
AIM Compilation Products and Technology

April 1, 2003 © 2002 IBM Corporation

Compilers: Still going strong after ~50 years

Kevin Stoodley
IBM Distinguished Engineer
Toronto Laboratory
stoodley@ca.ibm.com

1

AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

Outline

IBM Toronto Lab stuff
Proebsting's and Moore's laws
Compilers then and now
What's new and interesting (at least in my little world)
Proebsting's law revisited (and hopefully refuted)

2

AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

Canada's Premier Software Development Facility
IBM Toronto Lab:

3

AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

IBM Toronto Lab:
Canada's Premier Software Development Facility

Largest software development facility in Canada

Third largest lab in the IBM Software Group

Worldwide Missions
Data Management
Application Development Tools
Electronic Commerce

Leading e-business Technologies
Relational Database
Java Development
Computer Language Compilers and Tools
WebSphere Development Tools
Media Design
Globalization

ISO 9001:2000
Certified

4

AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

Compilation Products and Technology Group
~210 reg. staff (+ ~28 coop terms/yr) who cover development, test, support
and information development
20 year organizational history in compiler technology
Strong ties to IBM Research (TJ Watson, Haifa, Tokyo)
Academic collaborations (U of A, U of T, Catalunya, Illinois)
Designated core competency site in IBM for this technology
Product missions:

C/C++ p-Series running AIX and Linux
C/C++ on z- and i-Series running zOS and OS/400
Fortran 95+ on p-Series running AIX and Linux

Component missions:
Java JIT compilers for servers (PowerPC, X86, IA64, 390)
Java JIT compilers for embedded (PowerPC, X86, ARM, MIPS, SH4)
XML parsers (numerous platforms)
XSLT processors (numerous platforms)

Miscellaneous
pretty much any IBM compiler that needs an optimizing backend for a
platform already supported (Cobol, PL/I, Pascal (!), etc)

Secret stuff (but nothing that would impress my kids)

5

AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

Moore's Law

"CPU performance doubles roughly every 18 months"
Diverse sources of improvement lead to this simply expressed but
remarkably long-standing and robust "result":

Fabrication/process
directly and indirectly, this is the "biggee"

Low level circuit design
High level design
Macro architecture (memory nest, interconnect, etc)
Micro architecture (out-of-order, superscalar, etc)
Instruction Set Architecture (ISA)

despite the "press", this is perhaps the weakest lever
it's certainly the most controversial and prone to zealotry

Compiler technology improvements

6

AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

Proebsting's Law (you can look this up in google)

Compiler optimization R&D has led to a four-fold
performance improvement over the last 36 years
Roughly this is 4% a year (not quite as good as 60)
Based on the (generous) observation of the ratio between the
performance of an unoptimized (CPU bound) program and
the same program compiled with full optimization
Implication, according to Proebsting, is that we optimizing
compiler researchers should turn our talents to more fruitful
endeavours

7

AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

So, I didn't change jobs. Why not?

Well, 4X is actually pretty good and it's what we signed up for
Compilers don't directly get to manipulate the biggest levers
(process, circuit design, logic design)
Compiler's major levers

ISA
Micro-architecture
Memory nest (cache geometry, latency, etc)

4X is very good bang for the buck
semiconductor, CPU architecture and system design R&D spending
dramatically outstrip compiler optimization R&D spending

Those CPU people keep stealing/obviating compiler optimizer ideas and
putting them into hardware

out-of-order and speculative execution (twice now)
instruction trace caches

Important class of programs does get more than 4X
Mostly scientific code

8

AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

4X is a point in time, but the ground isn't stable
Compiler has to keep re-winning that 4X improvement

ISA changes
CISC, RISC, VLIW, EPIC
cool new instruction from some bright hardware person

Micro-architectural changes
in-order v out-of-order
speculative execution
branch prediction hints and caches
instruction grouping

Macro-architectural changes
large pages
pre-fetch streams

High level language "improvements"
polymorphism, inheritance, type opacity (OO)
dynamic typing and loading
lazy evaluation
generics/templates
the next big leap in costly, syntactic sugar

9

AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

We have to work pretty hard just to keep from falling behind!

