
Using  
Domain-specific Knowledge for  
Monte Carlo Tree Search in Go
Martin Müller
University of Alberta
NCTU, August 2015

Contents
Introduction - why use
domain knowledge?

Many kinds of
knowledge in Go

How to acquire

How to use

Research problems

Format of Talk

Informal talk, much is
unpublished, work in
progress

I have more questions
than answers…

I use our Fuego program
as an example

Many Types of Knowledge in
Go

Rules, if-then-else…

Patterns

Deep neural networks

Search control knowledge

Exact knowledge, e.g. proven wins

And more…
Credits: sciencedaily.com 

http://sciencedaily.com

About Fuego
Fuego is:

A Game-independent  
MCTS framework

A Go program

Open source

Mostly developed at University of Alberta

Many other programs use Fuego as basis (e.g. MoHex)

Many researchers have used Fuego for experiments

Developed since 2008, based on older Go program Explorer

Uses Monte Carlo Tree Search (MCTS), RAVE, prior knowledge

MoGo-style rule-based simulations (+ some changes)

Lock-free multithreading

In 2009, won 9x9 game on even vs Chou Chun-Hsun

Won the 2009 Computer Olympiad 9x9 and 2010 UEC Cup (19x19)

MP-Fuego: massively parallel version (TDS-df-UCT, Yoshizoe) uses
up to 2000 cores

Strength: Fuego on good PC about 1 dan, MP-Fuego maybe 3 dan

The Fuego Go Program

Types of Knowledge in Fuego
Part 1: Simulations (very short here)

Part 2: In-tree knowledge (a lot)

Rules, features, “Greenpeep” patterns

Part 3: “Slow” knowledge (some)

DCNN

Tactical search

[Part 4: Exact knowledge - not today]

Part 1: Simulations
Fuego: Rule-based, as in MoGo

Select move from highest-ranked rule that
produces at least one move

Alternative: probability-based, as in Crazy Stone

Weight map over all legal moves

Used to select the next move to play in simulation

Speed about 1,000,000 moves/second/core

Research Questions
What works in simulations?

Right now, we still mostly use trial-and-
error

How to design an effective playout policy?

How to evaluate a policy? (without playing
thousands of test games)

What distinguishes a good from a bad
policy?

Part 2: In-Tree Knowledge
Evaluated for each node in
the game tree

Used in UCT formula to
select best child in tree

Big influence on shape of tree

Speed goal: about 1000
nodes/second/core

Using In-Tree Knowledge
Assume you have some knowledge. What do
you do with it?

Three main approaches in the literature

Two are used in Fuego

Initialize playout statistics with “fake” wins
and losses

Add a third term to the UCB formula: 
mean + exploration + knowledge

Third Way: Iterative Widening

Consider only N best moves

Increase N over time

Never tried in Fuego

Fuego’s In-Tree Knowledge

1. Oldest: hand-coded rules,
“fake” wins and losses

2. Next: “Greenpeep” patterns,
additive knowledge

3. Recent: Feature learning using
Latent Factor Ranking

1. Handcoded Rules
Simple, crude rules (from 2008)

Bonus for moves in corner and on 3rd line

Bonus for moves in low-liberty situations
(e.g. ladders)

Bonus for moves from the simulation policy

Weights (number of wins/losses) tuned
manually

2. “Greenpeep” Patterns
Greenpeep was the name of a Go program by Chris
Rosin

Greenpeep used 12 point diamond-shaped
patterns with extra knowledge (liberty counts)

Chris developed a machine learning technique
based on self play to train weights

“Additive” knowledge in Fuego, about 130 Elo
improvement (about 2010)

Theory: C. Rosin, Multi-armed bandits with episode
context, ISAIM 2010

3. Feature Learning Using
Latent Factor Ranking

Work on feature learning

Remi Coulom, Computing Elo Ratings of
Move Patterns in the Game of Go, 2007

Later improved by Coulom and Aja Huang

Wistuba and Schmidt-Thieme,  
Move Prediction in Go – Modelling Feature
Interactions Using Latent Factors, KI 2013

From Coulom to Wistuba

Main change:

Model pairwise interactions between features

Example: A and B may be OK features by
themselves, but A and B together is really
good

