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Overview

Introduction and motivation

Structure of our auto-parallelizer

Performance results

Limitations and future work
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Auto parallelization, again?

HPF (Fortran D)
– V 1.0 1992; V 2.0 1997

MPI 
– V 1.0, 1994; V 2.0 2002

OpenMP
– V 1.0, 1997; V 2.0 2000; V 2.5 2005

Other parallel programming tools/models
– Global array (1994), HPJava(1998), UPC(2001), 

Auto parallelization tools
– ParaWise (CAPtools, 2000), Other efforts: Polaris, SUIF, …
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The most effective way in parallelization

Discover parallelism in the algorithm
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So, why?

User expertise required 
–Knowledge of parallel programming, dependence 

analysis

–Knowledge of the application, time and effort

Extra cycles in desktop, even laptop computing
–hyperthread

–multicore
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SPEC, from CPU2000 to OMP

Parallel programming is difficult. 
–Even for just getting it right

Parallelizable problem exist
–Amdahl's Law vs. Gustafson's Law

–10 of the14 SPEC CPU FP tests are in 
SPECOMPM

–9 of the 11 SPECOMPM tests are in 
SPECOMPL
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Strategy
Make parallelism accessible to general users 
–Shields users from low-level details

Take advantage of extra hardware
–Do not waste the cycle and the power

Our emphasis 

–Use simple parallelization techniques

–Balance performance gain and compilation 
time
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Compiler infrastructure
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Our auto-parallelizer features 
Use OpenMP compiler and runtime infrastructure 
– for parallelization and parallel execution. 

Essentially a Loop parallelizer, 
– inserting “Parallel do” directives

Can further optimize an OpenMP programs
– general optimization specific to an OpenMP program

Depending on dependence analyzer
– core of the parallelizer, shared with other loop 

optimizations
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Pre-parallelization Phase 

Induction variable elimination

Scalar Privatization

Reduction finding

Loop transformations favoring parallelism
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Basic loop parallelizer
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user paralleluser parallel

sequentialsequential

dependencedependence

compiletime costcompiletime cost insufficient costinsufficient cost

insert runtime cost exprinsert runtime cost expr

mark auto parallel loopmark auto parallel loop

side-effectsside-effects

for each loop in nestfor each loop in nest

for each loop nest in procfor each loop nest in proc

yes

yes

yes

yes yes

yes

yes

split loopsplit loopdependencedependence

no

no

no

no
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Loop Cost

LoopCost = ( Iterationcount * ExecTimeOfLoopBody )

Compile time cost

(LoopCost < Threshold)         reject

Runtime loop cost expression – extremely light-weight

Runtime profiling – finer granularity filtering
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Impact of Loop cost on performance
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Accuracy of loop cost algorithm

Benchmark #Parallelizable 
HighCostLoops

from PDF

#HighCostLoops
selected by 
Parallelizer

#LowCostLoops
selected by 
Parallelizer

swim 5 5 0

mgrid 7 7 0

applu 11 11 0

galgel 49 36 0

sixtrack 13 11 0

fma3d 33 33 0
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Balance coarse-grained parallelism and locality

Loop interchange for data locality

Loop interchange to exploit parallelism

Transformations do not always work in harmony

DO I = 1, N FORTRAN loop nest

DO J = 1, N 
DO K = 1, N 

A( I, J, K) = A( I, J, K+1)
END DO

END DO
END DO 
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Performance: loop permutation for parallelism
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Auto-parallelization performance – 10%
One CPU vs. two CPU runs
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Expose limitations

Compare SPEC2000FP and SPECOMP 

SPECOMP achieves good performance and 
scalability
– Disparity between explicit and auto-parallelization 

Expose missed opportunities

10 common benchmarks
– Compare on a loop-to-loop basis
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Limitations

Loop body contains function calls

Array privatization
COMPLEX*16   AUX1(12),AUX3(12)
.... 
DO 100 JKL = 0, N2 * N3 * N4 - 1

DO 100 I=(MOD(J+K+L,2)+1),N1,2
IP=MOD(I,N1)+1
CALL GAMMUL (1,0,X(1,(IP+1)/2,J,K,L),AUX1)
CALL SU3MUL (1,1,1,I,J,K,L),'N',AUX1,AUX3)

....
100 CONTINUE
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Limitations … contd

Zero trip loops
IV=0   
DO J=1, M

DO I=1,N
IV=IV+1
A(IV) = 0

ENDDO
ENDDO

– Induction variable ‘IV=I+(J-1)*N’
– Valid if N is positive.
– Cannot parallelize outer-loop if N is zero
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Improved auto-parallelization performance
One CPU vs. two CPU runs
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System Configuration

SPEC2000 CPU FP benchmark suite 

IBM XL Fortran/C/C++ commercial compiler 
infrastructure which implements OpenMP 2.0

Hardware : 1.1GHz POWER4 with 1-8 nodes 

Compiler options: -O5 –qsmp
– Comparing to –O5 as sequential
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Future Work
Fine tune the heuristics
– Loop cost, permutation, unroll.

Further loop parallelization
– Array dataflow analysis, array privatization
– Do across, loop with carried dependence
– Interprocedural, runtime dependence analysis

Speculative execution
– OpenMP threadprivate, sections, task queue

Keep reasonable increase in compilation time
– not to compete with auto-par tools in the near future
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