Computer Go: a Research Agenda

Martin Miller

ETT. Complex Games l.ab
Tsukuba, Japan
mueller@etl.go. jp

Abstract. The field of Computer Go has seen impressive progress over
the last decade. However, its future prospects are unclear. This paper
suggests that the obstacles to progress posed by the current structure of
the community are at least as serious as the purely technical challenges.
To overcome these obstacles, 1 develop three possible scenarios, which
are based on approaches used in computer chess, for building the next
generation of Go programs.’

1 A Go Programmer’s Dream

In January 1998, T challenged the readers of the computer-go mailing list [27] to
discuss future directions for Computer Go:

Assume you have unlimited manpower at your hand (all are 7-Dan in
both Go and programming) and access to the fanciest state of the art
computers. Your task is to make the strongest possible Go program
within say three years. What would you do?

Many contributors to the ensuing discussion severely criticized all currently
used approaches, and advocated the development of revolutionary new tech-
niques. T don’t think such wholesale criticism is justified. Tn this paper T take a
close look at the current state of Computer Go, and propose a more systematic
use of already available, proven techniques. T claim that this will already lead to
substantial progress in the state of the art. Writing programs for Go has turned
out to be much more complex than for other games. The way Go programs are
developed must adapt accordingly: it 1s necessary to scale up to larger team
efforts.

The paper is organized as follows: Section 2 analyzes the state of Computer
Go, identifies some of the strengths and weaknesses of the current generation
of programs, and outlines a plan which draws on existing technology but still
promises substantial progress within a few years. In section 3, T introduce three
development models that have successfully been used in chess, and discuss how
to adapt them to Computer Go. Finally, section 4 introduces some promising
topics for long-term research.

! This article is adapted from a paper in the proceedings of CG’98 [22]

2 The State of Computer Go

To the casual observer, Computer (Go may seem to be in fine shape. However,
a number of problems threaten the future prosperity of the field. Many of these
problems are rooted in the current structure of the Computer Go community.

2.1 The Computer Go Community

Recent years have seen many developments in Computer Go. Good progress has
been made in the tournament scene and the internationalization of the field.
However, in several ways the field has remained immature: programs are con-
structed on an ad hoc basis, results are held back for commercial reasons, and the
lack of support for new researchers willing to enter the field 1s a severe problem.

Actually, the situation may be quite similar to other games. Almost ten years
ago, John McCarthy wrote about the computer chess community [17]:

By and large, they come in two flavors: sportsmen and businessmen
(makers of commercial chess machines). Neither group is primarily mo-
tivated to produce scientific papers explaining how the results were
achieved and how others might build upon them for further improve-
ment. Because of these factors, computer chess has not succeeded in its
Drosophila role and T must entreat the community that computer chess
be made more scientific: publication is what we need.

The same kind of critical remarks would be justified for characterizing today’s
Computer Go scene. However, let’s start by looking at some of the bright spots
first:

Plus: Active Tournament Scene Several yearly tournaments have been es-
tablished. The Ing foundation’s International Computer Go Congress, started
in 1985, continues to attract the elite of Go programs from all over the world.
Japanese researchers and companies have organized a number of big interna-
tional tournaments, such as the FOST cup. The yearly European and North
American Go congresses host smaller, local computer championships. On the
internet, the Computer Go Ladder [23] allows Go programmers from all over the
world to compete with a wide variety of opponents.

Plus: An International Activity Computer Go has become a truly inter-
national activity, with serious programs being developed in at least a dozen
countries. Tt 1s not unusual to see the first five places in a tournament taken by
competitors from as many different countries. The total number of programs to
participate in tournaments easily exceeds a hundred.

There is an active English language computer-go mailing list [27]. The Com-
puter Go Forum (CGF) with more than 60 members runs its own Japanese
language mailing list and issues a newsletter. The American Go Association’s

Computer Go web pages [20] provide an archive of relevant information, includ-
ing history and game records, and can serve as a starting point for exploring the
growing number of web sites devoted to the topic.

There seems to be renewed interest in Go research from the general AT and the
computer games community. After the world championship-level performances
of programs for chess, checkers, backgammon, Othello and many other games,
eyes have turned to Go as the ‘final frontier’ of computer game research.

