
Software Group

October 6, 2004 © 2004 IBM Corporation

Compiler Technology

Experiments with auto-parallelizing
SPEC2000FP benchmarks

Guansong Zhang

CASCON 2004

Compiler technology

© 2004 IBM CorporationOctober 6, 2004

Authors

Guansong Zhang, Priya Unnikrishnan, James Ren

Compiler Development Team

IBM Toronto Lab, Canada

{guansong,priyau,jamesren}@ca.ibm.com

(most slides from Priya’s LCPC2004 presentation)

Compiler technology

© 2004 IBM CorporationOctober 6, 2004

Overview

Introduction and motivation

Structure of our auto-parallelizer

Performance results

Limitations and future work

Compiler technology

© 2004 IBM CorporationOctober 6, 2004

Auto parallelization, again?

HPF (Fortran D)
– V 1.0 1992; V 2.0 1997

MPI
– V 1.0, 1994; V 2.0 2002

OpenMP
– V 1.0, 1997; V 2.0 2000; V 2.5 2005

Other parallel programming tools/models
– Global array (1994), HPJava(1998), UPC(2001),

Auto parallelization tools
– ParaWise (CAPtools, 2000), Other efforts: Polaris, SUIF, …

Compiler technology

© 2004 IBM CorporationOctober 6, 2004

The most effective way in parallelization

Discover parallelism in the algorithm

Compiler technology

© 2004 IBM CorporationOctober 6, 2004

So, why?

User expertise required
–Knowledge of parallel programming, dependence

analysis

–Knowledge of the application, time and effort

Extra cycles in desktop, even laptop computing
–hyperthread

–multicore

Compiler technology

© 2004 IBM CorporationOctober 6, 2004

SPEC, from CPU2000 to OMP

Parallel programming is difficult.
–Even for just getting it right

Parallelizable problem exist
–Amdahl's Law vs. Gustafson's Law

–10 of the14 SPEC CPU FP tests are in
SPECOMPM

–9 of the 11 SPECOMPM tests are in
SPECOMPL

Compiler technology

© 2004 IBM CorporationOctober 6, 2004

Strategy
Make parallelism accessible to general users
–Shields users from low-level details

Take advantage of extra hardware
–Do not waste the cycle and the power

Our emphasis

–Use simple parallelization techniques

–Balance performance gain and compilation
time

Compiler technology

© 2004 IBM CorporationOctober 6, 2004

Compiler infrastructure

Compiler technology

© 2004 IBM CorporationOctober 6, 2004

Our auto-parallelizer features
Use OpenMP compiler and runtime infrastructure
– for parallelization and parallel execution.

Essentially a Loop parallelizer,
– inserting “Parallel do” directives

Can further optimize an OpenMP programs
– general optimization specific to an OpenMP program

Depending on dependence analyzer
– core of the parallelizer, shared with other loop

optimizations

Compiler technology

© 2004 IBM CorporationOctober 6, 2004

Pre-parallelization Phase

Induction variable elimination

Scalar Privatization

Reduction finding

Loop transformations favoring parallelism

Compiler technology

© 2004 IBM CorporationOctober 6, 2004

Basic loop parallelizer

Compiler technology

© 2004 IBM CorporationOctober 6, 2004

user paralleluser parallel

sequentialsequential

dependencedependence

compiletime costcompiletime cost insufficient costinsufficient cost

insert runtime cost exprinsert runtime cost expr

mark auto parallel loopmark auto parallel loop

side-effectsside-effects

for each loop in nestfor each loop in nest

for each loop nest in procfor each loop nest in proc

yes

yes

yes

yes yes

yes

yes

split loopsplit loopdependencedependence

no

no

no

no

Compiler technology

© 2004 IBM CorporationOctober 6, 2004

Loop Cost

LoopCost = (Iterationcount * ExecTimeOfLoopBody)

Compile time cost

(LoopCost < Threshold) reject

Runtime loop cost expression – extremely light-weight

Runtime profiling – finer granularity filtering

Compiler technology

© 2004 IBM CorporationOctober 6, 2004

Impact of Loop cost on performance

0

200

400

600

800

1000

1200

1400

1600

1800

wup
wise
sw

im
mgr

id
ap

plu
ga

lge
l

fac
er

ec ap
si

luc
as

fm
a3

d
six

tra
ck

mes
a ar
t

eq
ua

ke
am

mp

tim
e(

se
c.