SPECint2000 SPECfp2000
0

200

400

600

800

1000

1200

PA-8700 750MHz
SPARC 900MHz
Itanium 800MHz
Pentium 2.2GHz
Alpha 1.0GHz
Power4 1.3GHz
Power4 + compiler

+21%

+12%

* estimate

*

*

10

AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

Attaining high performance on Power4 class processors

Significant challenges to achieving correctness and high performance
Weakly consistent storage model

nagging problems with correctness due to absent or subtly incorrect
synchronization
increased impact of synchronization sequences on overall
performance even with lwsync

Microarchitectural changes
completely different modelling required for instruction scheduling
instruction selection needs to be tuned to avoid previously common
instructions which are "cracked"

Miscellaneous
large page support
streams
branch prediction hints

Let's not even talk about IA64
11

AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

And then there's the cost...

Cost (order of
magnitude)

Cost
Growth

New Silicon Process $ 1 billion very fast
New CPU Architecture $ 100 million fast
New Compiler $ 2 million slow

12

AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

Inside a (static) Compilation (then)

C++ Front
End

C Front
End

TOBEY
Back End

C source C++ source

Wcode Wcode

Wcode Wcode

Fortran
Front End

Wcode

Object Code

Fortran source

Driver

13

AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

Inside a (static) Compilation (now)

C++ Front
End

TPO

C Front
End

TOBEY
Back End

C source C++ source

Wcode Wcode

Wcode Wcode

Wcode

Fortran
Front End

Wcode++

Object Code

ASTI

Wcode

Fortran source

Driver

Profile data

14

AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

Inside TPO Compile Time Optimization

DecodeDecode

IntraproceduralIntraprocedural
OptimizationsOptimizations

CollectionCollection

EncodeEncode

Wcode
from FE

Wcode
to BE

Control Flow Analysis
Constant Propagation
Copy Propagation
Alias Analysis
Dead Store Elimination

Store Motion
Redundant Condition Elimination
Loop Normalization
Loop Unswitching
Loop Unrolling

LoopLoop
OptimizationsOptimizations

Loop Fusion
Loop Distribution
Unimodular Trans
Unroll-and-jam

Scalar Replacement
Loop Parallelization
Loop Vectorization
Code Motion and Commoning

Control or
Alias Changed?

NLOOPOPT

NSSA

15

AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

Data Flow Optimization Loop

Build
control flow

Build SSA

Shadow
analysis

Value
numbering

Constant
propagation

Copy
propagation

Simplify

Store
motion

Dead code
elimination

Right
number of
shadows

Pointer
alias

analysis

Loop
unrolling

Loop
normalization

Control flow
or alias changed

First time only

Partial
constant

propagation

Derived
stores

NVNSSA

NVNSPFY NCPSPFY

NCOPYSSANGCPSSA

NFSM,NSMSSA NDSSSA

NPTRSSANRNSSSA

NPCPSSA NUNRTPO NLNORM

NSHADSSA

NDSTORES

16

AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

Late Data Flow Optimizations

Data Flow
Optimization

Loop

More Granular
Aliasing
(MGA)

Loop Idioms

Redundant
condition

elimination

Loop
unswitching

NMGATPO

NIIDIOM

NRCE

NUNSW

17

AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

Early Data
Flow

Loop Nest
Canonization

High Level
Transformations

Parallel Loop
Outlining

Low Level
Transformations

Parallel Loops

Serial
Loops

Control Flow Optimization
Data Flow Optimization
Loop Normalization

Aggressive Copy Propagation
Maximal Loop Fusion

Loop Nest Partitioning
Loop Interchange
Loop Unroll and Jam
Loop Parallelization

Inner Loop Unrolling
Loop Vectorization
Strength Reduction
Redundancy Elimination
Code Motion