Minus: Lack of Support for New Researchers Few individuals or institu-
tions have enough resources to subscribe to a full-scale Go programming effort.
Indeed most new Go programmers have to start almost from scratch. Because
of the overhead in getting started, it is very hard for a smaller project, such as
a masters thesis, to make a significant contribution.

Given the complexity of the task, the supporting infrastructure for writing
Go programs should offer more than for other games such as chess. However,
it is far inferior. The playing level of publicly available source code [8,15,20],
though improved recently, lags behind that of state of the art programs. Quality
publications are scarce and hard to track down. Few of the top programmers have
an interest in publishing their methods. Whereas articles on computer chess or
general game tree search regularly appear in mainstream AT journals, technical
publications on Computer Go remain confined to hard to find proceedings of
specialized conferences. The most interesting developments can be learned only
by direct communication with the programmers and never get published.

2.2 Current State of Go Programs

Computer Go constitutes a formidable technical challenge. Existing programs
suggest the following difficulties:

A competitive program needs 5-10 person-years of development.

A typical program consists of 50-100 modules.

The weakest of all these components determine the overall performance.

A number of standard techniques have emerged. However, no single program
incorporates a large fraction of all currently existing successful Computer Go
methods.

The best programs usually play good, master level moves, but their perfor-
mance level over a full game is much lower because of the remaining blunders.

Let me discuss the last two problems in some detail:

Minus: Incompleteness of Existing Programs Unfortunately, there is no
single program that incorporates most of the currently existing successful Com-
puter Go techniques. A next generation program would need to recreate and
integrate most of these individual capabilities.

Tt is easy to see why the currently predominant single-person projects are
really inadequate for Go: the sheer number of necessary components. Even as-
suming only one month for each module, components of a reasonably complete
program take four to five years to build, plus considerable time for system-level
testing and integration.

Minus: Disappointing Sustained Performance The difference in first-play
versus sustained long-run performance of programs against human players is
drastic: programs typically do well in their first game against an opponent in-
experienced in playing computers. For example, the Handtalk program has won
Ing’s challenge matches taking a 11 stone handicap against top amateur players,
and has beaten a 1-dan player on even in an exhibition game at the FOST cup.
These games are impressive achievements. T urge the sceptics among the readers
to carefully study the games, which are available on the AGA site [20].

The other side of the story is that, if allowed a few practice games, humans
soon spot a program’s weaknesses and become able to exploit them. The same
program that once beat the 1-dan regularly loses to a well-prepared 5-kyu player,
even with huge handicaps of up to 20 stones.

What to Blame? The Model or its Implementations? What is the reason
behind the uneven performance of today’s programs? How can Go programs look
so good in one game and so pathetic in the next? One theory is that there is
a fundamental problem with the underlying models. In this view, current Go
programs are not able to capture the true spirit of Go: they may play good-
looking moves, but do so without any real understanding of the game, which
inevitably shows sooner or later. The alternative view is that the current model
is basically sound and sufficient, but programs suffer from incomplete or buggy
implementations. T will describe some experiments designed to test these theories
later. First, T will briefly outline a model for current Go programs. A more in-
depth treatment can be found in the long version of this article [22].

2.3 A Model of Go Program Components

David Fotland’s Computer Go Design Issues [11] lists about sixty components
of current Go programs, and can be considered as defining a standard model
encompassing most current state of the art programs. A program implementing
this model as complete and technically accurate as possible would serve as an
interesting milestone by itself. Furthermore, such a program would allow a more
meaningful analysis of the model’s strengths and weaknesses than is currently
possible. T will briefly discuss each of the following development tasks for a Go
program:

Theoretical foundations and game tree search methods
Knowledge representation and data structures
Search methods

Global move decision
Software engineering and testing
Automatic tuning and machine learning

Theoretical Foundations and Game Tree Search Methods Theoreti-
cal techniques applicable to Computer Go range from abstract mathematics
for group safety, endgame calculation and ko evaluation [6,7,25] to Go-specific
knowledge such as the semeai formula. A detailed survey of theories relevant for
Computer Go is given in [19].