)

W ithoutLoopCostCtl
WithLoopCostCtl

Compiler technology

© 2004 IBM CorporationOctober 6, 2004

Accuracy of loop cost algorithm

Benchmark #Parallelizable
HighCostLoops

from PDF

#HighCostLoops
selected by
Parallelizer

#LowCostLoops
selected by
Parallelizer

swim 5 5 0

mgrid 7 7 0

applu 11 11 0

galgel 49 36 0

sixtrack 13 11 0

fma3d 33 33 0

Compiler technology

© 2004 IBM CorporationOctober 6, 2004

Balance coarse-grained parallelism and locality

Loop interchange for data locality

Loop interchange to exploit parallelism

Transformations do not always work in harmony

DO I = 1, N FORTRAN loop nest

DO J = 1, N
DO K = 1, N

A(I, J, K) = A(I, J, K+1)
END DO

END DO
END DO

Compiler technology

© 2004 IBM CorporationOctober 6, 2004

Performance: loop permutation for parallelism

 0

 0.5

 1

 1.5

 2

 2.5

86421

T
im

e(
se

so
nd

s)

Number of processors

Execution time difference

Baseline
Improved

Compiler technology

© 2004 IBM CorporationOctober 6, 2004

Auto-parallelization performance – 10%
One CPU vs. two CPU runs

0

50

100

150

200

250

300

350

wupwise sw
im

mgrid
ap

plu
ga

lge
l

fac
ere

c
ap

si
luca

s
fm

a3
d

six
tra

ck
mes

a art
eq

ua
ke

am
mp

tim
e(

se
c.

)

Sequential
Parallel

Compiler technology

© 2004 IBM CorporationOctober 6, 2004

Expose limitations

Compare SPEC2000FP and SPECOMP

SPECOMP achieves good performance and
scalability
– Disparity between explicit and auto-parallelization

Expose missed opportunities

10 common benchmarks
– Compare on a loop-to-loop basis

Compiler technology

© 2004 IBM CorporationOctober 6, 2004

Limitations

Loop body contains function calls

Array privatization
COMPLEX*16 AUX1(12),AUX3(12)
....
DO 100 JKL = 0, N2 * N3 * N4 - 1

DO 100 I=(MOD(J+K+L,2)+1),N1,2
IP=MOD(I,N1)+1
CALL GAMMUL (1,0,X(1,(IP+1)/2,J,K,L),AUX1)
CALL SU3MUL (1,1,1,I,J,K,L),'N',AUX1,AUX3)

....
100 CONTINUE

Compiler technology

© 2004 IBM CorporationOctober 6, 2004

Limitations … contd

Zero trip loops
IV=0
DO J=1, M

DO I=1,N
IV=IV+1
A(IV) = 0

ENDDO
ENDDO

– Induction variable ‘IV=I+(J-1)*N’
– Valid if N is positive.
– Cannot parallelize outer-loop if N is zero

Compiler technology

© 2004 IBM CorporationOctober 6, 2004

Improved auto-parallelization performance
One CPU vs. two CPU runs

0

50

100

150

200

250

300

350

wupw
ise

sw
im

mgr
id

ap
plu

ga
lge

l
fac

er
ec ap
si

luca
s

fm
a3

d
six

tra
ck

mes
a ar
t

eq
ua

ke
am

mp

tim
e(

se
c.

)

Sequential
Parallel
Parallel+manual

Compiler technology

© 2004 IBM CorporationOctober 6, 2004

System Configuration

SPEC2000 CPU FP benchmark suite

IBM XL Fortran/C/C++ commercial compiler
infrastructure which implements OpenMP 2.0

Hardware : 1.1GHz POWER4 with 1-8 nodes

Compiler options: -O5 –qsmp
– Comparing to –O5 as sequential

Compiler technology

© 2004 IBM CorporationOctober 6, 2004

Future Work
Fine tune the heuristics
– Loop cost, permutation, unroll.

Further loop parallelization
– Array dataflow analysis, array privatization
– Do across, loop with carried dependence
– Interprocedural, runtime dependence analysis

Speculative execution
– OpenMP threadprivate, sections, task queue

Keep reasonable increase in compilation time
– not to compete with auto-par tools in the near future

	Experiments with auto-parallelizing SPEC2000FP benchmarks
	Authors
	Overview
	Auto parallelization, again?
	The most effective way in parallelization
	So, why?
	SPEC, from CPU2000 to OMP
	Strategy
	Compiler infrastructure
	Our auto-parallelizer features
	Pre-parallelization Phase
	Basic loop parallelizer
	Loop Cost
	Impact of Loop cost on performance
	Accuracy of loop cost algorithm
	Balance coarse-grained parallelism and locality
	Performance: loop permutation for parallelism
	Auto-parallelization performance – 10%
	Expose limitations
	Limitations
	Limitations … contd
	Improved auto-parallelization performance
	System Configuration
	Future Work

