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Post’s correspondence problem (PCP) is a classic undecidable problem. Its theoretical unbounded
search space makes it hard to judge whether a PCP instance has a solution or to find solutions
if they exist. In this paper, we describe new methods used to efficiently find optimal solutions
to difficult PCP instances, and to identify instances with no solution. We also provide strategies
to create hard PCP instances that have long optimal solutions. These methods are practical
approaches to this theoretical problem, and the experimental results present new insights into
PCP.
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1. INTRODUCTION

Post’s correspondence problem (PCP for short) was first described by Emil L. Post
in 1946 [1], and soon became a highly cited example of an undecidable problem in
the field of computational complexity [2]. Bounded PCP is NP-complete [3]. PCP
of 2 pairs was proven decidable [4], and recently a simpler proof using a similar idea
was developed [5]. PCP of 7 pairs is undecidable [6]. Currently the decidability of
PCP of 3 pairs to PCP of 6 pairs is still unknown.

As the property of undecidability shows, there exists no algorithm capable of
solving all instances of PCP. Therefore, PCP is mainly discussed in the theoretical
computer science literature, for example, to prove the undecidability of other prob-
lems. It is typical that PCP instances given in textbooks are trivial to solve, as
contrast to the impossibility of solving the whole problem. This ironic situation as
well as the research in the Busy Beaver Problem [7] motivated researchers to build
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PCP solving programs [8; 9; 10]. Due to the theoretical property of PCP, clearly
any PCP solving programs cannot be complete, for they can only solve some but
not all PCP instances. Richard J. Lorentz first systematically studied the search
methods used to solve PCP instances and the techniques to create difficult PCP
instances [8]. Our work was motivated by his paper and can be regarded as an
extension and the further development of his work.

In the past 20 years, search techniques in Artificial Intelligence (AI) have pro-
gressed significantly, as exemplified in the domains of single-agent search and two-
player board games. A variety of search enhancements developed in these two
domains have set good examples for solving instances of PCP (it is essentially a
single-agent search problem), and some of the research can be directly migrated
to PCP solvers after a few application-dependent modifications. On the other
hand, the distinct characteristics of PCP cause special search difficulties, which has
prompted us to develop methods based on new properties of PCP we discovered,
and integrated them into the solver. This work resulted in quite a few methods
that are important for solving PCP instances, and yields new insights into this
traditionally theoretical problem.

This paper mainly discusses three directions for tackling Post’s correspondence
problem. The first two directions focus on finding optimal solutions to solvable
instances efficiently and identifying unsolvable instances. We successfully applied
several standard AI search techniques such as forward pruning and bidirectional
probing, and raised four new domain-dependent methods, namely, mask method,
exclusion method, group method, and pattern method. These techniques and new
methods enabled us to solve many non-trivial PCP instances.

The third direction of our work is concerned with creating hard instances that
have long optimal solutions. With the help of the methods developed in the above
two directions, we built a strong PCP solver that discovered 199 hard instances
whose optimal solution lengths are at least 100. Currently, we are holding the
records for the instances with the longest optimal solutions in 4 non-trivial PCP
subclasses.

The paper is organized as follows. We begin by introducing the definitions,
notation, and some simple examples in Section 2. Then a variety of properties of
PCP are discussed in Section 3. In Section 4, we explain isomorphism in PCP
instances. Section § is concerned with how to apply Al search techniques to solving
instances and Section 6 describes four domain-dependent methods based on special
properties of PCP. Section 7 explains how to create difficult instances. Section
8 contains the experimental results and related discussions. As our approach to
solve PCP instances is similar to the Busy Beaver Problem, we devote Section 9 to
compare them. Finally, Section 10 provides conclusions and suggestions for future
work.

2. WHAT IS POST'S CORRESPONDENCE PROBLEM

Definition 1 An instance of Post’s correspondence problem is defined as a finite set
of pairs of strings (g;, h;) (i € [1, s]) over an alphabet 3. A solution to this instance
is a sequence of selections 414 - - -4, (n > 1) such that the strings g;, gi, - - - g5, and
hi, hi, - - - h;, formed by concatenation are identical.
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The number of pairs in a PCP instance,! s in the definition, is called its size, and
its width is the length of the longest string in g; and h; (i € [1, s]). Pair i represents
the pair (g;, h;), where g; and h; are the top string and bottom string respectively.
Solution length is the number of selections in the solution. For simplicity, we
restrict the alphabet ¥ to {0,1}, as we can always convert other alphabets to their
equivalent binary format.

If an instance has at least one solution, then it is called solvable; otherwise, it is
unsolvable. If an instance can be proven either solvable or unsolvable, it is solved;
on the other hand, if no such a proof is found, it is unsolved. We will give examples
in the next two subsections.

As solutions can be stringed together to create longer solutions, any solvable
instance has an infinite number of solutions. Hence in this paper, we are only
interested in optimal solutions, which have the shortest length over all solutions to
an instance. Please note that a solvable instance may have more than one optimal
solution. The length of an optimal solution is called the optimal length. If an
instance has a fairly large optimal length compared to its size and width, we use
the adjective hard or difficult to describe it.

An instance is trivial if it has a pair whose top and bottom strings are the same.
It is obvious that such an instance has a solution of length 1. We call an instance
redundant if it has two identical pairs, so removing either of the pairs will not
influence the solving result. For simplicity, we assume the instances discussed in
this paper are all nontrivial and non-redundant.

To conveniently represent subclasses of Post’s correspondence problem, we use
PCPJs] to denote the set of all instances of size s, and PCP[s,w] for the set of
all instances of size s and width w. Given natural numbers s and w, PCP[s] is an
infinite set and PCP[s,w] is a finite set, and the following relations hold:

PCP[s,w] C PCP[s] C PCP

The hardest instances in a finite subclass denote the instances with the longest
optimal solutions among all solvable instances in the subclass. We define a function
(s, w) to represent the optimal length of the hardest instances in PC'P[s, w]. From
the undecidability of PCP, it is not difficult to show ®(s,w) is a non-computable
function, i.e., it grows faster than any computable function.