Standard game tree-searching methods are well established for goal-oriented
tactical search in Go. In addition, new search methods such as proof-number
search [1] have been successfully applied in at least one commercial program.
The many potential benefits offered by theory have only partially been exploited
in current programs.

Knowledge Representation and Data Structures Most programs use a
hierarchical model for board representation. TLow-level concepts are blocks of
adjacent stones and connections or links between stones. Chains, groups and
territories are higher-level concepts built from the primitives. Pattern matching
is used to find candidate moves. Knowledge representation has been the main
focus of Computer Go research to date, and has reached a sophisticated level.

T expect that the quality of knowledge incorporated in programs will grad-
ually be refined. The quantity of knowledge is rising dramatically due to large-
scale pattern learning methods, which are becoming increasingly popular [9,
14,13,29,24]. However, it is unclear how computer-generated pattern databases
can approach a quality comparable to human-generated ones. For comparison,
it would be fascinating to develop a large corpus of human Go knowledge, to try
to identify and encode the pattern knowledge of Go experts.

Search Methods ? Three types of search are commonly used in Computer Go:
single-goal, multiple-goal, and full-board search. Specialized searches that focus
on achieving a tactical goal constitute some of the most important components
of current Go programs. One use of goal-directed search is to propose locally
interesting moves to the global move decision process. Because of the complex
evaluation and high branching factor of Go, full-board search has to be highly
selective and shallow.

Global Move Decision There is a great variety of approaches to the problem
of global move decision in Go. No single paradigm, comparable to the full board
minimax search used in most other games, has emerged. Most programs use a
combination of the following methods:

Static evaluation to select a small number of promising moves

2 This topic is discussed in much greater detail in [22]

Selective search to decide between candidate moves

Shortcuts to play some urgent moves immediately

Recognition and pursuit of temporary goals

Choice of aggressive or defensive play based on a score estimate

T expect experimentation to continue, without any clear preference or standard
method emerging. Methods based on combinatorial game theory have the po-
tential to replace more traditional decision procedures.

Software Engineering and Testing A competitive Go program is a major
software development project. Software quality can be improved by using stan-
dard development and testing techniques [18]. A wide variety of game-specific
testing methods are available, including test suites, auto-play and internet-based
play against human opponents. However, many tournament games are still de-
cided by blunders that seem to originate from programming errors.

Tt is hard to judge objectively, but T suspect there is a lot of room for improve-
ment in this area. Most leading programs have been in continuous development
for ten or more years. Many of these programs may be reaching a level of inter-
nal complexity where 1t is difficult to make much progress. Originally designed
for machines a thousand times smaller and slower, programs have grown layer
upon layer of additions, patches and adjustments. Some programs have been
rewritten from scratch in the meantime, but this is a daunting and extremely
time-consuming task [28].

Automatic Tuning and Machine Learning Machine learning techniques
are used more and more in Go programs [9, 10], with the previously mentioned
large-scale pattern learning methods as maybe the most prominent example. T
predict that the applications of machine learning techniques in Computer Go
will increase further, for example for fine-tuning the performance of complex
programs with many components.

3 A Research Plan for Computer Go

What is the real limit that current models impose on the performance of Go
programs? Should research focus on developing better models, or on improving
the implementation of current ones? To answer these important questions, T
propose the following three lines of research and development:

Detailed analysis of current programs’ errors and limitations
A Drethirn experiment,
Large scale Go programming projects

The first two methods are designed to better understand the practical prob-
lems of current programs. The third proposal addresses testing the inherent
limits of current technology.

3.1 Detailed Error Analysis

Detailed error analysis of current programs can draw upon a wealth of available
game records [20]. Many classifications of mistakes can be made. One possible
distinction is between lack of basic understanding and lack of efficiency. Lack of
basic understanding can be defined as the failure to identify the current focus of
a game. Examples are attacking or defending the wrong group of stones, ignoring
threats or double threats, making wrong life and death judgments, or playing
bad shape because of a lack of pattern knowledge.

