
IBM Software Group

Compilation Technology © 2004 IBM Corporation

Java Synchronization :
Not as bad as it used to be!

Mark Stoodley
J9 JIT Compiler Team

Software Group

© 2004 IBM CorporationCompilation Technology

Why was synchronization in Java slow?

 Early implementations relied on OS

– OS synchronization mechanisms are heavy-weight

 Thread-safety provided in class library

– Whether you need it or not

– Sometimes deeply buried: lack of awareness

Software Group

© 2004 IBM CorporationCompilation Technology

How VMs and JITs Reduce the Cost

1. Make each lock/unlock operation faster

– Flat locks: only use OS monitor if contended

– Spin loop: before inflating to an OS monitor

– Fast path to avoid some runtime function calls

2. Do fewer lock/unlock operations

– Lock coarsening reduces repetitive, recursive locking

Software Group

© 2004 IBM CorporationCompilation Technology

Relying solely on OS monitors: bad idea

1. OS monitor per Java object impractical

– Pool of OS monitors accessed via monitor table

– Need to lock the table to access it (extra cost)

2. Locks often uncontended (many studies)

3. Long dead time to wake thread up even if
contended lock is available “soon”

Software Group

© 2004 IBM CorporationCompilation Technology

1. Flat locks: Most locks are not contended

 Add lock word to object header

– Thread ID (TID)

– Recursive count (CNT)

– Flat Lock Contended (FLC) bit

 Atomic compare and swap to lock object:

– If lock word is 0, TID is stored to lock word in header

– If TID not my thread ID, then set FLC bit and go get an OS
monitor (inflated lock)

– Otherwise, increment CNT field

Software Group

© 2004 IBM CorporationCompilation Technology

Flat locks are good!

 If lock isn’t contended, no OS monitor needed

 Cost of atomic instruction is much lower

Memory penalty for lock word in every object

– Benefits considered “worth the cost”

Software Group

© 2004 IBM CorporationCompilation Technology

2. Spin loop: Don’t give up too easily

 Observation: most locks held for short time

– Even though contended now, probably available “soon”

 So, spin for a while before acquiring OS monitor

 In fact, several tiers of loops:

– Sequence of spins, lock attempts, and yields before
blocking

Software Group

© 2004 IBM CorporationCompilation Technology

Flat lock + Spin loop even better!!

 No OS monitor even for many contended locks

 Probably faster than blocking thread

 BUT spinning uses processor resources for which
threads might be competing

 Complex trade-off to balance spinning versus
yielding versus blocking

Software Group

© 2004 IBM CorporationCompilation Technology

3. Fast Path in Generated Code

 Lock/Unlock usually needs a function call

 To save the function call:

– Do one atomic compare-and-swap to grab the lock
directly if possible

– Otherwise, callout to spin on the flat lock

 Important: memory coherence actions mandated
by Java spec

– Lock: no later reads have started

– Unlock: all earlier writes have completed

Software Group

© 2004 IBM CorporationCompilation Technology

How VMs and JITs Reduce the Cost

1. Make each lock/unlock operation faster

– Flat locks: only use OS monitor if contended

– Spin loop: before inflating to an OS monitor

– Fast path to avoid some runtime function calls

2. Do fewer lock/unlock operations

– Lock coarsening reduces repetitive, recursive locking

Software Group

© 2004 IBM CorporationCompilation Technology

Lock Coarsening

 Goal is to reduce repetitive locking on the same
object in a Java method

– Inlined synchronized methods repetitive syncs

– Recursive locking also removed as a perq

 Coarsen region of code over which lock is held

 Safety concerns

 Maybe increases contention

 Fewer Lock and Unlock operations

 Better code

Software Group

© 2004 IBM CorporationCompilation Technology

Lock Coarsening Example

if (cond1)

Lock o

Unlock o

Code1()

Code2()

Lock o

Unlock o

if (cond2)

Software Group

© 2004 IBM CorporationCompilation Technology

Lock Coarsening Example

if (cond1)

Lock o

Unlock o

Code1()

Code2()

Lock o

Unlock o

if (cond2)

removable on one path out?

removable on one path in?

Software Group

© 2004 IBM CorporationCompilation Technology

Lock Coarsening Example

if (cond1)

Lock o

Unlock o

Code1()

Code2()

Lock o

Unlock o

if (cond2)

removable on one path out?

safe to hold lock on o?

safe to hold lock on o?

removable on one path in?

safe to hold lock on o?

