A General Solution to the Graph History Interaction Problem

Akihir o Kishimoto and Martin Mller
Departmentf ComputingScienceJniversity of Alberta
EdmontonCanadal 6G 2E8

{kishi,mmuelle} @cs.ualberta.ca

Abstract

Sincethestatespaceof mostgamesds adirectedgraph,mary
game-playingsystemsletectrepeategositionswith atrans-
positiontable. This approachcanreducesearcheffort by a
large mamgin. However, it suffers from the so-calledGraph
History Interaction(GHI) problem,which causeserrorsin
gamescontainingrepeatedositions. This paperpresentsa
practicalsolutionto the GHI problemby combiningandex-
tending previous methods. Becauseour schemeis general,
it is applicableto differentgametree searchalgorithmsand
to differentdomains. As demonstratedvith the two algo-
rithms a3 anddf-pnin thetwo gamescheclersandGo, our
schemencursonly a very small overheadwhile guarantee-
ing the correctnessf solutions.

Keywords: GHI problem, df-pn algorithm, a8 algorithm,
Kawanos simulation

Intr oduction

Heuristic searchis an importanttopic in Artificial Intel-
ligence. Searchalgorithmshave mary practical applica-
tionsin areassuchastheorem-preing, bio-informatics and
games. In particular gameshave beenregardedas useful
testbedsfor searchalgorithms,sinceefficient searchalgo-
rithmswereshown to improve the strengthof game-playing
programs Experimentsn mary differentdomainsandwith
mary differentprogramsshaved a strongpositive correla-
tion betweerthe depthof the searchireeandthe strengthof
a program. Therefore programmer$ave investeda lot of
effort to enhancehe searchperformancef their programs.
One of the most valuable searchenhancementss the
transpositiortable, alargecachehatkeepsesultsof previ-
oussearclefforts. A programcanreachthe samegamestate
via differentpaths— a socalledtransposition If the previ-
ouslycachedpositionis exploreddeeplyenoughthe search
algorithmdoesnot needto explorethe positionagain.How-
ever, if the searchspacencludescycles,cachedesultsmay
beflawedbecausehey ignorethe pathusedto reachthe po-
sition. Thisis theso-calledGHI (Graph-Historyinteraction)
problem(Palay1983).In practice sofar programmerfiave
eitherignoredthe GHI problem,sincethey did not wantto
degradethe performanceof their programs,or reducedthe
numberof recognizediranspositionsn orderto guarantee

Copyright (© 2004, American Associationfor Artificial Intelli-
gence(www.aaai.og). All rightsresered.

D OR node O AND node

Figurel: The GHI problem.

correctness.Our proposedsolution completelysolves the
GHI problemwith very smalloverhead.

With thehelpof Figurel we explainthe GHI problemfor
AND/OR trees. Therearetwo scenariosn which the GHI
problemcanoccur, dependingn therulesof thegame.

In thefirst scenariowhichwe call first-playerloss arep-
etition is consideredh lossfor thefirst player, the playerto
play at the root node. Examplesare checkmatingoroblems
in chessandshogi(tsumeshogi),sincearepetitiondoesnot
helpthefirst playerwhois trying to checkmate AssumeD
in the figure is a lossfor the first player andthis resultis
storedin thetranspositiortable.Let G beawin for thefirst
player Thenasearctstartingfrom A in thefollowing order
leadsto thewrongresult:

1. SearchA - B - E — H — E. A lossis storedin the
tableentryfor H, becausehe positionrepetitioncannot
beavoided.

2. SearchA — B — D. A lossis storedfor AND nodeB.

3. ExpandA —- C — F — H. A tablelook-up for H
retrievesalosswhichis backedupto F andC.

4. Ais now incorrectlylabeledasa lossbecausdossesare
storedfor bothsuccessor® andC'. However, A is awin
bythesequencel -+ C - F - H - E = G.

In the first-playerloss scenario,the GHI problem only
causesnvalid disproofs.Programsanavoid the GHI prob-
lem,acceptingalossof performanceby notstoringary dis-
proofscausedy repetitions.