Efficiency errors are less drastic individually but have a large cumulative
effect. Mistakes belonging to this category are: making overconcentrated shapes,
taking gote when a sente move is available, or achieving the correct main goal
without optimizing secondary effects as well.

Research should aim to develop automatic methods for performing such error
analyses by using statistical techniques and developing suitable test suites.

3.2 A Dreihirn Match for Go

In Tngo Althofer’s series of Dreihirn chess experiments [2,16], a team of two
chess computers supervised by a human boss has achieved strong results against
chess grandmasters and programs. The team played markedly better than each
individual program, even though the boss was a relatively much weaker player.
The human supervisor was able to select a promising overall direction of play and
avoid some dubious computer moves. Althofer has performed similar experiments
with one or more computers running in k-best mode, and a human operator
selecting a move from that list [2,3,5,4].
In [4], Althofer concludes:

The match win against Yusupov demonstrated once more that in chess
an interactive man-machine system may perform much better than each
of 1ts components separately.

T propose performing a Dreihirn experiment in Go, with a team of several Go
programs supervised by a strong human player. At each move, the human selects
one of the moves proposed by the programs. This team is tested against a variety
of opponents, including other programs and humans of different strengths. Such
a test can serve to establish an upper limit of current program performance, and
show whether the uneven play is due more to individual bugs in the implementa-
tions or due to more fundamental limitations of all current programs. If a series
of games is played, the test would also show if human opponents can adapt as
quickly to such a system as they seem to adapt to each individual program.

3.3 OQutline of An Architecture for Large Scale Go Projects

From the beginning, most Computer Go projects have consisted of a single pro-
grammer, with occasional assistance from scientists and Go experts. In recent
years, a few commercial programs have been developed on a slightly bigger scale,

with small teams of programmers and managers working on the Go engine and
user interface.

T believe that the scale of these projects is not large enough, and that projects
an order of magnitude larger are necessary to produce a qualitative jump in per-
formance. Section 2 has identified a list of tasks required to implement a com-
plete Go program based on the current standard model. However, implementing
a successful large scale Go project requires a series of preliminary steps:

Secure an existing state of the art program to build on, including an easy to
use basic Go toolkit.

Modify the program to increase its usability in a multi-programmer environ-
ment.

Describe the model underlying the program in detail.

Extensively document and structure the source code.

Define an effective communication method between team members.
Implement a well-defined process for subtask assignment, code integration
and testing.

T think that these steps represent necessary preparation for all three types of
large scale projects discussed below.

3.4 Three Proposals for Large Scale Go Projects

In chess, three approaches have been taken in recent years that may serve as an
inspiration for Go:

Large company funded teams (Deep Blue)
Public domain source code (GNU chess, Crafty)
University projects (many)

Plan 1: Large Scale Commercial Project The Deep Blue chess project
represents a large-scale effort, one order of magnitude larger than typical com-
petitive chess programs. Tts success rests on two pillars: on the technical side, it
is a complete, mature system, the result of skilful engineering firmly based on
a large amount of previous research. On the organizational and financial side,
the Deep Blue project was backed by a large company with an interesting new
marketing strategy. Computer chess was chosen as an advertising vehicle because
it represents an attractive topic that is tied to deep myths about human and
machine intelligence.

Would a similar alliance of research and big business make sense in Go? Who
would be a potential sponsor, and what would be their interest? ITn my view it
would be a world-class company with a strong interest in the Asian market,
and an ambition to create or reinforce their image as an intellectual leader. The
company would profit mainly from the publicity generated by exhibition games,
not from sales of Go software. Given the high regard for Go as an intellectual
sport, it seems possible to attract a level of attention comparable to that of the

chess matches, at least in East Asia. In Go, what is an achievable goal that will
fascinate the masses? World championship level play still seems far in the future.
Yet a program playing at a sustained 1-dan level, which can beat professional
players on 9 stones handicap, will be perceived as an intellectual achievement at
least equal to that of the chess machines. Ts it possible in the near future? Let’s
try!

Plan 2: Public Domain Go Project Source code for more than a dozen chess
programs is readily available on the internet [26]. The two best-known of these
programs, GNU chess and Crafty, have active user groups which are testing,
discussing or directly improving the program.

