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The Game of Go



Go

✤ Classic two-player board game 

✤ Invented in China thousands of years 
ago

✤ Simple rules, complex strategy

✤ Played by millions

✤ Hundreds of top experts - professional 
players

✤ Until 2016, computers weaker than 
humans



Go Rules

✤ Start with empty board

✤ Place stone of your own color

✤ Goal: surround empty points 
or opponent - capture

✤ Win: control more  
than half the board

✤ Komi: first player advantage

Final score,  
9x9 board



Measuring Go Strength

✤ People in Europe and America use the traditional Japanese 
ranking system

✤ Kyu (student) and Dan (master) levels

✤ Separate Dan ranks for professional players

✤ Kyu grades go down from 30 (absolute beginner) to 1 (best)

✤ Dan grades go up from 1 (weakest) to about 6

✤ There is also a numerical (Elo) system, e.g. 2500 = 5 Dan



Short History  
of Computer Go



Computer Go History - Beginnings

✤ 1960’s: initial ideas, designs on paper

✤ 1970’s: first serious program - Reitman & Wilcox

✤ Interviews with strong human players

✤ Try to build a model of human decision-making

✤ Level: “advanced beginner”, 15-20 kyu

✤ One game costs thousands of dollars in computer time



1980-89  The Arrival of PC

✤ From 1980: PC (personal computers) arrive

✤ Many people get cheap access to computers

✤ Many start writing Go programs

✤ First competitions, Computer Olympiad, Ing Cup

✤ Level 10-15 kyu



1990-2005: Slow Progress

✤ Slow progress, commercial successes

✤ 1990 Ing Cup in Beijing

✤ 1993 Ing Cup in Chengdu

✤ Top programs Handtalk (Prof. Chen Zhixing), Goliath (Mark 
Boon), Go++ (Michael Reiss), Many Faces of Go (David Fotland)

✤ GNU Go - open source program, almost equal to top commercial 
programs

✤ Level - maybe 5 Kyu, but some “blind spots”



1998 - 29 Stone Handicap Game

✤ Played at US Go Congress

✤ Black: Many Faces of Go,  
world champion and one of the 
top Go programs at the time

✤ White: Martin Müller,  
5 Dan amateur

✤ Result: White won by 6 points



2006-08  Monte Carlo Revolution

✤ Remi Coulom, Crazy Stone program:  
Monte Carlo Tree Search (MCTS) 

✤ Levente Kocsis and Csaba Szepesvari:  
UCT algorithm

✤ Sylvain Gelly, Olivier Teytaud et al:  
MoGo program

✤ Level: about 1 Dan



Search - Game Tree Search

❖ All possible move sequences

❖ Combined in a tree structure

❖ Root is the current game 
position

❖ Leaf node is end of game

❖ Search used to find good 
move sequences

❖ Minimax principle

Image Source:  
http://web.emn.fr

http://web.emn.fr


Search - Monte Carlo Tree Search

❖ Invented about 10 years ago 
(Coulom - Crazystone, UCT)

❖ Grow tree using win/loss 
statistics of simulations

❖ First successful use of 
simulations for classical two-
player games

❖ Scaled up to massively parallel 
❖ MoGo; Fuego on several 

thousand cores



Simulation

❖ For complex problems, there 
are far too many possible 
future states

❖ Example:  
predict the path of a storm

❖ Sometimes, there is no good 
evaluation

❖ We can sample long-term 
consequences by simulating 
many future trajectories Image Source:  

https://upload.wikimedia.org

https://upload.wikimedia.org


Simulation in Computer Go

❖ Play until end of game
❖ Find who wins at end  

(easy)
❖ Moves in simulation:  

random + simple rules
❖ Early rules hand-made Example:  

Simple rule-based policy



Simulation in Computer Go (2)

❖ Later improvement:
❖ Machine-learned policy  

based on simple features
❖ Probability for each move
❖ AlphaGo:  

machine-trained  
simple network

❖ Fast: goal is about  
1,000,000 moves/second/CPU



2008  First win on 9 Stones

✤ MoGo program

✤ Used supercomputer with 3200 
CPUs 

✤ Won with 9 stones handicap vs 
Myungwan Kim, 8 Dan 
professional



2008-15: Rapid Improvement

✤ Improve Monte Carlo Tree Search

✤ Better simulation policies  
(trial and error)