Theotherscenaridor GHI, whichwe call current-player
loss occurswhenarepetitionis declaredo bealossfor the
playerwhorepeatghe position. For instancethesituational

superko (SSK) rule in Go declareghat ary move that re-

peatsa previous boardpositionis illegal. In this scenario,
usingatranspositiortablecanleadto errorsin bothways:it

canchangealossinto awin or awin into aloss. For exam-
ple,in Figurel, now assumeahat(is alossfor the player
to move attheroot:

1. SearchA - B —+ E — H. H is storedasawin because
theopponentoesnothave alegalmoveat H.

2. SearchA - C — F — H. Thewin storedfor H is
bacledup andawin is storedfor C' aswell.

3. A is now incorrectly declaredas a win since C’s table
entryshovs awin. However, A is alosing position,since
thesequencest -+ B - D, A - C - F - H —
E—-GandA—-C —-F —- H — E — H alllose.

This scenariodoesnot occur in checkmatingproblems
where only one players king is under attack. However,
(vanderWerf, vandenHerik, & Uiterwijk 2003)point out
thatwhenusingthe SSKrulein Go, thisscenariacanleadto
invalid proofs.In theirwork the problemis avoidedby stor
ing aseparatdashentryfor eachpathleadingtoanode.Un-
fortunately this resultedin over 1,000timeslargersearches
whensolvingGoona4 x 4 board.

Avoidingthe GHI problemis crucial,especiallywhenone
wantsto declarethat gamesare solved by programs.Since
oneflawedtranspositiortable entry canleadto completely
awrongsolution,correcttechniquesnustbe devised.

This paperdescribes uniform solutionto bothaforemen-
tionedscenario®f the GHI problem.Our approactsynthe-
sizesandextendsexistingtechniquesn anelegantway. Our
solutionalwaysguaranteesorrectnes§ all provenanddis-
provennodesaresavedin thetranspositiotable. Thegames
of checlers, a first-playerloss scenario,and Go with the
SSKrule, a current-playeflossscenarioarechoseno em-
pirically measurehe effectivenessof our approach.Since
ourideadoesnotdependn ary algorithm-specifideatures,
it canbe appliedto differentgame-treesearchalgorithms.
We have choserto implementour schemdor boththe df-pn
algorithm(Nagai2002)andag (Knuth& Moore1975).Ex-
perimentatesultsin thesedomainsandalgorithmsshow that
we payonly asmalloverheaccomparedo programshatig-
norethe GHI problem.In particulay sincetheonly previous
solutionfor the current-playeflossscenarias to give up all
transpositionswhich is veryinefficient, our approachs the
first attemptto handlethe GHI problemwith aninexpensve
overhead Additionally, we empiricallydemonstrat¢hatthe
GHI problemis a problemthat mustbe addressedinceit
occursin practice.

The structureof this paperis asfollows: First, the liter-
atureon the GHI problemis reviewed and the algorithms
df-pnandag arebriefly explained.Thenour solutionto the
GHI problemis describedfollowedby experimentakesults
with bothalgorithmsin Go andcheclers,andsomeconclu-
sionsandfuturework.

Previous Work onthe GHI Problem

The GHI problemwasfirst pointedoutin (Palay 1983). Al-
thoughtwo possiblesolutionswere suggestedno imple-

Figure 2: An examplewhere BTA fails with the current-
playerlossscenario.

mentationwasprovided. Campbeliclassifiedthe GHI prob-
leminto two casesdraw-firstanddraw-last andsolvedthe
GHI problemfor the draw-first case(Campbell1985). In
the draw-first case,a scoreinvolving repetitionis savedin
thetranspositiortable,andis laterincorrectlyretrievedfor a
positionthat doesnot involve repetition. In the drawv-last
scenario,a scorenot involving repetitionis storedin the
transpositiontable, and is later incorrectly usedfor a po-
sitioninvolving repetition.