In Go, several public domain projects have been attempted over the years.
Until recently, none of these have resulted in a tournament level program. Per-
haps fueled by the open source/ GNU/Linux revolution, there is now a renewed
interest in such projects [15,8].

The characteristics of a public domain Go program are quite different from
a funded project and include:

Greater fluctuation of team members, unpredictable team size
Driven by group dynamics rather than financial incentive
Low development cost

Difficult moderation and integration tasks

The project goal could be to develop a noncommercial, research-oriented
tool. The program structure should allow small or medium-scale experiments,
for example in machine learning, to make use of a state of the art Go engine in
a reasonably straightforward manner. A less ambitious approach would aim at
developing only a library of commonly used functions.

Plan 3: University Research Project Many of the strongest chess programs
are developed at universities. The situation in Go i1s comparable: about half of
the current top 20 Go programs have started as student projects. An advantage
of student projects is that relatively little funds are required, and students can
combine programming work with their research.

The main challenge of this approach is to assemble a large group of talented
students and keep their efforts coordinated over a number of years. Given the
current distribution of Go players, a large-scale university Go project would
probably be feasible only in an Asian country. On the other hand, it is easy for a
student or university researcher to contribute to a Plan 2 public domain project,
so this may be a more viable approach for most.

4 Some Issues for Long-term Research in Computer Go

Compared to the complex reasoning processes of human Go experts, the models
incorporated in current Go programs are severely limited. A goal of long-term

research could be to narrow this gap, either by building more sophisticated
models or by deriving human-like reasoning capabilities from simple models.
Such research could include modeling the high level full-board plans of human
players, or advanced Go concepts such as aji, korikatachi or sabaki. Another
direction for research is evaluation from first principles, using only search and
learning, without relying on human-engineered heuristics.

Long-term machine learning topics are automatic derivation of sophisticated
Go concepts from first principles, or the learning of patterns along with suitable
contexts for their application.

Yet another research topic are applications of combinatorial game theory.
As a framework for Computer Go, combinatorial game theory has several ad-
vantages compared to the standard minimax game-playing model. However, the
finer points of this theory are as good as unknown outside the small combina-
torial games community. Several of the tools provided by this theory are well
suited for analyzing Go, and should be used in more (Go programs. For exam-
ple, the combinatorial game-theoretical method of thermography is able to very
naturally model fundamental Go concepts such as sente, one-sided sente and
gote [7]. Recent progress in theory and in practical algorithms for thermography
[7,25,21] also provides effective and sound methods for comparing the relative
values of ko and non-ko moves, and the evaluation of ko threats.

Further work is needed for handling incomplete local game trees and devel-
oping selective search strategies within a combinatorial game framework [12]. An
important research problem is to generalize the precise concepts of combinato-
rial game theory to work in a heuristic setting, in analogy to the minimax-based
heuristic game tree search used in other games.

5 Summary

Computer Go has enjoyed a boom in recent years, but its progress is hampered
by problems in the structure of the Computer Go community. An analysis of the
current state of Computer Go and a comparison with computer chess methods
indicates promising directions for research, both short-term and long-term. To
overcome the lack of critical human resources, Computer Go would benefit from
large scale projects, which have already succeeded in chess.

References

1. T.V. Allis. Searching for Solutions in (Games and Artificial Intelligence. PhT)
thesis, University of Tamburg, Maastricht, 1994.

2. 1. Althofer. On timing, permanent brain and human intervention. In J. van den
Herik, editor, Advances in Computer Chess, volume 7, pages 285 297. University
of Timburg, Maastricht, 1994.

3. I. Althofer. A symbiosis of man and machine beats grandmaster Timoshchenko.
TCCA Journal, 20(1):40 47, 1997.

4. 1. Althofer. T.ist-3-Hirn vs. grandmaster Yusupov part 2: Analysis. TCCA Journal,
21(2):131 134, 1998.

5. I. Althofer. Tist-3-Hirn vs. grandmaster Yusupov part1: the games. TCCA Journal,
21(1):40 47, 1998.

6. N.B. Benson. TLife in the game of Go. Information Sciences, 10:17 29, 1976.
Reprinted in Computer Games, T.evy, D.N.I.. (Editor), Vol. TI, pp. 203-213,
Springer Verlag, New York 1988.