We use a matrix of 2 rows and s columns to represent an instance in PCP|s],
where string g; is located at position (,1) and h; at (i,2). PCP (1) below is an

example in PCP[3, 3].
100 0 1
( 1 100 oo) e

2.1 Example of solving a PCP instance

The following describes a straightforward approach to solve PCP (1). First, we can
only start at pair 1, since it is the only pair where one string is the other’s prefix.
Then we obtain this result:

In the following, we use the name instance to represent PCP instance for brevity when no
ambiguity in the context.
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Choose pair 1: 1@

The portion of the top string that extends beyond the bottom one, which is
underlined for emphasis, is called a configuration. If the top string is longer, the
configuration is in the top; otherwise, the configuration is in the bottom. Therefore,
a configuration consists of not only a string, but also its position information: top
or bottom.

In the next step, it turns out that only pair 3 can match this configuration, and
the situation changes to:

1001

Choose pair 3: 100

Then there are two matching choices: pair 1 or pair 2. By using the mask method
described in Section 6.1, we can avoid trying pair 2, so pair 1 becomes the only
choice:

1001100

Choose pair 1: 1001

The selections continue until we find a solution:

. 1001100100 10011001001
Choose pair 1: 10011 Choose pair 3: 1001100

. 100110010010 1001100100100
Choose pair 2: 1561100100 Choose pair 2: 1101100100100

After 7 steps, the top and bottom strings are exactly the same, which shows that
the sequence of selections, 1811322, forms a solution to PCP (1). By exhaustively
searching all combinations of up to 7 selections of pairs, we can prove this solution
is the unique optimal solution to the instance.

2.2 More examples

Some instances may have no solution. For example, the following instance can be
proven unsolvable through the ezclusion method discussed in Section 6.3.

110 0 1
( 1 111 o1 ) @
Some instances with very small sizes and widths can have amazingly long optimal
solutions. PCP (3) is such an example whose optimal length is 206. Imagine if a
computer performs a simple brute-force search by considering all possible combina-
tions up to depth 206, how enormous the computation will be! This justifies why

we utilize AI techniques and new methods based on special properties of PCP to
prune useless search space and to improve the search efficiency.

1000 01 1 00
( 0 0 101 001 ) ®)
Now let’s take a look at PCP (4). It is clear that pair 3 is the only choice in every

step, and as a consequence, configurations will extend forever and the search process
will never terminate if a brute-force search is employed. This example shows an
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unfortunate characteristic of some instances: the search space is unbounded. This
special property suggests we should not solely rely on search to prove some instances
unsolvable. Instead, clever ideas concerning proof of unsolvability are needed to deal

with them.
100 0 1
( 0 100 111 ) @

Configuration is an important concept in solving PCP instances, and we give its
relevant definitions to simplify explanation in the following sections.

2.3 Configuration

Definition 2 A configuration is empty if its string is an empty string.

Definition 3 A configuration is solvable from an instance if it can lead to an empty
configuration after a number of selections of pairs in the instance.

Definition 4 A configuration is generable from an instance if it can be generated
from an empty configuration through a number of selections of pairs in the instance.

From the definitions above, PCP can be well mapped to a single-agent search
problem: configurations are states in the search space and state transitions are
driven by pairs chosen. The goal is to find a shortest non-empty solution path from
the starting state (an empty configuration) to the goal state (an empty configuration
t0o). It is evident that each configuration in the solution path must be generable
and solvable.

Definition 5 Let c be a configuration, then its reversal, denoted as c, is generated
by reversing its string, and its turnover, denoted as ¢, is generated by flipping its
position (from the top to bottom or vice versa).

3. PROPERTIES OF PCP

We have already mentioned three properties of PCP above: undecidability, infinite
number of solutions and unbounded search space. In this section, more properties
will be discussed.

3.1 Reversal properties

Definition 6 Let S be a string, then its reversal, denoted as S, is S written
backwards.

Definition 7 Let P: (g;, h;) (i € [1,s]) be an instance, then its reversal, denoted
as PR is (gB,hE) (i € [1,s]).

Suppose we have a solution 4142 - - - ¢, to instance P. It is easy to see that ¢,,i,—1 -+ - 11
is a solution to Pf. Essentially, P and PF are equivalent, as clarified in the fol-
lowing lemma:

Lemma 1 Let P be an instance. P has the same solvability as P® in the sense
that it has a solution if and only if PE has, and it has the same number of optimal
solutions and the same optimal length as those of PE.
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We can go one step further: if configuration ¢ is generable from instance P
through a sequence of selections 4142 - - -7; , then configuration ¢® is solvable from
instance PR through selections 4;i;_1 ---41. So the following lemma is obtained:

Lemma 2 Let P be an instance and c a configuration. c is generable from P if and
only if % is solvable from P,

This simple lemma is an important property underlying the mask method and
ezclusion method.

3.2 Unsolvability properties

The following lemmas can be used to easily identify some types of unsolvable in-
stances:

Lemma 3 A solvable instance must have one pair where one string is the other’s
proper prefiz and another pair where one string is the other’s proper postfiz.

Lemma 4 A solvable instance must have one pair whose top string is longer than
the bottom one and another pair whose bottom string is longer.

Lemma 5 Letz € {0,1}. If in an instance, the top string in every pair has no fewer
x’s than the bottom string, then all pairs whose top strings contain strictly more z’s
than their counterparts can be safely removed without changing the solvability of the
instance. The same rule applies when the roles of the top and bottom strings are
reversed.