Loop Optimization

18

AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

Loop Nest Canonization and Distribution

Loop
Elimination

Early Loop
Interchange

Loop
Fusion

Gather for
Blocks

Find
Reductions

Early
Commoning

Early Scalar
Replacement

Node
Splitting

Loop
Distribution

NLOOPRM NEUNIMOD

NLOOPFUSE

NGATHBLKNREDFIND

NECSE NESCALREP

NNSPLIT

NLOOPDIST

Data
Dependence

Analysis

19

AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

Loop Nest Optimization (pre-Parallelization)

Gather for
Nests

Temp
Vector

Allocation
Vectorization

Guard
Folding

Code
Sinking

Loop
Interchange

Loop Unroll
and Jam

Prefetch
Optimization

Scalar
Replacement

Loop
Distribution

NLOOPDIST

NGATHNEST

NLOOPVECT

NFOLDGRD NSINKCODE

NUNIMOD NOUTUNROLL

NDUMLOAD NSCALREP

Loop
Parallelization

NLOOPPAR

Data
Dependence

Analysis

20

AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

Inside an Link-time Compilation

TPO

Imports/Exports
Linker Options

TOBEY

Wcode partitions

Object Files

Linker

Object files Libraries

Executable or shared library

Driver

21

AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

Inside TPO Link Time Optimization

Symbol
Resolution

Call Graph
Completion

Backward
Alias

Analysis

Inlining

Data
Coalescing

Function
Partitioning

Forward
Data-flow
Analysis

Backward
Data-flow
Analysis

Alias
Closure

parameter & global def/use
backward properties

copy and constant
propagation
pointer alias analysis
dead code elimination

closure of context
sensitive
pointer alias relationships

invariant code motion
common subexpression
elimination
loop optimization

LEVEL(2)

LEVEL(1)

LEVEL(0) NINLINE

NGLOBCOAL

NMU#

NFPASS

NINTPTR

NBPASS

22

AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

What's new and interesting in compilers?

A shift in mainline use of compilers
Traditionally, compilers run by programmers
Increasingly, compilers run by users (although they ideally don't
know it)
Dynamic optimizing compilers:

Java JITs
CLR JIT

Dynamic compiler compilers
XML parsers
XSLT processors

Compiler-centric web application development model
Java Server Pages (JSP)

23

AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

Testarossa JIT Technology

24

AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

Testarossa Design Goals
Clean separation of concerns along 3 major axes

JVM implementation (VM and OS services)
Java implementation (object model, runtime specializations, GC, threads, runtime
interfaces)
Hardware targets

Java centric design
Portable and maintainable C++ implementation with some special purpose assembler
Fast compile time
Small footprint
Configurable optimization framework

extremely complete suite of classical & Java-specific optimizations
High performance code with deep platform exploitation
Hot Code Replace (HCR) and Full-speed Debug (FSD)
Complete solutions: optimizing transformations fully operational in the presence of
exception handling, security manager, stack trace, unresolved or volatile entities, etc
Dynamic recompilation with profile directed optimizations
Aggressive specialization and speculative optimizations

25

AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

JVM Interface (TR_VM, TR_Method classes)

JVM

OptimizerIL
Generator

Code
Generators

JVM

JIT Compilation (TR_Compilation class)

Bytecodes
Trees &

CFG
Trees &

CFG

Instructions
&

Meta-data

x86, 390, MIPS
PowerPC
ARM, SH4

J9, JXELink, ...

Runtimes

A peek under the hood

26

AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

Diverse set of ISAs supported
Fully supported targets

x86
32-bit PowerPC (bi-endian)
ARM
SH4

Under development
64-bit PowerPC
MIPS (bi-endian)
31-bit 390
X86-64

In plan for 2003
64-bit 390

"...Palmtops to Terraflops technology..."