(Breuker et al. 2001) proposedhe base-twinalgorithm
(BTA) for solvingthe GHI problemin proof-numbeisearch.
Sincetheirimplementatiorof BTA considereddrav to bea
disproof,this modelcorrespond$o thefirst-playerlosssce-
nario in our framawvork. BTA usesa possible-daw mark
combinedwith the depthof a nodein the searchgraphto
recognizerepetitions. To find out at which deptha posi-
tion causegepetitions,BTA splits repeatedpositionsinto
two kinds of nodes: a basenodeto be explored and twin
nodeswhich can have differentvalues(i.e. possible-drav
marks)thanthe basenode. Possible-drav marksare prop-
agatedbackto parents. Whenthe root of the subtreethat
causegepetitionsis detecteda real draw is storedin that
root. Although Breuker et al. claim thatBTA is a general
solutionto the GHI problemfor best-firstsearchthereare
threeissueghatmustbeaddressed:

e SinceBTA wasimplementedor a best-firstsearchalgo-
rithm thatkeepsanexplicit graphin memoryit isanopen
guestionif BTA is applicableto depth-firstsearchalgo-
rithmswith limited memory

e The cycle detectionschemein BTA doesnot work with
the current-playefloss scenario. Figure 2 illustratesan
example.C is anodeat the startof a repetitionloop, but
C’svaluecannotbeuniquelydeterminedvithoutconsid-
eringthe path. C via pathA — C' is adisprovennode,
sincethe lastmovein A - C — D — C isillegal.
Ontheotherhand,C viapathA - B - D —» Cisa
provennode,sinceafterthis sequenc¢hemoveto D is a
repetition.

e All possible-drav marksare removed for eachiteration
of proof-numbersearch.This is necessaryn BTA since
marksarepath-dependerihformation. As long asa real
draw is not stored,nodescausingrepetitionsmustbe ex-
ploredagainandagainto mark possible-drevs, resulting
in alarge overheadrom treereexpansion.

(Nagai2002)proposes solutionto the GHI problemfor
df-pn. This modifieddf-pn is appliedto tsume-shogprob-
lems, a first-playerlossscenario.In Nagai's algorithm, df-
pn first setslarge thresholdsof proof anddisproofnumbers
attheroot. In caseof a repetition,df-pn simply returnsto
the parentnodewithout storinga disproof. If aprooffor the
root is found, the proof treeis guaranteedo be repetition-
free. However, if df-pnreturnsto theroot by exceedingone
of the large thresholdsof proof and disproof numbers df-
pnre-searcheby assuminghata move reachingtherootis
disproven. A similar repetitiondetectionschemds usedat
all interior nodes.Onedrawvbackof Nagais approachs that
it may take a long time for the proof or disproof numbers
to exceedthe presetthreshold. If thereis a large number
of brancheghis approachis impracticalfor detectingdis-
proofswith repetitions FurthermoreNagaisapproactdoes
not work with the current-playefossscenario. Sincethis
approachdoesnot useary pathinformation,it alsocannot
storetwo differentpath-dependentsultsfor onenode.

Accordingto (Breuker et al. 2001), Thompsonnoticed
thathis tacticalchessanalyzersufferedfrom the GHI prob-
lem. He curedit for interiornodesby usinga DCG (directed
cyclic graph)representatioandconsideringhe history.

(Baum& Smith1995)suggesa solutionto the GHI prob-
lem for their best-firstsearchalgorithm. Their algorithm
storesthe whole DCG in memoryandrecognizeshe case
whena nodereachedhroughdifferentpathsmustbe split
into two nodesto save differentresults.However, theiridea
wasnotimplementedandthey concludedhatalow storage
algorithmwould probablybetoo costly.

(Schijf, Allis, & Uiterwijk 1994) investigatedproof-
numbersearchin domainswvherethe searchgraphis aDAG
(directedagyclic graph)or DCG. Schijf implementedhree
algorithmsto dealwith the GHI problem. However, two of
thesemethodsare inefficient, sincethey give up on using
transpositionswhile the third approachsometimegesults
in wrongdisproofs.

Overview of df-pn and a3
Depth-First Proof-Number Search

The depth-firstproof-numbemlgorithmdf-pn (Nagai2002)
turnsthe best-firstproof-numbersearchPNS) method(Al-
lis, van der Meulen, & van denHerik 1994)into a depth-
first searchalgorithm. Df-pn canexpandlessinterior nodes
andusea smalleramountof memorythanPNS.Like PNS,
it usesproof and disproof numbersand always expandsa
most-praving node. Df-pn utilizeslocal thresholdgfor both
proofanddisproofnumbersselectsa mostpromisingnode,
andperformsiterative deepeninguntil exceedingeitherone
of the thresholds. Becausedf-pn is an iterative deepening
methodthatre-expandsinterior nodestheheartof thealgo-
rithm is its useof the transpositiortable. Whene&er a node
is explored,thetranspositiontableis usedto cacheprevious
searctefforts (i.e., proof anddisproofnumbers).