Lemma 3 ensures that the selections can start and end somewhere in a solvable
instance. Lemma 4 is on the length balance, and Lemma 5 is on the element
balance. The latter lemma can help remove useless pairs in an instance, and to an
extreme where all pairs are removed, the instance can thus be proven unsolvable.

Three types of filters, namely prefiz/postfix filter, length balance filter, and ele-
ment balance filter, which were first mentioned in [8], are the direct applications
of the above three lemmas respectively, and can be used to filter out unsolvable
instances in our experiments. It is amazing that during the experiments on several
PCP subclasses with small sizes and widths, most of instances can be filtered out
using this method (see Tables 4, 5 and 6).

4. ISOMORPHISMS AMONG PCP INSTANCES

Consider the following four types of transformations on an instance:

Reversal: change every string to its reversal.
Upsidedown: interchange top and bottom strings in every pair.
Complement: replace all 0’s with 1’s and vice versa in every string.
Pair Reordering: reorder pairs in the instance.

It is not hard to see that through any combination of the above four transforma-
tions on an instance, we obtain a new instance that is equivalent to the original one
in the sense that a solution of one instance can be easily used to deduce a solution
to the other and vice versa. We call them isomorphic instances.
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[s“ ] 1 2 3 | 4 | 5 ] 6 |
1 2 28 688 870 2,912 11,968
2 2 868 32,072 723,088 13,543,712 | 233,747,008
3 0 24,360 5,905,200 605,304,480 | 5.3 x 1010 3.9 x 1012
4 0 657,720 | 1,060,733,520 | 5.7 x 1011 2.0 x 1014 6.1 x 1016

Table 1. Cardinality of 24 PCP subclasses (s is size and w is width)

For an instance in PCP][s], there will be up to 22 - s! isomorphic instances (in-
cluding itself) in the worst case. So an instance in PC'P[3] may have as many as 48
different isomorphisms! For a symmetric instance such as PCP (5), there are fewer

distinct isomorphic instances.
111 0 00
( 1 101 1 ) 5)

4.1 Cardinality of PCP subclasses

This subsection deals with calculating the cardinality of PCP subclasses. First, we
need to define the cardinality of three types of sets.

Definition 8 Str(w) is the set of any string whose length is in [1,w]. |Str(w)| is
the cardinality of Str(w).

Definition 9 Pair(w) is the set of any string pair whose both strings are in Str(w)
but not identical. |Pair(w)| is the cardinality of Pair(w).

Definition 10 The cardinality of PCP[s,w], denoted as |PCP[s,w]|, is the num-
ber of all nontrivial and non-redundant instances in PCP[s,w].
The following equations compute |PCP[s,w]| for any given s and w.
|Str(w)| =2' + 22 4+ --- 4 2% = 2wt _ 2
|Pair(w)| = |Str(w)| x (|Str(w)| — 1)
|PCP(8,U))| = ‘P|8Paz'r('w)\ - I)G’air(w—l)\
where PP=nx(n—1)x---x (n—s+1)
The cardinality of 24 PCP subclasses is given in Table 1 where exact values are
given for numbers up to 10'° and approximate values for larger numbers.
4.2 Normalization

In order to avoid excessive redundant work, it is important to eliminate isomor-
phic instances when scanning all instances in finite PCP subclasses. We use a
normalization process to remove isomorphic instances.

Definition 11 Let S = s182--- s, be a string over the alphabet {0,1}. Its score,
denoted as Score(S), is Y i, (3" (s; + 1)).

Definition 12 Let P = (S1,52) be a string pair. Its score, denoted as Score(P),
is (Score(S1), Score(S2)).
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We order Score(P) lexicographically, that is, given two string pairs P; = (S, S2)
and P, = (T1,T»), Score(Py) > Score(P,) if and only if Score(S;) > Score(T1) or
Score(S1) = Score(T1) and Score(S2) > Score(T»). Similarly, we can also order
PCP instances of the same size lexicographically.

Definition 11 ensures that the mapping function is injective, so that any different
strings must have different scores. Note that other mapping functions can work
here too, and we choose a simple one to illustrate the idea. Given an instance, it is
always possible to find the unique instance from all of its isomorphisms that has the
highest score based on the lexicographic order, and this one is called the standard
form. When scanning all instances of a PCP subclass, any instance different from
its standard form will be eliminated. Thus, we can generate all instances of a finite
PCP subclass with no isomorphic instances contained.

4.3 Results of removing isomorphic instances

We conducted experiments to determine the exact number of non-isomorphic in-
stances in 11 PCP subclasses that are manageable. The results are presented in
Table 2. In the table, the value of ratio is computed as the total number of in-
stances in a subclass divided by the number of non-isomorphic instances in it; s
denotes the size of the corresponding PCP subclass.

| || total number | non-isomorphic | ratio | ratio/s! |
PCP[2,1 4 1 4.000 2.000
PCP[2,2 868 76 11.421 5.711
PCP[2,3 32,072 2,270 14.129 7.064
PCP[2,4 723,088 46,514 15.546 7.773
PCP[2,5 13,543,712 856,084 15.821 7.910
PCP|[2,6] 233,747,008 14,644,876 15.961 7.981
PCP[3,2 24,360 574 42.439 7.073
PCP[3,3 5,905,200 127,303 46.386 7.731
PCP[3,4 650,304,480 13,603,334 47.805 7.967
PCP[4,2 657,720 3,671 | 179.166 7.465
PCP[4,3 1,060,733,520 5,587,598 | 189.837 7.910

Table 2. Number of non-isomorphic instances in 11 PCP subclasses

As the table shows, for PCP subclasses of PCP[s], the value ratio quickly ap-
proaches to 8 - s! as the width increases. Intuitively, when the width becomes
larger, the chance for an instance being identical to one of its isomorphisms be-
comes smaller. For a similar reason, when the width is fixed, the value ratio/s!
approaches 8 gradually as the size increases, as shown experimentally from the
results of subclass PCP|[2,3], PCPI[3,3] and PCP[4,3]. The total number of in-
stances in a finite subclass can be computed from the formulas given in Section
4.1, while no analytical method is known yet to calculate the exact number of non-
isomorphic instances in a subclass PC P[s, w]. Thus the ratio 8 - s! can be used to
estimate the number.