✤ Add Go knowledge in tree

✤ Simple features, learn weights  
by machine learning

✤ Level: about 5-6 Dan  
3-4 stones handicap from top human players

Knowledge based  
on simple features  

in Fuego



Progress In 19x19 Go, 1996-2010
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2009 - First 9x9 Win vs Top Pro

❖ Fuego open source program
❖ Mostly developed at 

University of Alberta
❖ First win against top human 

professional on 9x9 board
❖ MCTS, deep searches
❖ 80 core parallel machine

White: Fuego 
Black: Chou Chun-Hsun 9 Dan 
White wins by 2.5 points



Computer Go Before AlphaGo

❖ Summary of state of the art 
before AlphaGo:

❖ Search - quite strong
❖ Simulations - OK, but hard to 

improve
❖ Knowledge

❖ Good for move selection
❖ Considered hopeless for 

position evaluation Who is better here?



2015 - Deep Neural Nets Arrive

❖ Two papers within a few weeks
❖ First by Clark and Storkey, 

University of Edinburgh
❖ Second paper by group at 

DeepMind, stronger results
❖ Deep convolutional neural nets 

(DCNN) used for move 
prediction in Go

❖ Much better prediction than old 
feature-based systems



AlphaGo

❖ Program by DeepMind 
❖ Based in London, UK and Edmonton (from 2017)
❖ Bought by Google
❖ Expertise in Reinforcement Learning and search
❖ 2014-16: worked on Go program for about 2 years, 

mostly in secret
❖ One paper on move prediction (previous slide)



AlphaGo Matches

❖ Fall 2015 - beat European champion 
Fan Hui by 5:0 (kept secret)

❖ January 2016 paper in Nature, 
announced win vs Fan Hui

❖ March 2016 match vs Lee Sedol 
Wins 4:1

❖ January 2017, wins fast games  
60:0 against many top players

❖ May 2017 match vs Ke Jie  
Wins 3:0 then retires



The Science Behind AlphaGo



The Science Behind AlphaGo

❖ AlphaGo builds on 
decades of research in:
❖ Building high 

performance game 
playing programs

❖ Reinforcement Learning
❖ (Deep) neural networks



Main Components of AlphaGo

❖ AlphaGo shares the same main components with 
many other modern heuristic search programs:
❖ Search - MCTS (normal)
❖ Knowledge created by machine learning  

(new types of knowledge)
❖ Simulations (normal)



Knowledge - Policy and Evaluation

❖ Two types of knowledge

❖ Encoded in deep convolutional 
neural networks

❖ Policy network  
selects good moves for the 
search (as in move prediction)

❖ Value network:  
evaluation function,  
measures probability of winning



Deep Neural Networks in AlphaGo

❖ Three different deep neural networks
❖ Supervised Learning (SL) policy 

network as in 2015 paper
❖ Learn from master games:  

improved in details, more data
❖ New: Reinforcement Learning (RL) 

from self-play for policy network

❖ New: value network trained from 
labeled data from self-play games



RL Policy Network

❖ Deep neural network, same architecture as SL 
network

❖ Given a Go position
❖ Computes probability of each move being best
❖ Initialized with SL policy weights
❖ Trained by Reinforcement Learning from millions of 

self-play games
❖ Adjust weights in network from win/loss result at 

end of game only



Data for Training Value Network

❖ Policy network can be used as a 
strong and relatively fast player

❖ Randomize moves according to 
their learned probability

❖ After training, played 30 
million self-play games

❖ Pick a single position from each 
game randomly

❖ Label it with the win/loss 
result of the game

❖ Result: data set of 30 million Go 
positions, each labeled as win 
or loss

❖ Next step: train the value 
network on those positions 
 
 
 
 
 
 



Value Network

❖ Another deep neural network
❖ Given a Go position
❖ Computes probability of 

winning
❖ Static evaluation function
❖ Trained from the 30 million 

labeled game positions
❖ Trained to minimize the 

prediction error on the (win/
loss) labels



Putting it All Together

❖ A huge engineering effort
❖ Many other technical contributions
❖ Massive amounts of self-play 

training for the neural networks
❖ Massive amounts of testing/tuning
❖ Large parallel hardware in earlier 

matches
❖ “Single TPU machine” in 2017



What’s New in AlphaGo 2017?