Software Group

© 2004 IBM CorporationCompilation Technology

Lock Coarsening Example

if (cond1)

Lock o

Unlock o

Code1()

Code2()

Lock o

Unlock o

if (cond2)

what if this
path is taken?

what if this
path is taken?

removable on one path out?

safe to hold lock on o?

safe to hold lock on o?

removable on one path in?

safe to hold lock on o?

Software Group

© 2004 IBM CorporationCompilation Technology

Barriers to coarsening a locked code region

1. Lock/Unlock operation on another object

2. Volatile field accesses

3. Loop headers and exits

4. Method invocations

5. Unresolved field accesses

Software Group

© 2004 IBM CorporationCompilation Technology

Remove unnecessary Locks and Unlocks

if (cond1)

Lock o

Code1()

Code2()

Unlock o

if (cond2)

Software Group

© 2004 IBM CorporationCompilation Technology

Ensure consistency of coarsened region

if (cond1)

Lock o

Code1()

Code2()

Unlock o

if (cond2)

if (o != null)

Lock o

if (o != null)

Unlock o

Software Group

© 2004 IBM CorporationCompilation Technology

Not as easy as it looks: Malicious Code

 One (of N) complications to address

 Production JITs cannot ignore bytecode hackers

 VM spec: must detect unbalanced locking

– MONITORENTER and MONITOREXIT bytecodes not
guaranteed to be balanced

– VM must throw exception if MONITOREXIT attempted on
unlocked (or unowned) object

 Can detect balanced uses in a method, but called
methods can do anything

Software Group

© 2004 IBM CorporationCompilation Technology

So what’s the problem?

{

 synchronized(o) {

 o.foo();

 }

 synchronized(o) {

 o.bar();

 }

}

Software Group

© 2004 IBM CorporationCompilation Technology

So what’s the problem? Consider foo() and bar():

{

 synchronized(o) {

 o.foo();

 }

 synchronized(o) {

 o.bar();

 }

}

BYTECODE for foo() {

 aload 0

 MONITOREXIT

 ret

}

BYTECODE for bar() {

 aload 0

 MONITORENTER

 ret

}

Software Group

© 2004 IBM CorporationCompilation Technology

foo() unlocks the object: so Unlock should cause exception

{

 Lock o;

 o.foo();

 Unlock o;

 Lock o;

 o.bar();

 Unlock o;

}

BYTECODE for foo() {

 aload 0

 MONITOREXIT

 ret

}

BYTECODE for bar() {

 aload 0

 MONITORENTER

 ret

}

Software Group

© 2004 IBM CorporationCompilation Technology

Coarsening removes the exception!!

{

 Lock o;

 o.foo();

 o.bar();

 Unlock o;

}

BYTECODE for foo() {

 aload 0

 MONITOREXIT

 ret

}

BYTECODE for bar() {

 aload 0

 MONITORENTER

 ret

}

Software Group

© 2004 IBM CorporationCompilation Technology

Nice, elegant solution

 If there are calls that we can’t fully peek

– Can’t remove the Unlock: replace with a guarded
Unlock,Lock

– Guard checks if current thread holds the lock, same CNT

• If guard fails, unlock the object then re-lock the object

 If there are virtual calls we’ve fully peeked into,
wrap guarded Unlock,Lock in a side-effect guard
that gets NOP-ed

 Lock can be safely removed

Software Group

© 2004 IBM CorporationCompilation Technology

Guarded Unlock (assume foo looked safe when compiled)

{

 Lock o; saveLockWord = o.lockWord & (~FLCMASK);

 o.foo(); // virtual invocation

 if (foo overidden) {

 if (o not locked || (o.lockWord & (~FLCMASK)) != saveLockWord) {

 Unlock o; Lock o;

 }

 }

 o.bar();

 Unlock o;

}

Software Group

© 2004 IBM CorporationCompilation Technology

Summary

 VMs and JIT compilers have improved
synchronization cost in two ways:

– Make Locks/Unlocks faster

• Flat locks, spin loop, fast path

– Remove recursive, repetitive locking

• Lock coarsening

• Complication: Malicious code

Software Group

© 2004 IBM CorporationCompilation Technology

Java Synchronization Not So Bad !!

Questions?

(Lunch Time !!)