All instances in the 11 PCP subclasses were fully scanned for their solvability,
and the details are given in Sections 8.2 and 8.3.
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5. APPLYING Al SEARCH TECHNIQUES

As PCP can be formalized as a search problem, we can utilize those existing AT
search techniques that have been successfully applied to many theoretically decid-
able problems such as two-player board games and puzzles.

Depth-first iterative-deepening and cache table were first used to deal with PCP
instances by Richard J. Lorentz [8]. We refined the ideas and they are summarized
in the following. In addition, we first applied forward pruning and bidirectional
probing to improve the search efficiency of solving PCP instances.

5.1 Depth-first iterative-deepening

A depth-first iterative-deepening algorithm based on A* algorithm is the first known
algorithm able to effectively solve the 15-puzzle, which has been proven asymptot-
ically optimal in time and space complexity for a class of tree search problems [12].
This algorithm can be briefly described as follows: first, a starting depth threshold
is set and the state space is searched to the threshold. If no solution is found, the
threshold is augmented by a fixed depth increment and a new search is performed.
The above process is repeated until solutions are discovered or the depth threshold
reaches a final threshold. When the whole search process finishes, either optimal
solutions have been found, or it is proven that no solution exists up to the final
depth threshold.

The depth increment is an important parameter. If the increment is too small,
the solver may do too much redundant work as all nodes visited in an iteration will
be revisited in the next iteration. If the increment is too large, the search process
may fall into the space where most nodes have larger depths than the optimal
length, which can result in a significant loss of efficiency. In our experiments, we
use 20 as the depth increment.

5.2 Cache table

During the search process, it is possible to generate a configuration that has been
encountered before, where the depth of this newly generated configuration is longer
than that of the old one. Since we focus on optimal solutions, whenever this case
emerges, we can simply prune the new configuration.

To check revisited configurations, we employ a cache table which is very similar to
the transposition tables widely used in game-playing programs. A cache table is a
block of specially allocated memory space used to store a number of configurations
that have been visited before. When a newly generated configuration hits the cache,
we can determine whether it can be pruned by comparing its depth with the depth
of the one in the cache table. If it cannot be pruned, the cache should be added
or updated if applicable. To facilitate the identification process, we use a hash
function to map configurations to entries in the cache table. The size of the cache
table and the hash function need to be tuned for satisfactory performance.

5.3 Forward pruning

Similar to heuristic search algorithms such as A* and IDA* [13; 12], a heuristic
function of a configuration can be calculated and used as a lower bound for the
solution length (for an unsolvable instance, its solution length is defined to be
infinity). A heuristic value of a configuration is an estimate of the number of
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additional selections needed to reach a solution. When the heuristic value of one
configuration added to its depth exceeds the current depth threshold in the iterative
deepening search, this configuration definitely has no hope of reaching a solution
within that threshold. Hence we can reject it even if its depth is still far away from
the threshold. Since the heuristic function never overestimates, the pruning is safe
and does not affect the optimality of solutions.

One simple heuristic value of a top (bottom) configuration can be calculated by
its length divided by the maximum length difference of all pairs whose bottom (top)
string is longer. This heuristic is based on the length balance, and similarly, we can
calculate heuristics on the balance of elements 0 or 1.

More complex heuristics can be developed analogous to the pattern databases
used to efficiently solve instances of the 15-puzzle [14]. Before a search is performed
on an instance, we can pre-compute matching results for some strings as the prefixes
of configurations, and use them to calculate a more accurate estimate of the solution
length than the simple heuristics during the search.

5.4 Bidirectional probing

As shown before, an instance is equivalent to its reversal in terms of solvability. But
the search difficulty to solve these two forms may be amazingly different, as shown
experimentally in Section 8.1. Hence, we use a probing scheme to decide which
search direction is more promising. Initially we set a comparison depth (40 in the
implementation), and two search processes are performed for the original instance
and its reversal to the comparison depth respectively. A comparison of the number
of visited nodes in both searches gives a good indication about which direction is
easier to explore. The solver then chooses to solve the one with the smaller number
of visited nodes. As the branching factors in most instances are quite stable, this
scheme worked very well in our experiments.

As a complement, we would like to point out that in the four types of transfor-
mations to generate isomorphic instances (see Section 4), only reversal can make a
big difference during the solving process.

6. NEW DOMAIN-DEPENDENT METHODS

Although AT search techniques help the PCP solver find solutions to many difficult
instances, domain-dependent methods are required to tackle solvable instances more
effectively and to prove the unsolvability of hard instances.

Intuitively, solvable and unsolvable instances should be treated separately, but
for PCP instances, these methods are valuable to both types of tasks, and we hence
discuss them together in this section. These new methods are all specifically based
on the characteristics of PCP, and can be categorized into two classes.

The first class is concerned with pruning configurations. If a configuration can be
proven unsolvable through simple rules, it can be safely pruned without generating
its descendants, and by this means, a great portion of search space can be saved.
This may result in a significant improvement of the solving time for a solvable
instance, and lead to an unsolvability proof for an unsolvable instance by reducing
its unbounded search space to a finite one. We formalized two methods namely mask
method and pattern method to find such rules that any configuration satisfying them
can be pruned.
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The second class is for simplifying instances. By analyzing a specific instance,
we may find special structures showing the instance can be simplified by removing
some of its pairs or replacing a substring with a simpler one. This simplification
significantly reduces the search work, and makes it possible to prove some instances
unsolvable. We invented exclusion method and group method to realize this idea.