27

AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

Complete suite of classical and Java optimizations

Platform neutral optimizer performs IL-IL transformations
parameterized by platform specific code to handle
different cpu capabilities (eg. # regs)

Multiple optimization strategies for different code
quality/compile time tradeoffs

used to compose optimizations into a collection of
transformations
spend compile time where it makes biggest difference
can also tradeoff JIT size for optimization quality

Extremely generalized solutions and infrastructure
Eg. Inliner capable of functioning effectively in
presence of exception handling, security manager,
stack trace, etc.

28

AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

Profile directed sampling recompilation

Sampling thread drives compilation based on hotness
Initial compilation is low-opt
Hot methods are recompiled at increasingly higher optimization levels
"Scorching hot" methods

recompiled with profiling instrumentation
edge counts with inferences, value profiling, virtual call sites, etc

run long enough to gather representative data
recompiled at highest opt level and exploiting profile data

basic block scheduling
inlining
loop versioning
devirtualization
aggressive replication
speculative opts

29

AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

Example speculative opt driven by profile data: Escape Analysis

Sometimes it is advantageous to split an allocation so that on one
path it is local
 o = new C;

... // some code 'a'
 if (condition){
 ... // some code 'b' (object o does not escape the thread
 } else {
 x.foo(o); // cannot prove object o does not escape

}
return;

becomes
 if (condition){

o = new C;
... // some code 'a'

 ... // some code 'b' (object o does not escape the thread
 } else {
 o = new C;

... // some code 'a'
 x.foo(o); // cannot prove object o does not escape
 }

return;

30

AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

Recompilation infrastructure is basis for

Aggressive speculative optimizations
pre-existence based devirtualization and inlining
other class hierarchy based optimizations
single threaded optimizations

Hot Code Replace (HCR)
Fix/Enhance code while running and without restarting

Advanced problem determination and performance monitoring features
Phase change adaptations

31

AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

XML

Three scenarios with very different needs
Tools, mapping and config
Database (relational and native store)
Web services

Schema is particularly interesting
Allows an XML specification of grammar for validating instances of
XML documents

32

AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

Apache Soap
runtime

WSIF Apache SOAP Request Flow

ejb
stub

Apache Soap
runtime

ejb
container

bean
implementation

WSIF
SOAP
Provider

WSIF

Client
1. Application Objects in Java
2. Invoke over WSIF - binds to SOAP as provider
3. Apache Soap-provider serializes App Objects into

DOM using XML Parser
4. DOM Elements are serialized to stream that is put

on wire
5. If Security is applied, the SOAP Envelope is

digitally signed before being placed on wire

Server
1. Apache SOAP Run-time builds DOM

from stream using XML Parser
2. If Security is applied the Soap

Envelope is validated before
de-serialization

3. Apache SOAP de-serializes DOM in
Application Objects

4. Runtime determines and invokes the
target Object and operation

Example of End-to-End Web Services Flow

33

AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

Back to Proebsting's Law

Proebsting's conclusion depends on unexamined assumptions
The contrasting reality is:

CPUs change constantly in myriad different ways that have
challenging implications for developers of optimizing compilers
Programming languages and methodologies increasingly trade
programmer convenience for compiler burden
Cost of compiler optimization R&D is dramatically lower than
process, circuit and CPU R&D and growing relatively much more
slowly
Competitive forces mean nobody in industry can afford to flinch
anyway
Loosely coupled runtime models shift burden to optimizing compilers

It's non-trivial to keep up, let alone make forward progress
Static analyses must become dynamic
Early, accurate predictions more important than late-breaking
complete knowledge
New optimization goals are emerging (eg. power consumption)

34

AIM Compilation Products

© 2002 IBM Corporation

AIM Compilation Products

The good news is...

Compiler field is more vital than it has been in a long time
We haven't run out of challenges or new ideas
Industry and Academic collaborative research in compilers is increasing
Compilers are becoming more pervasive and are no longer restricted to
use by the development community

35

