A Framework for Safe Automatic Data Reorganization

Shimin Cui (Speaker), Yaoqing Gao, Roch Archambault, Raul Silvera
IBM Toronto Software Lab

Peng Peers Zhao, Jose Nelson Amaral
University of Alberta

* Part of the work joint with Xipeng Shen and Chen Ding (University of Rochester)
Contents

- The memory wall problem

- Data reorganization framework
 - Data reshape analysis
 - Data reshape planning

- Performance evaluation

- Summary
The Memory Wall Problem

- Memory access latency is a “wall” to better performance
 - Speed of memory continues to lag behind the speed of processors.
- Memory hierarchy
 - Limited cache size and bandwidth limitation
 - Efficient utilization of cache is crucial for performance
- Domain – applications and benchmarks with large data sets.
Compiler Approaches

- Tolerate memory latency through buffering and pipelining data references.
 - Data Prefetching

- Reduce memory latency through locality optimizations.
 - Code transformations - modifying the actual algorithm by reordering computations.
 - Loop fusion
 - Loop distribution
 - Loop tiling/blocking
 - Loop interchange
 - Data reorganizations - Placing data in memory according to their access patterns.
Data Reorganization

- Data reorganization is a difficult problem.
 - NP problem, heuristics are needed
 - Safe, automatic techniques are necessary

- Data layout transformations
 - Data splitting
 - Fields reordering
 - Data interleaving
 - Data padding
 - Data coalescing
 - …
Data Reorganization Framework

- Inside TPO link time optimizations

Forward Data-Flow Analysis

Data Reshape Analyses

Whole-Program Data Reshape Planning

Data Reshaping Transformation

Backward Data-Flow Analysis
Data Reshape Analyses

- Safety and legality issues
 - Inter-procedural alias analysis
 - Pointer escape analysis
 - Global pointer analysis
 - Data shape analysis

- Profitability issues
 - Data affinity analysis
Inter-procedural Alias Analysis

- To ensure data reshaping correctness since compiler needs to modify all the affected references when it reshapes a data object and its aliases.
- Flow-insensitive alias analysis is sufficient for data reshaping [Steensgaard].
- Field sensitive alias analysis is necessary to trace and distinguish the alias relationships among different fields.

```c
char *pc;
struct A {
    char *f1;
    struct A *f2;
} *p1, *p2;
p1 = malloc(N * sizeof(A));
p2 = &(p1[i]);
p1[j].f1 = pc;
p1[k].f2 = &(p1[i]);
```
Data Shape Analysis

- Reshaping on data that has incompatible type is unsafe and is strictly avoided.

- Type compatibility analysis is integrated with the interprocedural alias analysis.
 - The interprocedural alias analysis keeps track of the type of each alias set.
 - The types of data in an alias set must be compatible in the whole program for safe data reshaping.

- Compatibility rules are enforced to check the access patterns.
 Two data types are compatible if
 - Two intrinsic data types are compatible if their data lengths are identical.
 - Two aggregated data structures are compatible if they have the same number of byte-level fields and their corresponding fields have the same offset and length.
 - Two arrays have compatible types if their element types are compatible, they have the same dimensions and the strides of corresponding dimensions are also identical.
 - Two pointers are of compatible types iff the data they point to have compatible types.
Lightweight Data Affinity Analysis
(Joint Work With Xipeng Shen and Chen Ding)

- To measure how closely a group of data are accessed together in a program region.

- Model affinity based on access frequency:
 - An access frequency vector $AFV(A)$ is used for each data to record all the access frequency in all the innermost loops in the program.
 - Unique data is identified based on alias analysis, and AFVs of their aliases are merged.
 - Two data have good affinity if their AFVs are similar:
 $$ affinity(A, B) = 1 - \sum_{i=1}^{N} |f_i(A) - f_i(B)|/(0.0001 + \sum_{i=1}^{N} (f_i(A) + f_i(B))) $$

 N - # of innermost loops, $f_i(A)$ – access frequency of A in i-th loop
 - Construct and partition data affinity graph to obtain all the affinity groups.
Data Reshaping Planning

- Based on the reshape analysis and affinity analysis, a plan is made how to reshape a data.
 - Array splitting
 - Data outlining
 - Data allocation merging
 - Data interleaving
 - …
Array Splitting