6.1 Mask method

The mask method deals with pruning all configurations in the top or in the bottom
by proving all configurations in one position are unsolvable. At the beginning, we
need to introduce the important concept of critical configuration:

Definition 13 A critical configuration in an instance is a non-empty configuration
that can be fully matched by a pair of the instance such that the configuration
becomes empty, or be turned upside-down such that the position is flipped from
top to bottom or vice versa.

Critical configurations are critical because they constitute an indispensable step
for a configuration in general to reach a solution. If a top configuration is solvable, it
must reach a top critical configuration before transferring to an empty configuration
(being solved). Conversely, if no top critical configurations can occur in any solution
path, all top configurations generated are unsolvable and can be safely pruned: the
instance has a top mask. Similarly, a bottom mask means there is no hope of
reaching a solution once the configuration is in the bottom.

To check if an instance has masks, we need to find all critical configurations, and
then test if they are possible in a solution path or equivalently, if they are generable
and solvable. The first step to obtain all critical configurations can be simply done
by enumeration. To test if a configuration is generable can be converted to test if
the turnover of its reversal is solvable according to Lemma 2. Note that the process
to judge whether any given configuration is generable or solvable is undecidable,
and in our implementation, a fixed depth was set to limit the search. Because of
the limitation, it is possible that an instance has masks while we could not find
them out.

The following explains how these steps work to discover the top mask in PCP
(6), whose reversal is PCP (7).

01 00 1 001
(o 011 101 1) ©)

10 00 1 100

(o 110 101 1 ) @

At first, we need to find all top critical configurations. Since they could either
be fully matched or turned over by a pair, any matched pair must have a longer
bottom string. In this instance, the matched pair could only be pair 2 or pair 3.
With a little computation, we can find that only one top critical configuration exists
in PCP (6), i.e. 10, which can be fully matched by pair 3. Since this configuration
can be fully matched, it is solvable. In the next step, it is needed to check whether
10 in the top if generable from PCP (6), or equivalently, whether 01 in the bottom
is solvable from PCP (7). But in PCP (7), this configuration cannot choose any



12 . Ling Zhao

pair to match. Thus, no top critical configurations that are both generable and
solvable exist in PCP (6), and the instance has a top mask.

For some instances, the mask method is an effective tool to find their optimal
solutions. Take PCP (6) for example. It has a top mask, so we forbid the use of
pair 1 at the beginning, and can only choose pair 3, which helps quickly find the
unique optimal solution of length 160. If we did not know this fact, pair 1 could
be chosen as the starting pair and a huge useless search space would have to be
explored before ascertaining that its optimal length is 160.

The mask method can also prove the unsolvability of many instances. For exam-
ple, if an instance has both top and bottom masks, it certainly has no solution.

The step to prove critical configurations not generable can be strengthened by
the GCD (Greatest Common Divisor) rule: if the length differences of all pairs
have a greatest common divisor d, then the length of any generable configuration
must be a multiple of d. Consider the following PCP (8) as an example. The GCD

of all length differences is 2.
111 001 1
( 001 0 111 ) ®

Although in PCP (8), we can find a bottom critical configuration of 0 which can
be turned upside-down by pair 2, it is not generable because its length is not a
multiple of 2. As a result, this instance has a bottom mask, revealing the starting
selection must be pair 2. Finally, with a few steps of enumeration, we can prove
PCP (8) has no solution.

Note that the above example uses the difference of length, and similarly we can
use the difference of the number of elements 0 or 1.

6.2 Pattern method

If all possible paths a configuration with a prefix o generates always lead to con-
figurations with prefix @ (no empty configuration occurs in the paths), then clearly
any configuration having such a prefix is unsolvable. This observation essentially
comes from the goal to shrink configurations to an empty configuration. If there is a
substring that will unavoidably occur, it is impossible for configurations to transfer
to an empty configuration. The following example illustrates how this method is
effective to prove PCP (9) has a prefix pattern of 11 in the top, and as a result,

PCP (9) is unsolvable.
011 01 O
(1 o i) o)

Given a top configuration of 114, where A can be any string, the next selection
can only be pair 1. Thus a new top configuration 14011 is obtained. Now let’s
focus on how the substring 0 right after the A is matched. The matched 0 can be
supplied either by the only 0 in the bottom string of pair 2, or by the last 0 in
the bottom string of pair 3. Whichever it is, after 0 is matched the substring 11
right behind it will inevitably become the prefix of a new configuration. So a top
configuration 11A will definitely transfer to another top configuration 11B after
a number of steps. The prefix cannot be removed, showing any top configuration
with a prefix of 11 is unsolvable. The procedure to find a prefix in PCP (9) is
illustrated in Fig. 1.
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114 = 14011 => 11B
Fig. 1. Deduction of a prefix pattern in PCP (9)

The dotted vertical line in the figure partitions configurations into left and right
parts. According to the matching rules of PCP, its left part from the line must be
matched exactly during a number of selections. Therefore, the dotted vertical line
works as a border: matching must stop at one side of it and continue on the other
side; no substring can be matched across the line.

It can be proven that PCP (9) has a bottom mask. So with the help of the prefix
pattern derived above, we can exhaustively try all possible selections and prove
PCP (9) is unsolvable.

It is quite intuitive to discover the pattern in PCP (9), yet to find similar patterns
in other instances may not be simple. For example, Fig. 2 illustrates the procedure
to detect the prefix pattern of 000 in the top in PCP (10), which is indispensable
for the unsolvability proof of this instance.