The o8 Algorithm

Theag algorithm(Knuth & Moore1975)hasbeenthemost
popular algorithm amonggameprogrammers. The algo-

rithm utilizesasearchwindow definedby two bounds g and
B, which representower andupperboundson the minimax
scoreof agametree. Thesearchwindow is narrovedduring
minimax searchandusedfor pruningsubtreesf the score
of anodeis provento beoutsidethewindow. Many variants
andenhancementisave beendevelopedover the years,but
atranspositiortableis almostalwaysused.

A New General Solution to the GHI Problem

Our solution utilizes two techniques: We encodepath-
information using methodsfrom (Zobrist 1970) and use
Kawano'ssimulationtechniqgugKawano1996)to searctef-
ficiently. The outline of our solutionto the GHI problemis
asfollows: Whena proven or disproven position storedin
thetranspositiortableis reachedvia a new path,insteadof
blindly retrieving the result, a searchis performedto ver-
ify it. If the proof/disproofverifies,the resultcanbe safely
reused;otherwisethe transpositiortable entry is treatedas
adifferentposition. Kawano's simulationis usedto reduce
the searchoverhead.For efficiency, this approachrequires
agoodschemeor storingandcomparingpaths,andatech-
niquefor minimizing the numberof simulationcalls.

Duplicating Transposition Table Entries

Sincewe wantto reusetheresultsof previoussearchefforts,
unprovenidentical positionsreachedvia differentpathsare
consideredo betranspositionsandwe reusethe storedval-
uesfromthetranspositiortable: proofanddisproofnumbers
for df-pn, andminimaxvaluesfor a. Whenposition A is
provenvia pathp, thetranspositiortableentryfor A is split
into a base andafirst twin tableentry. A proofis storedin
thetwin tableentryto indicatethat A is provenwhenreach-
ing A via p. If A is provenvia a differentpathq, another
twin tableentryfor ¢ is createdandthe new proofis stored
there. WhenreachingA via a pathotherthanp, the proofs
of thetwin tableentriesaresimulated(seelater). If atleast
oneverifiesthenthat proof is used;otherwisethe informa-
tion from theunprovenbasedableentryis usedin thesearch.
Disproofsarehandledn the sameway.

Encoding Paths

To differentiate identical positions reachedvia different
paths,we needan effective methodto computea signature
of a path. A variantof the Zobrist function, which is used
to hasha position into its correspondingranspositionta-

ble key (Zobrist 1970), can be usedto encodea path. In

our implementationgachtranspositiortable entry contains
an additional64-bit field to encodea signatureof the path
from the root to a position. Let MaxMove be the number
of differentmovesin a game,and MaxDepthbe the max-
imum searchdepth. A precomputedandomtable R with

MaxMovex MaxDepth64 bit integersis preparedo encode
a path. The sequencef movesto reachthat positionis en-
codedby atechniqueinspiredby Zobrist's method.Let the
pathp be (my,ma, - -, mg), wherem; aremoves. Thenp

is encodedsfollows:

coddp) = Rimi][1] @ R[m,][2] @ --- & R[my][k]

An importantproperty of this path-encodingschemeis
that the order of movesis not commutatve, sincethe ran-
domtable entriesfor identicalmoveswith differentdepths
containdifferentvalues. For example,the codesof the two
pathspl = (m17m27m3) andp2 = (m37m27m1) aredif-
ferent,sincecoddp;) = R[m1][1]® R[m2][2]® R[ms][3]is
differentfrom cod€p,) = R[m1][3]® R[m,][2]® R[ms][1].

We notethatthe sizeof therandomtableis smallenough
for currenthardware. For example,in our experimentson
19 x 19 Go,wherewe setMaxMove= 362andMaxDepth=
50,thesizeis about1l40KB.In gameswith alargenumberof
differentpossiblemoves,suchasShogior Amazonsamove
canbe split into two or threepartial moves,for exampleby
separatinghe from-squareinformation from the to-square
information. This way MaxMove can be greatly reduced,
while MaxDepthincreasedy afactorof 2 or 3.