7. E. Berlekamp. The economist’s view of combinatorial games. In S. Levy, editor,
Games of No Chance: Combinatorial Games at MSRI. Cambridge University Press,
1996.

8. D. Bump. Gnugo. http://www.gnu.org/software/gnugo/gnugo.html, 1999.

9. T. Cazenave. Systeme d’Apprentissage Par Auto-Observation. Application au jeu
de Go. PhD thesis, University of Paris, 1997. www-laforia.ibp.fr/ cazenave/-
papers.html.

10. M. Enzenberger. The integration of a priori knowledge into a Go playing neural
network. cgl.ucsf.edu/go/Programs/NeuroGo.html, 1996.

11. D. Fotland. Computer Go design issues. www.usgo.org/computer/text /-
designissues.text, 1996.

12. K.Y. Kao. Sums of Hot and Tepid Combinatorial Games. PhD) thesis, University
of North Carclina at Charlotte, 1997.

13. T. Kojima. Automatic Acquisition of Go Knowledge from Game Records: Deductive
and Fuvolutionary Approaches. PhD) thesis, University of Tokyo, 1998.

14. T. Kojima, K. Ueda, and S. Nagano. An evolutionary algorithm extended by
ecological analogy and its application to the game of go. In Proceedings of the Fif-
teenth International Joint Conference on Artificial Intelligence(I11CAT-97), pages
684 689, 1997. www.brl.ntt.co.jp/people/kojima/research.

15. J. Tim. Baduki. http://soback.kornet.net/~artist/baduk/baduki.html, 1999.

16. C. Tatz. Report on the match 3-Hirn vs. Christopher Tutz. TCCA Journal,
19(2):115 119, 1996.

17. J. McCarthy. Chess as the drosophila of ai. In T. A. Marsland and J. Schaeffer,
editors, Computers, Chess, and Cognition, pages 227 237. Springer Verlag, New
York, 1990.

18. S. McConnell. Rapid Development. Microsoft Press, 1996.

19. M. Miiller. Game theories and Computer Go. In Proc. of the Go and Computer
Science Workshop (GCSW’93), Sophia-Antipolis, 1993. INRIA.

20. M. Muller. American Go Association Computer Go Pages. www.usgo.org-
/computer, 1997.

21. M. Muiller. Generalized thermography: A new approach to evaluation in Computer
Go. In H. lida, editor, Proceedings of ITCAI-97 Workshop on Computer GGames on
Using Games as an Frperimental Testhed for AT Research, pages 41 49, Nagoya,
1997.

22. M. Miller. Computer Go: a research agenda. In J. van den Herik and H. Tida,
editors, Computers and Games. Proceedings C'(G°98, number 1558 in l.ecture Notes
in Computer Science, pages 252 264. Springer Verlag, 1998.

23. E. Pettersen. The Computer Go T.adder. cgl.ucsf.edu/go/ladder.html, 1994.

24. S. Sei and T. Kawashima. Move evaluation tree system. Complex Games l.ab
Workshop. http://www.etl.go.jp/etl/divisions/~ 7236 /Fvents/workshop98/, 1998.

25. W. Spight. FExtended thermography for multiple kos in go. In J. van den Herik
and H. Tida, editors, Computers and Games. Proceedings (C(G’98, number 1558 in
T.ecture Notes in Computer Science, pages 232 251. Springer Verlag, 1998.

26. P. Verhelst. Chess program sources. www.xs4all.nl/~verhelst/chess/sources.html,
1997.

27. T.. Weaver. COMPUTER-GO Mailing Tist Archive. www.hsc.fr/computer-go,
1998.

28. B. Wilcax. Chess is easy. Go is hard. Computer Game Developers Conference.
home.sprynet.com /sprynet/vrmlpro/cgdc.html, 1997.

29. H. Yoshii. Move evaluation tree system. Complex Games l.ab Workshop.
http://www.etl.go.jp/etl/divisions/~ 7236 /Fvents/workshop98/, 1998.