01 0 00
(o 100 10 ) (10)
101051 B0l = | B,ogloooo = 1oo§oooc] = 000D,
000A I:(>A0§10101 —> 1010;'1 B0 —=>18B; 00;000 —> 000C:
1010;1 B;00 => 1 BgOOOéOOO —> 000C;

Fig. 2. Deduction of a prefix pattern in PCP (10)

6.3 Exclusion method

The exclusion method is utilized to detect pairs that will never be used when
the selections start at some pair. The exclusion comes from the fact that if any
combination of certain pairs cannot generate a configuration that can be matched
by a specific pair, then that pair is useless and can be safely removed. PCP (11) is

such an example.
1 0 101
(o 001 1 ) (11)

If we start from pair 2, then the following selections can only be pair 1 or pair 2.
The proof can be separated into three steps.

(1) If only pair 1 and pair 2 are allowed, all generated configurations stay in the
bottom.

(2) Any combination of the bottom strings of these two pairs cannot have a sub-
string of 101, the top string of pair 8. Thus when a configuration generated by
these two pairs has its length of at least 3, pair & has no chance to be selected.
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(3) The only bottom configuration with length less than 3 that can be matched by
pair 8 is 10, yet it cannot be generated by selections of pair 1 and pair 2.

Therefore, we only need to deal with an instance consisting of pair I and pair 2
after selections start at pair 2. This new instance never leads to a solution since the
length of configurations it generates never decreases. Hence starting at pair 2 is
hopeless. Similarly, we can prove starting at pair 3 is also unsolvable by excluding
pair 2. As we can find no other starting pairs, PCP (11) is proven unsolvable.

6.4 Group method

If any occurrence of a substring in configurations can only be entirely matched
during one selection of pairs, instead of being matched through several selections,
we can consider the substring as an undivided entity, or a group. In other words,
if the first character in a group is matched during one selection, all others in the
group have to be matched in the same selection. The group method is utilized to
detect such groups and help to simplify instances. Consider PCP (12), where the

substring 10 forms a group.
011 10 O
( 10 010> (12)

(45 3)

g =01

The substring 10 can be inserted into configurations through the bottom string
in pair 8, and then can be matched by 10 in the top string in pair 2. If we consider
an instance consisting of only pair 2 and pair 3, then it is not difficult to find out
that whenever there is a substring 10 occurring in a configuration, this substring
must be entirely supplied by a selection of pair 3 and can only be matched by
pair 2. Therefore, we can use a new symbol g to represent the group 10, and the
instance will be simplified to PCP (13).

If only pair 2 and pair & are taken into consideration, the configurations they
generate will stay in the bottom and have their lengths non-decreasing. So these
configurations lead to no solution. As the new symbol g cannot be matched by 0
or 1, it is easy to see that pair I can be excluded when selections start at pair 3.
Since no other possible starting pair exists, PCP (12) is unsolvable.

7. CREATING DIFFICULT INSTANCES

A strong PCP solver enhanced by the methods discussed in the previous two sec-
tions is essential for creating many difficult instances. Besides, the hard instances
that we found attracted us to find their solutions efficiently, and those unsolved in-
stances were intriguing to us to come up with new ideas. Thus, the three directions
we are working on are interrelated, as shown in Fig. 3.

The task of creating difficult instances can be further categorized into two schemes:
random search and systematic search.
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Search as a proof method

Proofof
unsolvability,

Search

Creating
difficult
instances

Fig. 3. Relations between three research directions in PCP

7.1 Random search for hard instances

A random instance generator plus a PCP solver is a straightforward means of
discovering interesting instances. Implemented with several search enhancements
and various methods that help to prove instances unsolvable, the program can
quickly stop searching unpromising instances and find the optimal solutions to
solvable instances faster.

During the search process of an instance, we use three factors as stopping condi-
tions if no solution is found, which helps to terminate the solving process even in
an infinite search space. They are the final depth threshold, the number of visited
nodes, and the number of cutoff nodes (nodes pruned by the cache table). Using
the number of visited nodes as a stopping condition forces the search process to
treat every instance equally, avoiding the situation of frequently getting stuck in
instances that have a large branching factor but no solution. The use of cutoff
nodes as a stopping condition comes from the observation that most of the hard
instances we collected do not have a large number of cutoff nodes (the largest is
only 28,972).

7.2 Systematic search for hard instances

As the random search scheme randomly chooses instances to consider, the chance of
finding difficult instances is still dependent on luck, so a systematic approach seems
more convincing to demonstrate the strengths of a PCP solver. If all instances in
a specific PCP subclass are examined, they may be completely solved and lots of
hard instances including the hardest one in this subclass can be discovered. Even
if we cannot solve all of them, the unsolved instances may stimulate us to find
better approaches to deal with them. As all non-isomorphic instances in finite
PCP subclasses can be generated through the process described in Section 4, we
used our PCP solver to scan all instances in the 11 PCP subclasses listed in Table
2. The results are shown in Sections 8.2 and 8.3.
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7.3 New PCP records

The random and systematic search schemes for creating difficult instances helped us
set the hardest instance records in 4 non-trivial PCP subclasses shown in Table 3.
The records in subclasses PC P[3,4] and PC P[4, 3] were found by using the system-
atic search scheme and those in PC P[3, 5] and PC P[4, 4] were obtained through the
random search scheme. Note the record in PC PJ[3, 3] was independently discovered
by Richard J. Lorentz and Johannes Waldmann. More information is provided on
the web sites [15; 16]. These records show experimentally the difficulty of solving
instances of an undecidable problem that have very small sizes and widths.

number of
subclass hardest instance known optimal length optimal
solutions
11 1
PCP[3,3] ( 0 0 1(;0 ) 75 2
PCP[3,4] ( 1101 0110 110 ) 252 1
11101 1 11
PCP[3,5] (0110 1011 ) 240 1
111 011 O
PCP[4,3] (110 ) 100 0 ) 302 1
1010 01
PCP4,4] (100 1011 1 0 ) 256 1

Table 3. Records of hardest instances in 5 PCP subclasses

8. EXPERIMENTAL RESULTS AND ANALYSIS

We implemented most of the methods we discussed in Sections 5 and 6 except the
pattern method and group method, because we could not find a general way to
automate them. The program was written in C++ under Linux platform.

