
The Use of Traces for
Inlining in Java Programs

Borys J. Bradel

Tarek S. Abdelrahman

Edward S. Rogers Sr.Department of Electrical
and Computer Engineering

University of Toronto

Toronto, Ontario, Canada

2

Introduction

 Feedback-directed systems
provide information to a compiler
regarding program behaviour

 Examples:
 Jikes RVM [AFG+00]
 Open Runtime Platform [Mic03]

Source Code

Compiler

Program

Feedback

3

Work Overview

 Explore whether traces are useful in offline
feedback directed systems

 Create trace collection system for Jikes
 Use traces to guide Jikes’s built in optimizing

compiler
 Help with a single optimization, inlining
 Improves execution time

4

Outline

 Background

 Implementation

 Results

 Related work

 Conclusion

5

Trace Definition

 A trace is a frequently
executed sequence of
unique basic blocks or
instructions

a=0
i=0

goto B2

a+=i
i++

if (i<5) goto B1

return a

B0

B1

B2

B3

Trace 1

public static int foo() {

 int a=0;

 for (int i=0;i<5;i++)

 a++;

 return a;

}

6

Traces and Optimization

 Traces may offer a better opportunity for
optimization:
 Enable inter-procedural analysis
 Reduce the amount of instructions optimized
 Simplify the control flow graph, allowing for more

optimization

7

Multiple Methods

 Inter-procedural analysis
without an additional
framework

 Increase possibility of
optimization
 B1,A1,B2 can be

simplified to two
instructions
 a+=(5+i)
 i++

B0

t=returned value
a+=t
i++

B3

B4

B1 call g(i)

B2

t=5+i
return t

A1

Trace 1

8

Fewer Instructions

 Fewer instructions to
optimize

 May allow for extra
optimization
 If know that B3 is

executed then know
that t=5

B0

B6

B1

B5

B6

B2: t=f(...)

Trace 1

B3: t=5

B4

9

Trace Exits

 Traces usually contain
many basic blocks

 Traces may not
execute completely
 Unlike basic blocks

B0

B6

B1

B5

B6

B2

Trace 1

B3

B4

10

Trace Collection System

 Monitor program execution
 Record traces
 Start traces at frequently

occurring events
 Backward branches
 Trace exits
 Returns

 Stop at backward branches
and trace starts

 Captures frequently executed
loops and functions

a=0
i=0

goto B2

a+=i
i++

if (i<5) goto B1

return a

B0

B1

B2

B3

Trace 1

11

Jikes

Baseline
Compiler

Optimizing
Compiler

Program

Adaptive
System

12

Jikes and our TCS

Baseline
Compiler

Optimizing
Compiler

Program

Adaptive
System

TCS

Inform TCS

Trace
Information

13

Jikes – Second Phase

Baseline
Compiler

Optimizing
Compiler

Program

Adaptive
System

Trace
Information

14

Inlining and Traces

 Traces are executed
frequently

 Therefore invocations on
traces should be inlined
 Reduce invocation

overhead
 Allow for more

opportunities for
optimization

 May lead to large code
expansion

a:call b()

b: …

method a()
…
invoke b()
…

method b()
…

15

Code Expansion Control

 There are ways to control
inline expansion

 Inline sequences
[HG03,BB04]

 Selectively inlining:
 What if compile method a()?
 What if compile method b()?

a:call b()

b:call c()

c:…

16

Code Expansion Control

 Compile method a()
 Inline methods b() and c()

 Compile method b()
 No inlining

method a()
…
invoke b()
…

method c()
…

method b()
…
invoke c()
…

method b()
…
invoke c()
…

method c()
…

17

Results

 Provide inline information to Jikes based on
previous executions

 Compare our approach to two others:
 Inline information provided by the Adaptive system

of Jikes
 A greedy algorithm based on work by Arnold et al.