Main Ideas in Feature
Learning

Moves are described by a set of
features, e.g. pattern, tactics,
location, distance

Assign Weights to features to
maximize “move prediction”:

Try to guess which move was played
by a strong human player

Feature Details
features_move O3

FE_EXTENSION_NOT_LADDER

FE_LINE_3

FE_DIST_PREV_3

FE_GOUCT_ATARI_DEFEND

FE_GOUCT_PATTERN

FE_POS_6

FE_GAME_PHASE_3

FE_CFG_DISTANCE_LAST_2

FE_CFG_DISTANCE_LAST_OWN_4_OR_MORE

FE_SAVE_STONES_1

WBW

EEE

BBB

features_move K2

FE_ATARI_LADDER

FE_LINE_2

FE_DIST_PREV_10

FE_POS_10

FE_GAME_PHASE_3

FE_CFG_DISTANCE_LAST_4_OR_MORE

FE_CFG_DISTANCE_LAST_OWN_4_OR_MORE

FE_KILL_STONES_2

EEE

EEE

BWW

Example in Fuego

Simple features  
+ 3x3 patterns

Trained weights with
20000 master games

blue = good

green = bad

Current Work  
on Features in Fuego

By Chenjun Xiao

Add large patterns, not just 3x3

Almost done…

New algorithm for training

(Slightly) better results than Wistuba

Produces probabilities for moves
being best, not just “some numbers”

Part 3: Slow Knowledge

Too slow to compute at every node in
the search

Can still be useful

Two Examples:

Deep neural network

Tactical search

Deep Convolutional  
Neural Networks (DCNN)

Introduced for Go in two recent publications

Clark and Storkey, JMLR 2015

Maddison, Huang, Sutskever and Silver, ICLR 2015

Very strong move prediction rates, 55.2% (Maddison et al)

Slow to train and use (even with GPU)

…

DCNN in Fuego

We use networks
trained by Storkey and
Henrion (Storkey’s new
student)

Integrated in Fuego by
Andrew Jacobsen (my
student)

Features vs DCNN

Feature Knowledge DCNN Evaluation

Some Examples of Bad
DCNN Moves

Research Questions
How to learn when:

Move is usually bad, but good here  
(e.g. empty triangle example)

Move is usually good, but bad here  
(e.g. cut example)

Training based on statistics of “similar” examples
cannot help - unless definition of “similar” is
extremely good

How to catch these cases by exploration in MCTS

How to use Slow
Knowledge?

Solution in Fuego

Threshold N, e.g. N=200

Call slow knowledge for all nodes
that reach N simulations

For large N, this is a very small
percentage of all nodes

Can do something expensive

Discussion
Problem: knowledge is only called after
many simulations

MCTS may not be changed much

How to balance?

Better call right away? But for which
nodes?

Our DCNN-Fuego prototype calls DCNN
first, but only at root

Tactical Search
Observation: Fuego often makes simple tactical
mistakes

Example: “geta”, capture by net

Can be solved by a small tactical search

Our old program Explorer contains such a search

Use as slow knowledge, give bonus to moves that
save or capture

About 70-80 Elo improvement for simple
implementation

Other Ideas for Knowledge

(not implemented in Fuego)

Local Life and Death search

Semeai (capturing races)

Prove safety, or invade/defend territories

Local searches to filter which moves
make sense locally

Discussion

Many kinds of knowledge used in Go

Old programs were mostly about encoding
knowledge

First MCTS programs used very little,  
but it is all coming back

Want to use machine learning to deal with
large amounts of knowledge

Self-play or learn from human master games

Discussion (2)

Simulation policies are still “magic”

Probably the biggest differences between
top programs and open source programs
are in this area

Need scientific principles to design better
policies

Discussion (3)

Integrating “slow” knowledge is a big
challenge

How to “mix” it with a MCTS?

We have only crude solutions (threshold,
root-only)

Can we predict which nodes are
important, so we can call slow
knowledge immediately?

Summary
Reviewed knowledge in MCTS Go programs,
especially Fuego

Many imperfect, incomplete solutions

Many different but overlapping approaches

Can we unify them based on a good theory?

Still much work to be done to understand
and improve

What we do in Go can help other applications

