
Architecture Cloning For PowerPC
Processors

Edwin Chan, Raul Silvera, Roch Archambault
edwinc@ca.ibm.com
IBM Toronto Lab
Oct 17th, 2005

Outline

Motivation

Implementation Details

Results

Scenario

Previously, only 2 solutions exist for the IBM XL Compiler to create an
executable compatible with multiple PowerPC processors:

– Generate generic instructions
• Unable to take advantage of the latest hardware features
• Suboptimal performance on all platforms

– Recompile the application for different architectures
• Recompilation takes a long time
• Adds building complexity, more support headaches, longer time to ship

– Example: ISV (Independent Software Vendor)

Our Approach
Architecture Cloning
– Introduced in the latest version of the XL compiler

– Allows the compiler to target more than one PowerPC processors

– Additional targets supported : Power4, Power5 and PPC970

– Generates different instructions optimized for each target

– Inserts runtime check in program to select the appropriate code path
according to the hardware platform

– To enable architecture cloning, one must compile with –qipa and specify
-qipa=clonearch=“target” on the link step

Outline

Motivation

Implementation Details

Results

How Architecture Cloning Works

Architecture Cloning is divided into 2 phases
– Analysis phase

– Transformation phase

Analysis Phase

Goal:
– Minimize the impact of architecture cloning on link time and executable size

by reducing the number of procedures to clone

Examines each node in call graph to eliminate candidates
– First, it identifies the procedures that cannot be cloned

• Ex. Procedures not compiled with –qipa, etc.

– Finally, avoid cloning unprofitable procedures
• Ex. Procedures marked as having low calling frequency in the call graph, etc.

How To Assist the Analysis

Users can instruct the compiler which procedures it should clone
or not clone
– With compiler suboptions -qipa=cloneproc=“procname” and

–qipa=nocloneproc=“procname”

– Helpful in cases where 10% of the code is being executed 90% of the time

When PDF (Profile-Directed Feedback) is used
– the calling frequency is known and thus more accurate

– More aggressive analysis is performed where it selects from the hottest
procedure until a threshold is reached

Transformation Phase

Inserts a platform detection routine at the program’s entry point

Performs procedure cloning on the candidates

Updates the call graph and inserts runtime checks in the program
for selecting the right path

Put the cloned procedures in a separate compilation unit

Insert Platform Detection Routine
For the generated binary to determine the platform at runtime

– Identify the entry point of the program from the call graph
– Insert a platform detection routine at the beginning of the entry point
– This routine obtain processor and OS information from the system
– The returned result is stored into a global variable to be used for the runtime

checks

Ex. int main() {
system_arch = xl_platform_detection()
..
if (system_arch == Pwr4)

foo@pwr4()
else

foo()
..

}

Procedure Cloning

Why create duplicate procedure copies?
– For TPO to apply different architectural-specific optimizations on each

copy
– For TOBEY Backend to generate different instructions and scheduling for

each copy

The call graph is traversed from top down to find the candidate
– remap the parameters and duplicate the body of the procedure
– add a suffix to the cloned procedure to indicate its target

Update Call Graph
Attempts to divide the call graph into
different sub-graphs

– one sub-graph contains the cloned
procedures

– the other sub-graph contains the original
procedures

In another words, the cloned callers
invoke the cloned procedure directly
instead of calling the original
procedure

The decision for selecting the code
path is moved as high as possible in
the call graph

Therefore less runtime checks are
inserted, and they are unlikely to be
placed in the hot procedures

Final Step of Transformation Phase
Put the cloned procedures in a separate compilation unit
– TPO applies architectural specific optimizations differently on those cloned

procedures

TPO sends a separate Wcode with a different architecture setting
for this compilation unit to TOBEY
– TOBEY generates and schedules the instructions based on the architecture

setting from the given Wcode

The resulting code is partitioned in memory such that the
procedures for each target are contiguous
– minimizes the performance impact due to code growth with “demand paging”

Outline

Motivation

Implementation Details

Results

Runtime Comparison : Power4
Runtime % Speedup vs. Generic Instns on Pwr4 Machine

-10.00%

-5.00%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

bzip2 crafty gzip mcf parser twolf ammp art equake facerec fma3d galgel lucas sixtrack swim

% speedup clonearch vs ppc

% speedup pwr4 vs ppc

Runtime Comparison : Power5
Runtime % Speedup vs. Generic Instns on Pwr5 Machine

-10.00%

-5.00%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

bzip2 crafty gzip mcf parser twolf ammp art equake facerec fma3d galgel lucas sixtrack swim

% speedup clonearch vs. ppc

% speedup pwr5 vs. ppc

Runtime Comparison : PPC970 VMX
Runtime % Speedup vs. Generic Instns on PPC970 Machine

-10.00%

-5.00%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

bzip2 crafty gzip mcf parser twolf ammp art equake facerec fma3d galgel lucas sixtrack swim

% speedup clonearch vs ppc

% speedup ppc970 vmx vs.
ppc

Observations

Architecture Cloning delivers similar performance compare to the binary
optimized for one platform in most benchmarks across all 3 platforms

– crafty and parser under investigation

Some benchmarks benefit tremendously with architecture-specific
instructions and scheduling

– Ex. facerec, fma3d, lucas

Conclusions

Architecture Cloning:

Takes advantage of the latest PowerPC processor features

Also maintains compatibility with older PowerPC processors

All within a single code base and single executable

Questions?

	Architecture Cloning For PowerPC Processors
	Outline
	Scenario
	Our Approach
	Outline
	How Architecture Cloning Works
	Analysis Phase
	How To Assist the Analysis
	Transformation Phase
	Insert Platform Detection Routine
	Procedure Cloning
	Update Call Graph
	Final Step of Transformation Phase
	Outline
	Runtime Comparison : Power4
	Runtime Comparison : Power5
	Runtime Comparison : PPC970 VMX
	Observations
	Conclusions
	Questions?