[Arn00]
 Evaluate two approaches: Just in Time and

Ahead of Time
 Measure overhead of system

18

JIT Inlining – Execution Time

0

0.2

0.4

0.6

0.8

1

1.2

201 202 209 213 222 228 2a1 2a2 2a3 2a4 2a5 mean

N
o

rm
al

iz
ed

 T
im

e

Adaptive 25.6s Greedy 23.3s Trace 22.7s

0

19

JIT Inlining – Compilation Time

0

0.5

1

1.5

2

2.5

201 202 209 213 222 228 2a1 2a2 2a3 2a4 2a5 mean

N
o

rm
al

iz
ed

 T
im

e

Adaptive 0.52s Greedy 0.61s Trace 0.69s

0

20

JIT Inlining – Code Expansion

0

0.5

1

1.5

2

2.5

201 202 209 213 222 228 2a1 2a2 2a3 2a4 2a5 mean

N
o

rm
al

iz
ed

 S
iz

e

Adaptive 21.3kb Greedy 22.8kb Trace 27.7kb

0

21

AOT Inlining – Execution Time

0

0.2

0.4

0.6

0.8

1

1.2

201 202 209 222 228 2a1 2a2 2a3 2a4 2a5 mean

N
o

rm
al

iz
ed

 T
im

e

Adaptive 29.3s Trace 21.8s

0

22

AOT Inlining – Compilation Time

0

0.5

1

1.5

2

2.5

3

3.5

4

201 202 209 222 228 2a1 2a2 2a3 2a4 2a5 mean

N
o

rm
al

iz
ed

 T
im

e

Adaptive 3.8s Trace 5.6s

0

23

Overhead

0

0.5

1

1.5

2

2.5

3

201 202 209 213 222 228 2a1 2a2 2a3 2a4 2a5 mean

N
o

rm
a
li

z
e
d

 T
im

e

Base 77s Base+ 90s Base+ and TCS 174s

0

24

Related Work

 Arnold et al. [Arn00]
 Feedback-directed inlining in Java
 Collected edge counts at method invocations
 Used a greedy algorithm to select inlines that

maximize invocations relative to code expansion
 Dynamo [BDB99]
 Trace collection system
 PA-RISC architecture
 Assembly Instructions
 Compiled traces

25

Conclusions

 Traces are beneficial for inlining:
 Decreased execution time compared to one

approach
 Decrease competitive with another approach
 Increases compilation time and code size

 A potential avenue of future research

26

Future Work

 Different trace collection strategies
 Trace based compilation and execution
 Reduction of code size
 Application of traces to other optimizations
 Usage of an online feedback directed system

27

References

 [MSD00] Matthew Arnold, Stephen Fink, David Grove, Michael
Hind, and Peter F. Sweeney. Adaptive optimization in the
Jalapeno JVM. ACM SIGPLAN Notices, 35(10):47-65, 2000.

 [Mic03] Michael Cierniak et al. The open runtime platform: A
flexible high-performance managed runtime environment. Intel
Technology Journal, February 2003.

 [HG03] Kim Hazelwood and David Grove. Adaptive online context-
sensitive inlining. International Symposium on Code Generation
and Optimization, p 253-264, 2003.

 [BB04] Bradel, B.J.: The use of traces in optimization. Master’s
thesis, University of Toronto (2004).

 [Arn00] Matthew Arnold et al: A comparative study of static and
profile-based heuristics for inlining. SIGPLAN Workshop on
Dynamic and Adaptive Compilation and Optimization. (2000) 52-
64.

 [BDB99] Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia.
 Transparent dynamic optimization: The design and implementation
of dynamo. HP Laboratories Technical Report HPL1999 –78,
1999.

28

AOT – Compilation Time (Wall Time)

0

0.5

1

1.5

2

2.5

201 202 209 222 228 2a1 2a2 2a3 2a4 2a5 mean

N
o

rm
al

iz
ed

 T
im

e

Adaptive 7.3sTrace 8.2s

0