With other normal search enhancements and programming techniques incorpo-
rated, the final version of our PCP solver achieved a search speed of 1.38 x 10°
nodes per second on a machine with a Pentium IIT 600MHZ processor and 128M
RAM.

8.1 Results of solving methods

In this subsection, all experiments were performed on 200 hard instances. 199 in-
stances have optimal lengths at least 100 and were collected from 4 PCP subclasses
through the methods described in Section 7; the remaining test case is the hardest
instance known in PCPJ3, 3], as shown in Table 3. The average branching factor
of 200 test instances is only 1.121 after all enhancements were incorporated. Such
a small branching factor makes it feasible to find a solution with length even over
300.

We cannot provide a quantitative evaluation of the improvements derived from
the mask method and exclusion method, since they are essential to solve certain
types of instances. It is more proper to comment that these two methods would
help to prune a huge useless search space in some cases, e.g., reducing an infinite
search space to a finite one.
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Bidirectional probing is also crucial to solve some hard instances. PCP (14) with
an optimal length of 134 is such an example. Up to depth 40, searching this instance
directly is more than 15,000 times harder than searching its reversal in terms of
the number of visited nodes. Consider that searching to depth 40 has already
made such a big difference, if searching to depth 134, the difference will explode
exponentially. Thus, it becomes unrealistic to solve this instance when the wrong
direction is chosen. What’s more, proving an instance unsolvable directly may be

much harder than proving its reversal directly. These results clearly demonstrate
how important bidirectional probing is.

(

One nice strength of the above three methods is that they are all done before a
deep search is performed and they introduce negligible overhead to the solver.

We implemented two types of admissible heuristic functions to prune hopeless
nodes in the forward pruning. The first one is based on the length balance, and the
second is based on the element balance, as Section 5.3 described. Three separate
experiments were conducted on forward pruning, namely, using the first type of
heuristic, using the second type and using both types. The results show that only
using the heuristic on the length balance achieved the best performance.

We tried to compare the improvement achieved by forward pruning with the
situation when no pruning is done, but we could not finish the task since it would
take too much time. PCP (15) is an illustrative example. The solver spent 14,195
seconds to solve this instance when no pruning was used, compared to merely

5.2 seconds when the length balance heuristic was employed. This is a 2730-fold
speedup in solving time!

110
0

1 1
101 00

0

11 (14)

11011
0110

110
1

1

11011 (15)

3500
1

Solving time (seconds)

e e
- -

.
20 25
Depth increment

L
15

L
30 1 4

L L L L L
256 1024 4096 16384 65536 262144

Cache size (entries)

L L
16 64

Fig. 4. Solving time with respect to different depth increments and cache sizes

We also did experiments on search parameters, as shown in Fig 4. The exper-

imental results show that when the depth increment in the iterative deepening is
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20, the solving time is minimal over our test set. The result of the experiments on
the cache size, however, is a little surprising. It shows that from 8 entries to 65536
entries, the solving time is quite stable. We suspect this phenomenon is largely de-
pendent on the test instances chosen. By default, a large table is employed because
it is essential to prove some instances unsolvable.

8.2 Results of scanning PCP subclasses

We first scanned 8 PCP subclasses that are easy to handle, and all instances in these
subclasses were completely solved. All isomorphic instances have been removed,
and the results are shown in Table 4. This table also provides a statistical view on
the effectiveness of our unsolvability proof methods, and illustrates how small the
percentage of solvable instances in these subclasses is.

PCP total after | after after solvable | unsolvable
subclass number filter | mask | exclusion || instances instances || ®(s,w)
PCP[2,1 1 0 0 0 0 1 -
PCP|[2,2 76 3 3 3 3 73 2
PCP[2,3 2,270 51 31 31 31 2,239 4
PCP[2,4 46,514 662 171 166 165 46,349 6
PCP[2,5 856,084 9,426 795 761 761 855,323 8
PCP[2,6 14,644,876 | 140,034 | 3,404 3,129 3,104 | 14,641,772 10
PCP[3,2 574 127 67 61 61 513 5
PCP[4,2 3,671 1,341 812 786 782 2,889 5

Table 4. Solving results of 8 PCP subclasses

One special phenomenon we observed is that the hardest instances of several
PCP subclasses with size 2 can all be represented in the following form:2

10 1
1 01m

It is not hard to prove the optimal length of this kind of instances is 2n. As
conjectured in [8], instances having such a form might always be the hardest ones
in PCP[2,n+ 1] in general. If the conjecture is true, it will lead to a much simpler
proof that PCP[2] is decidable than the existing one [4]. Our experimental results
support the conjecture in the cases from PCP[2,2] to PCP[2,6].

We used the systematic method to further examine three PCP subclasses that
are much harder to conquer. Table 5 summarizes the results from PCP[3,3], and
Table 6 in the next subsection shows the results from PCP[3,4] and PCP[4,3].

In Tables 5 and 6, an instance removed by the exclusion method may still have
solutions, but it cannot have a walid solution where all pairs of the instance are
used. Since the result of solving such an instance is identical to the combinations
of the results from instances with smaller sizes, we stop the further processing.
Similarly, instances removed by the element balance filter may also have invalid
solutions, but these solutions are of no interest to us.