Invoking Simulation for Correctness

Tree simulation was invented by Kawano to effectively
deal with uselessinterposingpiece dropsin tsume-shogi
(Kawano1996). Later, Tanaseappliedthis ideaextensiely
in his a8 searchenginefor shogito reducethe overhead
of calling the tsume-shogsolver within the normal search
(Tanase2000).

In AND/OR trees, which are the commonconcepton
which bothdf-pnandag arebaseda prooftreeT provides
aproofthatanoden is proven. Suchaprooftreecontainsn,
atleastonechild of eachinterior OR nodeof 7', andall chil-
drenof interior AND nodesof T'. All terminalnodesof T
mustbe proven. A disprooftreeT” which proviesadisproof
is definedin ananalogousvay.

Assumethat P is a provennodeand(is a “similar” one
thatwe wantto prove. Simulationborronvs movesfrom P’s
prooftreeto attempta quick proofof (. Thewinning move
for eachOR nodein theprooftreeis obtainedrom thetrans-
positiontableof theprooftreeof P. Likewise,dual simula-
tion, attemptgo find adisproof.

Comparedo a normalsearch simulationrequiresmuch
lesseffort to confirm whethera positionis proven or not.
Evenwith goodmove ordering,anexisting prooftreeis typ-
ically muchsmallerthana new searchtreewould be. Also,
sincemovesareborrovedfrom thetranspositiortableat OR
nodesthereis no needto invoke the move generatar

Assumethat A is a proven positionwith pathp. If we
reachA via a differentpathgq, we cancheckif A via ¢ can
beprovenby invokingsimulation.A proofis borrovedfrom
the twin tableentry (with pathp). If a prooffor A via q is
verified,anadditionaltwin tableentryfor A via q is created
andthe proofis saved. If morethanonetwin tableentryis
available,they aretried in turn. However, sinceprooftrees
oftenhave the sameshapeit is rarethatmorethanonetree
simulationis needed. The analogousverification by dual
simulationis tried to find disproofs.

Reducing Simulation Calls

Sincesimulationincursanoverheado assesthecorrectness
of atranspositiontableentry, we devisedamethodto reduce
thenumberof simulationcalls. If anodeis (dis)provenwith-
out detectinga repetition,that nodecan alwaysbe usedas

atranspositionsinceit is independenbf the pathtaken by
the search.In this case the (dis)proofis storeddirectly in
thebasetableentry, without creatingatwin node.If another
pathleadsto that position, the (dis)proof can be retrieved
directly.

Correctnessf Our Solution

Assumethat all proven and disprosen nodesare storedin
the transpositiontable. The following theoremguarantees
correctnessf thesolutions:

Theorem1 Our solutionsufers neitherfromthe draw-first
nor fromthedraw-lastcase

For unproven nodes,our proposedsolution might com-
puteincorrectproofanddisproofnumbergor df-pn,andin-
correctheuristicvaluesfor a8 search.However, the above
theoremgyuarante¢hatour approactalwaysreturnscorrect
(dis)proofsoncethey are obtained. This theoremfor df-pn
is provenin (Kishimoto& Miiller 2004),andis analogously
provenfor a8 with somemodifications(seethe next sec-
tion).

Algorithm-Specific Implementation Details

Df-pn We madethe following modificationsto the origi-
nal df-pnalgorithm:

e Proofanddisproofnumbersin a basetableentry arere-
initialized to 1 whenever a (dis)proofis savedin a twin
tableentry. This is becauself-pn tendsto createlarge
proof anddisproofnumbersheforea (dis)proofis found,
which madedf-pn unableto solve somepositions.

e Asin (Nagai2002),we initialize the thresholdof proof
anddisproofnumbersattherootto oo — 1, notto oo asin
the original df-pn algorithm. This is necessaryo avoid
the GHI problemat the root, since df-pn saves thresh-
oldsin the transpositiortable beforeexpandinga node.
If df-pn with our modificationreturnsa proof numberof
0 andadisproofnumberof oo, or vice versajt is acorrect
(dis)proof. Otherwise df-pnreturnsthe valueunknown

aff Thefollowing modificationsaremade:

¢ We modifieda schemdor transpositiortablelookups. A
normaltranspositionableentrycontainsafield thatstores
thedepthsearchedbelow anode.If atranspositions rec-
ognized,the depthstoredin the tableentryis at leastas
deepasthedepththatmustbe explored,andthetableen-
try hasa tight a8 bound, then the table information is
retrievedandno furthersearctfor thatnodeis performed.
We usethis strateyy only for unprosennodes.Proofsand
disproofssavedin the transpositiortable are always re-
trieved without checkingthe explored depth, sincethey
arecorrectvalues.Thismodificationnotonly makesmore
useof thetranspositiortable but also solves Campbells
draw-lastcase.

e Our currentaf searchusesonly the threevalues(win,
unknown or losg. However, our solutionworks for the
generalcaseof morevaluesin betweernwin andloss In
ourimplementatiorof checlers,adraw is consideredsa
lossfor thefirst player To prove a draw, a secondsearch

be performedin which a draw is regardedas a win for
thefirst player We notethat determininga draw within
a single searchis not a trivial problemfor the a8 algo-
rithm, sincethe valuesdraw and unknownareincompa-
rable. Additionally, if we wantto geta correctheuristic
value, it could be obtainedby performinga sequencef
null window searcheasin MTD(f) (Plaatetal. 1996).

Game-Specifidmplementation Details

Go Domain-specific enhancementsin (Kishimoto &
Miller 2003)areincorporatedo our df-pn andag imple-
mentations.Our af performsiterative deepeningand ex-
tendsthe depthfor forcedmoves. Additionally, our ag first
searchethebestmove from apreviousiteration.

Checkers 8-piecesendgamedatabasesre incorporated
to our df-pn and a8 implementations. Scoresobtained
by databasdookupsare consideredo be correct,because
thesescoresareindependentf thepathsour programdake.
Simulationis not invokedfor treesinvolving only database
scores. For enhancement® a3, our implementatiorper
forms a variabledepth-firstsearchand usesstate-of-aren-
hancements.

Experiments
Setup

We appliedthe df-pn and a8 algorithmsto Go andcheck-
ers. Specifically we focusedon the one-ge problemwith
situationalsuperko in Go, which is a current-playefloss
scenario.Meanwhile,in checlers,we usedfirst-playerloss
scenarios.

The experimentdor programsgnoring anddealingwith
the GHI problemand for both gameswere performedon
an Athlon 2400MPwith a 300 MB transpositiortable. All
proven and disprosen nodesare saved in the transposition
tablefor both programs.140 positionsin Go and200 posi-
tionsin checlerswerepreparedThetime limit wassetto 5
minutesper positionin Go. On the otherhand,we did not
limit theexecutiontimein checlers sincetheexecutiontime
in checlerswasunstablebecausef I/O accessncurredby
databasdookups. Instead,the nodeexpansionin checlers
waslimited to 10 million nodesperposition.

Resultsin Go

Tablesl and2 summarizegheresultsfor df-pnanda in Go
in termsof thenumberof problemssolvedandtotalnodeex-
pansionsThesestatisticsarecollectedbothby programsg-
noring (IGNORE-GHI) andhandling(OUR-SCHEME)the
GHI problem. We could not test other approachesuch
as Nagais in Go, since thesealgorithmsdo not handle
urrent-playeflossscenariosBothIGNORE-GHIandOUR-
SCHEME solve the samesubsetof problems. However,
IGNORE-GHI gave incorrectproof treesfor two positions
in df-pn andfor threepositionsin ag3. Althoughthe scores
returnedoy IGNORE-GHIwerecorrect,we concludethatit
is importantto have a schemeto handlethe GHI problem,
sinceGHI happendothin df-pnandaf. Evenif GHI does
not appearin the final proof tree,it occasionallyappearsn

Table 1: Performancecomparisonbetweenignoring and
dealingwith the GHI problemfor df-pnin Go. All statis-
ticsarecomputedor 136 problemssolvedby both program
versions.

Numberof Total

Method problems Total time

Used solved nodes (sec)
IGNORE-GHI 134+2 | 22,294,119| 589
OUR-SCHEME 136 21,938,585 587

Table 2: Performancecomparisonfor 3 in Go. All the
statisticcaarecomputedor 132problemssolvedby bothver-
sions.