- Separate cold fields from hot fields to avoid bringing rarely accessed data into the cache in order to increase cache utilization.
 - A structure array is split into several contiguous arrays.
 - Fields are reordered based on affinity information for large data structure.
- Target to aggregate arrays that have consistent compatible access patterns.
- Three approaches:
 - Affinity-based splitting
 - Frequency-based splitting
 - Maximal data splitting
Array Splitting – Three Approaches

- Original data structure
 - hot (F0, F2, F3), affinity groups (F0, F3) (F2), (F1, F4)

- Original array [4]

- Affinity-based splitting

- Frequency-based splitting

- Maximal data splitting
Array Splitting - Static Arrays

```c
struct {
    double x;
    double y;
} a[1000];

void foo() {
    for (i=0; i<N; i++) {
        ...
        ...
    }
    ...
    for (i=0; i<M; i++) {
        ...
        ...
    }
}
```

```c
double ax[1000];
double ay[1000];

void foo() {
    for (i=0; i<N; i++) {
        ...
        ...
    }
    ...
    for (i=0; i<M; i++) {
        ...
        ...
    }
}
```
Array Splitting – Single-Instantiated Dynamic Arrays

typedef struct {
 double x;
 double y;
} S;
S *p;

void init () {
 p = malloc(sizeof(S)*N);
}

void foo() {
 for (i=0; i<N; i++) {
 ... = p[i].x ...;
 }
 ...
 for (i=0; i<N; i++) {
 ... = p[i].y ...;
 }
}

typedef struct {
 double x;
 double y;
} S;
void *p;
double *xbasep, *ybasep;

void init () {
 p = malloc(sizeof(S)*N);
 xbasep = p;
 ybasep = xbasep + sizeof(double)*N;
}

void foo() {
 for (i=0; i<N; i++) {
 ... = xbasep[i] ...;
 }
 ...
 for (i=0; i<N; i++) {
 ... = ybasep[i] ...;
 }
}
Array Splitting – Multiple-Instantiated Dynamic Arrays

- Runtime descriptor is introduced to handle the multiple instantiations.

```c
typedef struct {
    double x;
    double y;
} S;
S *p, *q;

void init (N) {
    p = malloc(sizeof(S)*N);
}

void bar() {
    init(N1);
    q = p;
    init(N2);
}

void foo() {
    for (i=0; i<N2; i++) {
        ... = p[i].x ...;
    }
    ...
    for (i=0; i<N1; i++) {
        ... = q[i].y ...;
    }
}
```

```c
typedef struct {
    double x;
    double y;
    void *basep;
    double *xbasep;
    double *ybasep;
} desc;
desc *p, *q;

void init (N) {
    p = malloc(sizeof(desc) + sizeof(S)*N);
    p->basep = p + sizeof(desc);
    p->xbasep = p->basep;
    p->ybasep = p->xbasep + sizeof(double)*N;
}

void bar() {
    init(N1);
    q = p;
    init(N2);
}

void foo() {
    for (i=0; i<N2; i++) {
        ... = p->xbasep[i] ...;
    }
    ...
    for (i=0; i<N1; i++) {
        ... = q->ybasep[i] ...;
    }
}
```
Data Outlining

- Separate cold fields from hot fields to avoid bringing rarely accessed data into the cache in order to increase cache utilization.
- Target to non-array data objects whose collection of hot fields are smaller than the cache block size.
- The outlined fields must be cold.
- No need to worry about single/multiple object instantiations.
Data Outlining Approach

- Original linked list element:

- Original linked list

- Frequency-based outlining

Flowchart illustrating the data outlining approach, including original linked list elements and frequency-based outlining.
Data Allocation Merging

- Flat multi-dimensional dynamic array into contiguous memory space to achieve better reference locality.
- Target to multi-dimensional dynamic arrays with (almost) rectangular shapes. Padding is needed for non-rectangular shaped multi-dimensional dynamic arrays.
- Facilitate loop locality transformation since indirect reference is replaced by array indexed reference.
- Runtime descriptor is also introduced to handle the multiple object instantiation cases.
Data Allocation Merging Approach

