLF

32University Of Toronto

Comparison with DasComparison with Das’’s GOLFs GOLF
A

ve
ra

ge
 D

er
ef

er
en

ce
 S

iz
e

m
or

e
ac

cu
ra

te

LOLLIPOP is very AccurateAccurate (even without probability information)

14.8

3.3
7.7

1.2

11.9

21.9

59.3

3.3 1.8 2.6 1.1

80.1

6.7

18.5

6.1

0

10

20

30

40

50

60

70

80

90

100

go
m88

ks
im *g
cc

co
mpres

s li

ijp
eg perl

vo
rte

x

GOLF
LOLLIPOP

185.6

33University Of Toronto

Easy SPEC2000 BenchmarksEasy SPEC2000 Benchmarks

1.4
1.2

1.5
1.8

6.1

1.0
1.3

0

1

2

3

4

5

6

7

gzip vpr mcf crafty vortex bzip2 twolf

unsafe
safe
p > 0.001

A
ve

ra
ge

 D
er

ef
er

en
ce

 S
iz

e

m
or

e
ac

cu
ra

te

A one-level Analysis is often adequate (i.e. safe=unsafe)

34University Of Toronto

Challenging SPEC 95/2000 BenchmarksChallenging SPEC 95/2000 Benchmarks

42.5

89.0

143.8

80.1

6.7

18.5

0

20

40

60

80

100

120

140

parser perlbmk gap li ijpeg perl

unsafe
safe
p > 0.001

A
ve

ra
ge

 D
er

ef
er

en
ce

 S
iz

e

m
or

e
ac

cu
ra

te

Many improbable points-to relations can be pruned away

35University Of Toronto

Metric: Average Certainty Metric: Average Certainty

while(…)
{

x = *a;
…

}

{ (0.72,), (0.08,), (0.2,) }y zx

Σ(max probability value)

(num of loads & stores)
Avg Certainty =

Max probability value = 0.72

36University Of Toronto

SPEC2000 Average CertaintySPEC2000 Average Certainty

0.905
0.949 0.970

0.920 0.946 0.969

0.870

0.783

0.908
1.000

0.901

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

gz
ip vp
r

*g
cc mcf

cra
fty

pa
rse

r
pe

rlb
mk

ga
p

vo
rte

x
bz

ip2 tw
olf

Pr
ob

ab
ili

st
ic

 C
er

ta
in

ty

m
or

e
ac

cu
ra

te

On average, LOLLIPOP can predict a single likely points-to relation

37University Of Toronto

Conclusions and Future WorkConclusions and Future Work

LOLLOLLLIPIPOOPP
A novel PPA algorithm
Scales to SPECint 95/2000
As accurate as the most precise algorithms

Future Ongoing WorkFuture Ongoing Work
Measure the probabilistic accuracy
Optimize LOLLIPOP’s implementation
Apply PPA

Provides the key puzzle piece for a speculation compiler

38University Of Toronto

ReferencesReferences
Manuvir Das, Ben Liblit, Manuel Fahndrich, and Jakob Rehof. Estimating
the Impact of Scalable Pointer Analysis on Optimization. SAS 2001,
260-278.

Peng-Sheng Chen, Ming-Yu Hung, Yuan-Shin Hwang, Roy Dz-Ching Ju,
and Jenq Kuen Lee. Compiler support for speculative multithreading
architecture with probabilistic points-to analysis. PPOPP 2003, 25-36.

Jin Lin, Tong Chen, Wei-Chung Hsu, Peng-Chung Yew, Roy Dz-Ching Ju,
Tin-Fook Ngai and Sun Chan, A Compiler Framework for Speculative
Analysis and Optimizations. PLDI 2003, 289-299.

R.D. Ju, J. Collard, and K. Oukbir. Probabilistic Memory Disambiguation
and its Application to Data Speculation. SIGARCH Comput. Archit. News
27 1999, 27-30.

Manel Fernandez and Roger Espasa. Speculative Alias Analysis for
Executable Code. PACT 2002, 221-231.