Numberof Total

Method problems Total time
Used solved nodes (sec)
IGNORE-GHI 129+3 | 102,077,944] 1,078
OUR-SCHEME 132 104,679,229 1,101

the search.Of the 136 problemssolved, OUR-SCHEMEin
df-pn explored 13,505no0desby simulation, invoked sim-
ulation 648 times, and simulation discovered 190 flawed
transpositiortable entries. In caseof a3, OUR-SCHEME
explored 147,946nodesby simulation,and invoked simu-
lation 12,005timesfor the 132 problemssolved. Simula-
tion detectedd, 174flawedtranspositiortableentries.These
numbersareconsenative, becausesomeincorrectproofsor
disproofsmay be storedbut never retrieved. Furthermore,
OUR-SCHEMEcanavoid the GHI problemwith negligible
overheadin termsof extra nodesand executiontime. For
example,OUR-SCHEMEexplores2.5%extranodesn a3,
and 1.5 % lessnodesin df-pn. Thus,it is a small price to
payto alwaysguaranteeorrectness.

Resultsin Checkers

Table 3 givesthe resultsfor df-pn in checlers. We addi-
tionally implementedNagai's solution(NAGAI) to the GHI
problem(Nagai2002). Of the 200 problemsin the dataset,
NAGAI solved 138. IGNORE-GHI solved 144, including
the138which NAGAI solved. However, IGNORE-GHIhad
incorrectdisproofsin 18 caseswhereasNAGAI solvesall
problemscorrectly OUR-SCHEMEsolves 143 problems
correctly including all of the 138 problemswhich NAGAI
solves, someof the additional problemswhich IGNORE-
GHI solved, plus someextra problemsnot solved by ei-
ther of the other two systems. OUR-SCHEME solved 2
problems(correctly) which IGNORE-GHI did not solve.
IGNORE-GHIsolved 3 problemswhich our schemedid not
solve, but only oneof thoseproblemswassolved correctly
Additionally, accordingto the statisticsfor the positions
solved by all versions,our solution hasa small overhead.
OUR-SCHEMEexpandedewer nodegshanlGNORE-GHI.
Simulationdetectghe flawedtranspositiortableentries.Of
138 problemssolved by all programs,OUR-SCHEMEin-
voked simulation243,885timeswith 970,373nodeexpan-

Table3: Performanceomparisorfor df-pnin checlers.All
statisticaarecomputedor thesubsebf 138problemssolved
by all programversions.

Numberof
Method problems Total
Used solved nodes
IGNORE-GHI 126+ 18 | 129,006,133
OUR-SCHEME 143 128,082,295
NAGAI 138 137,888,627

Table4: Performanceomparisorfor a3 in checlers. All
statisticaarecomputedor thesubsebf 111problemssolved
by bothprogramversions.

Numberof
Method problems Total
Used solved nodes
IGNORE-GHI 103+ 8 119,289,609
OUR-SCHEME 112 116,673,224

sion, and discovered87,181flawed transpositiortable en-
tries. Thesenumbersconfirm thatthe GHI problemoccurs
in searchandsometimesncorrectresultsarebacked up to
final disprooftrees.

Table4 showvstheresultsfor a5. OUR-SCHEMEsolved
all positionssolved by IGNORE-GHI, and one more posi-
tion wassolvedby OUR-SCHEME IGNORE-GHIreturned
incorrectdisproofsfor 8 positions.OUR-SCHEMEinvoked
simulation22,536times with 31,170node expansion,and
14,418caseswere failed of 111 problemssolved by both
programs. Thesenumbersindicate that the GHI problem
tendsto occurlessfrequentlyin a8 thanin df-pnin check-
ers. However, we still needto addressGHI, sinceit does
occurin practice.

In conclusions sincethe GHI problemhappensothin
df-pnandag in checlers,it is dangerouso ignore.Because
our methodnot only incurslow overheadbut also always
returnscorrectanswers,t is a worthwhile additionto ary
searchenginesusceptibléo GHI.