❖ Few details known as of now
❖ More publications promised
❖ Main change: better games 

data for training the value net
❖ Old system: 30 million games 

played by RL policy net
❖ New system: unknown 

number of games played by 
the full AlphaGo system

❖ Consequences:
❖ Much better quality of games
❖ Much better quality of final result 

labels
❖ From strong amateur (RL 

network) to full AlphaGo 
strength

❖ Most likely,  
many other improvements  
in all parts of the system



The Legacy of AlphaGo



Legacy of AlphaGo

❖ Research contributions, the path leading to AlphaGo
❖ Impact on communities 

❖ Go players
❖ Computer Go researchers
❖ Computing science
❖ General public 



Review: Contributions to AlphaGo

❖ Deepmind developed AlphaGo, with many great 
breakthrough ideas

❖ AlphaGo is also based on decades of research in heuristic 
search and machine learning

❖ Much of that research was done at University of Alberta
❖ Next slide: references from AlphaGo paper in Nature

❖ Over 40% of references have a University of Alberta 
(co-)author



U. Alberta Research and Training
• Citation list from 

AlphaGo paper in 
Nature

• Papers with 
Alberta faculty or 
trainees in yellow



Impact on Game of Go

❖ AlphaGo received honorary 9 Dan diploma  
from both Chinese and Korean Go associations

❖ Strong impact on professional players
❖ Many new ideas, for example Ke Jie has 

experimented a lot with AlphaGo style openings
❖ Goal: Go programs as teaching tools
❖ Potential problem: cheating in tournaments?



What’s Next in Computer Go?

❖ Currently, developing a top Go program  
is Big Science
❖ Needs a large team of engineers
❖ Example: Tencent's FineArt

❖ What can a small-scale university project 
contribute?

❖ One idea: work on solving parts of the game



Is the Game of Go Solved Now?

❖ No!
❖ AlphaGo is incredibly strong but…

❖ … it is all based on heuristics
❖ AlphaGo still makes mistakes
❖ Example: 50 self-play games

❖ Which color should win?
❖ 38 wins for White
❖ 12 wins for Black
❖ One of these results must be wrong



Solving Go on Small Boards

❖ Solving means proving the best 
result against any possible 
opponent play

❖ Much harder to scale up than 
heuristic play

❖ 5x5, 5x6 Go are the largest 
solved board sizes  
(v.d.Werf 2003, 2009)

❖ Much work to be done: 6x6, 7x7, 
…



Solving Go Endgames

❖ How about solving 19x19 Go?
❖ Completely impossible, much too hard
❖ Solving endgames is more promising
❖ Can play some full-board 19x19 puzzles perfectly 

❖ Algorithms based on combinatorial game theory 
(Berlekamp+Wolfe 1994, Müller 1995)



Solving Go Endgame Puzzles

(Theory Berlekamp+Wolfe 1994,  
computer program Müller 1995)



Impact on Computing Science, AI

❖ The promise of AlphaGo: methods are general, little 
game-specific engineering

❖ Shown that we have algorithms to acquire strong 
knowledge from very complex domains

❖ Challenge: what about real life applications?
❖ Rules are not clear and change, hard to simulate
❖ Even more actions
❖ Less precise goals and evaluation



Impact on General Public

❖ Massive publicity about AlphaGo’s success
❖ Illustration of the power of AI methods
❖ Feelings of both opportunities and fear

❖ We can solve many complex problems with AI
❖ Will AI destroy many good human jobs?  

Or replace boring jobs with better ones?



Summary and Outlook

❖ DeepMind’s AlphaGo program is  
an incredible research breakthrough

❖ Landmark achievement for 
Computing Science

❖ Reviewed the main techniques that 
made this progress possible

❖ One big question: will the techniques 
apply to other problems?