- Original two dimensional dynamic array **A

- After data allocation merging *A’
Data Allocation Merging – Dynamic Arrays

```c
float **A = (float **) malloc(N*sizeof(float *));
float **B = (float **) malloc(N*sizeof(float *));
float *C[N];

for (i = 0; i < N; i++) {
    A[i] = (float *) malloc(N*sizeof(float));
    B[i] = (float *) malloc(N*sizeof(float));
    C[i] = (float *) malloc(N*sizeof(float));
}

for (j = 0; j < n; j++)
    for (k = 0; k < n; k++)
        for (i = 0; i < n; i++)
            C[i][j] += A[i][k] * B[k][j];

// *(C[i]+j) += *(A+j*N+k) * *(B+k*N+j)
```

```
float *A = (float *) malloc(N*N*sizeof(float));
float *B = (float *) malloc(N*N*sizeof(float));
float *C = (float *) malloc(N*N*sizeof(float));

for (j = 0; j < N; j++)
    for (k = 0; k < N; k++)
        for (i = 0; i < N; i++)
            C[i][j] += A[i][k] * B[k][j];

// *(C[i]+j) += *(A+i*N+k) * *(B+k*N+j)
```
Comparison of Splitting Approaches

- Affinity-based splitting
- Frequency-based splitting
- Maximal data splitting

(Measured on power4 1.1GHz, AIX5.2)
SPEC2000 Performance Improvement
With Data Reorganizations

![Speedup Chart]

- **art**: 1.81
- **mcf**: 1.32
- **equake**: 1.24
- **ammp***: 1.12

- **power4 (1.1GHz)**
- **power5 (1.9GHz)**
SPEC2000 Performance Improvements With Data Reorganizations

![Graph showing SPEC2000 performance improvements with and without data reorganizations for different benchmarks and processors.](image-url)

- **art**: Run time (seconds) for different configurations.
- **mcf**, **equake**, **ammp**: Similar data for respective benchmarks.

- **power4** and **power5**: Processors considered.
- **no-data-reorganization** and **with-data-reorganizations**: Conditions evaluated.

The graph illustrates significant performance improvements with data reorganizations, especially noticeable in benchmarks such as **mcf** and **ammp** on **power5**.
Effect of Data Reorganizations
Reduction on DL1 misses

<table>
<thead>
<tr>
<th></th>
<th>art</th>
<th>mcf</th>
<th>equake</th>
<th>ammp</th>
</tr>
</thead>
<tbody>
<tr>
<td>no-data-reorganization</td>
<td>6.3</td>
<td>26</td>
<td>1.4</td>
<td>8.9</td>
</tr>
<tr>
<td>with-data-reorganization</td>
<td>1.9</td>
<td>25</td>
<td>0.95</td>
<td>8.1</td>
</tr>
</tbody>
</table>

DL1 miss rates (%)

<table>
<thead>
<tr>
<th></th>
<th>art</th>
<th>mcf</th>
<th>equake</th>
<th>ammp</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.95</td>
<td>5.4</td>
<td>0.19</td>
<td>5.5</td>
</tr>
<tr>
<td></td>
<td>0.65</td>
<td>5.8</td>
<td>0.26</td>
<td></td>
</tr>
</tbody>
</table>

DL1 misses (G)

(Measured on power4 1.1GHz, AIX5.2)
Effect of Data Reorganizations
Reduction on DL2 misses

DL2 miss rates (%)

- art: 17
- mcf: 14
- equake: 4.5
- ammp: 3.4

DL2 misses (G)

- art: 0.44
- mcf: 0.79
- equake: 3.4
- ammp: 13

(Measured on power4 1.1GHz, AIX5.2)
Summary

- A practical framework that guarantees safe automatic data reorganization.
 - Implemented in IBM XL compiler
- Impressive performance improvements on benchmarks and customer codes.
 - Four SPEC2000 benchmarks improved significantly.

Future work
- Improve the data shape analysis to capture more complex data access pattern
- Pursue more data reorganization techniques
Backups
Data Interleaving

- Group data with high affinity and put them together in memory
- Reduce the number of hardware streams and also reduce the cache conflicts
- Target to data in a program region with too many streams.

```c
double a[1000];
double b[1000];

for (i=0; i<N; i++) {
    ... = a[i] ...;
    ... = b[i] ...;
}
```

```c
struct {
    double x;
    double y;
} ab[1000];

for (i=0; i<N; i++) {
    ... = ab[i].x ...;
    ... = ab[i].y ...;
}
```
Data Padding and Alignment

- Array splitting
 - Inter array padding can be added between those new arrays for alignment (e.g., to ensure SIMD alignment), to avoid false sharing.
- Memory allocation merging
 - Intra array padding can be incorporated easily into the framework to avoid cache conflicts