20f the three hardest instances of PCP[2,2], only one instance can be represented in this form.
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| Total number || 127,303

After filter 8,428

After mask 2,089

After exclusion 2,002
Solvable instances 1,968
Unsolvable instances 34
®(3,3) 75

Table 5. Scanning results of subclass PCP|[3, 3]

Our PCP solver solved all but 33 instances in PC'P[3, 3]. We proved 32 instances
of them unsolvable by hand using the methods discussed in Section 6. To prove
these instances unsolvable requires several tricks, but they were not implemented
as they are too specific to several instances and are hardly generalized to solve a
considerable number of instances.

The remaining instance is PCP (16). It was solved by Mirko Rahn through a
new method that generalizes the pattern method discussed in this paper [17]. Thus
all instances in PCP[3,3] were settled down, and we have ®(3,3) = 75.

110 1 0
( 1 o1 110) (16)
8.3 Results of creating difficult instances

We scanned all instances in PCP([3,4] and PCP[4,3] to discover hard instances.
The results are summarized in Table 6.

| [[ PCP[3,4] | PCP[4,3] |

Total number 13,603,334 5,587,598

After filter 902,107 1,024,909

After mask 74,881 275,389

After exclusion 65,846 266,049
Solvable instances 61,158 249,493
Unsolvable instances 1,518 2,633
Unsolved instances 3,170 13,923
Hard instances 5 72
®(s,w) > 252 > 302

Table 6. Scanning results of subclass PCP[3,4] and PCP[4,3]

We used the following three conditions to limit the search:

(1) search depth < 400
(2) number of visited nodes < 180,000,000
(3) number of cutoff nodes < 5,000,000

The scanning process took about 30 machine days to finish and resulted in the
discovery of 77 hard instances whose optimal lengths are at least 100. At the same
time, more than 17,000 instances remain unsolved to the solver, and it becomes
impossible to check such a large quantity of instances manually. Although most of
these unsolved instances may have no solution, it is still likely that they contain
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some extremely difficult solvable instances. Thus, these instances are left for future
work, waiting for some new search and disproof methods.

Using the random approach to search for difficult instances, we successfully dis-
covered 21 instances in PCP[3,5] and 101 instances in PCP[4,4]. Their optimal
lengths are all at least 100. The whole process took more than 200 machine days
to finish. All of those hard instances and unsolved instances can be found on the
web site [16].

9. A COMPARISON BETWEEN PCP AND BUSY BEAVER PROBLEM

Tibor Rado invented the Busy Beaver Problem in 1962, which is to find the simple
deterministic Turing machine that produces a maximum number of 1’s on the tape
when halting [7]. These deterministic Turing machines have n states (excluding
the halting state), one infinite tape initially filled with blank symbols, and they are
only allowed to write 1’s on the tape. X(n) is defined as the maximum number
of 1’s such a Turing machine with n states produces when it halts. Tibor Rado
also proved ¥(n) is a non-computable function and solved ¥(1) and ¥(2). The
continuous research on this logical game produced the exact values for (3) and
3 (4) [18; 19], as well as the lower bounds for ¥(5) and %(6) [20; 21]. Currently,
%(6) > 1.29 - 10865,

Our experimental approach to PCP shares many similarities with the approach
to compute the function ¥(n) in the Busy Beaver Problem. &(s,w) and ¥(n)
are both non-computable functions, and computing ® (s, w) requires the techniques
to prove PCP instances unsolvable while computing ¥(n) needs the methods to
prove Turing machines non-halting. Both approaches discard isomorphic instances
or Turing machines to avoid redundant work. The pattern method raised in this
paper is quite similar to the method to find the partial recurrent pattern in Turing
machines [18].

However, since the Turing machines are deterministic, they can choose at most
one transition function in each move, as contrast to multiple choices during pair
matching in PCP instances. Besides, the Turing machines are amenable to move
compression [20]. Therefore, it is not surprising that some Turing machine with
6 states can be found halt at step more than 3 - 101730 [21], while currently the
hardest PCP instance with size and width at most 4 is merely longer than 300.

10. CONCLUSIONS AND FUTURE WORK

In this paper, we described many new methods and techniques to tackle PCP
instances, including finding optimal solutions quickly, proving instances unsolvable
and creating interesting difficult instances. We successfully applied these methods
to our PCP solver, and used it to scan all instances in 11 PCP subclasses and to
search randomly in 2 much harder subclasses. Our work resulted in the discovery of
199 difficult instances with optimal length at least 100, and in setting the hardest
instance records in 4 non-trivial PCP subclasses.

We have discovered many new characteristics and properties of PCP, and pro-
vided empirical results for solving PCP instances. These results can be helpful to
investigate some theoretical issues related to this problem.

However, there is still lots of room for further improvements. There are more
than 17,000 unsolved instances in PCPJ[3,5] and PCP[4,4] waiting for some new
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methods to conquer them. Although we implemented most of the methods and
techniques discussed in this paper, the group method and pattern method have
only been applied by hand to solve some hard instances. If these methods could
be successfully incorporated into our PCP solver, a great portion of the unsolved
instances would be proven unsolvable.

As PCP instances are closely related to their reversals, bidirectional search can
also be applied to solve them. It is also very interesting to investigate the benefits
brought by the complex heuristics mentioned in Section 5.3. In this way, PCP can
act as a special test bed for general search enhancements.

We anticipate the work to continue to tackle PCP[3,5], PCP[4,4] and more
difficult PCP subclasses. If the hardest instances in these subclasses could be found,
it may be possible to find some similarities and link them to theoretical issues.
Nevertheless, identifying more hard instances can provide a better understanding
of the complexity of PCP and pave the road for improvement of solving methods.
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