In comparisorto existing methods pur methodcould be
comparedvith Breuker's BTA. However, we notethatBTA
needsanexplicit graphrepresentatiorandcomplicatedop-
erationsto deal with repetitions. This causesa problem
whenBTA usesup available memory On the otherhand,

our approachdoesnot needary explicit graphrepresenta-

tion. Unprovennodesarereplacedwhenthetablebecomes
full. Breuker's schemeto detectreal draws is specificto

thefirst-playerlossscenarioandcanbeincorporatedo our

method.

Conclusionsand Futur e Work

In this paper we presented framework to solve animpor-
tantopenproblemraisedby (Palay 1983)20yearsago.Our
approachncursvery smalloverheadndis applicableto two
algorithmsdf-pn anda8. Therefore we concludethat our

solutionto the GHI problemis practicalandgeneral.

An interestingtopic for further consideratioris the re-
lation betweenthe GHI problem with replacementand
garbagecollectionschemesvith limited memory Sinceour
algorithmcurrentlyneedso keepall provenanddisproven
nodesn memory thereis still anopenquestionasto which
nodescanbereplacedr garbage-collected.

Acknowledgments

We like to thank JonatharSchaefier and Yngvi Bjornsson
for their beneficialdiscussionsand making their checlers
codeavailable.NathanSturtezantandMarkianHlynkaread
the draftsof the paperandgave us valuablecomments.Fi-
nancialsupportwas provided by the Natural Sciencesand
EngineeringResearctCouncilof CanadgNSERC)andAl-
bertasInformaticsCircle of ResearclExcellenc§iCORE).

References

Allis, L. V.; van der Meulen, M.; and van den Herik,
H. J. 1994. Proof-numbersearch. Artificial Intelligence
66(1):91-124.

Baum,E. B., and Smith, W. D. 1995. Bestplay for im-
perfectplayersandgametreesearchpartl - theory Tech-
nical report, NEC Researchnstitute. Availableatht t p:
[/ citeseer.nj.nec.conl baunB5best. ht m .

Breulker, D. M.; van den Herik, H. J.; Uiterwijk, J. W.
H.M.; andAllis, L. V. 2001.A solutionto theGHI problem
for best-firstsearch.Theoetical ComputerScience252(1-
2):121-149.

CampbellM. 1985. The graph-historyinteraction:Onig-
noringpositionhistory. In 1985Associatiorfor Computing
Machinery AnnualConfeence 278-280.

Kawano,Y. 1996. Using similar positionsto searchgame
trees. In Nowakowski, R. J., ed., Gamesof No Chance
volume 29 of MSRI Publications 193—-202. Cambridge
UniversityPress.

Kishimoto,A., andMiller, M. 2003. Df-pn in Go: Appli-
cationto the one-g/e problem. In Advancesn Computer
GamesManyGamesManyChallenges 125-141 Kluwer
AcademicPublishers.

Kishimoto,A., andMdller, M. 2004.A solutionto theGHI
problemfor depth-firstproof-numbersearch.Information
SciencesTo appear

Knuth, D. E., and Moore, R. W. 1975. An analysisof
alpha-betgruning. Artificial Intelligence6:293-326.
Nagai,A. 2002. Df-pn Algorithmfor Seaching AND/OR
Treesandlts Applications Ph.D.DissertationDepartment
of InformationScienceUniversity of Tokyo.

Palay, A. J. 1983. Seaching with Probabilities Ph.D.
DissertationCarngjie Mellon University.

Plaat,A.; Schaefer, J.; Pijls, W.; andde Bruin, A. 1996.
Best-FirstFixed-DepthMinimax Algorithms. Artificial In-
telligence87(1-2):255—-293

Schijf, M.; Allis, L. V.; andUiterwijk, J.W. H. M. 1994,
Proof-numbersearchand transpositions. International
ComputerChessAssociationJournal 17(2):63—74.

Tanase,Y. 2000. Algorithmsin ISshogi. In Matsubara,
H., ed.,Advancesn ComputerShai 3, 1-14. Kyouritsu
ShupparPress.In Japanese.

vanderWerf, E. C.D.; vandenHerik, H. J.;andUiterwijk,
J.W. H. M. 2003. Solving Go on small boards. Inter-
national ComputerGamesAssociationJournal 26(2):92—
107.

Zobrist, A. L. 1970. A new hashingmethodwith appli-
cationsfor gameplaying. Technicalreport,Departmenbf
ComputerScience University of Wisconsin,Madison.

