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Abstract—For games such as checkers and chess, large
endgame databases/tablebases have been constructed to capture
the perfect win/loss/draw value for positions near the end of
the game. Such databases/tablebases can be used to enhance
game-playing performance. However, this approach quickly runs
into computational and storage resource limitations. An enticing
alternative is to learn from such data and apply the learned
evaluation to even larger data sets through transfer learning. This
paper reports on research that uses deep learning to a) correctly
learn a high percentage of checkers endgame positions; b) learn
patterns that can be used for transfer learning; c) demonstrates
that learning from a small sample of a large data set is an efficient
way to compute a neural net evaluation that achieves most of the
benefits; and d) shows that dynamically choosing between neural
network prediction and using it in a one-ply search yields about
96% prediction accuracy.

Index Terms—deep learning, transfer learning, endgames,
tablebases, checkers, board games

I. INTRODUCTION

Over the past decade, deep learning has achieved impressive
successes for many real-world applications, including the
development of high-performance game-playing programs. By
using neural networks and deep learning principles, strong
evaluation functions have been trained for complex games
such as Go [1], Hex [2], and curling [3]. ALPHAGO and its
successors are the most famous examples [1].

The essential ingredient in deep learning is data. One
area where extensive data repositories have been created
is endgame databases (or tablebases). In games where the
number of pieces is reduced over time, exhaustive enumeration
of states and the computation of their game-theoretic (optimal)
value is feasible. For example, for the game of checkers (8×8
draughts), the win/loss/draw value has been computed for all
roughly 1013 positions with 10 or fewer pieces on the board
[4], [5]. In chess, all seven-piece positions had been computed
by 2018, and positions with eight pieces are under construction
(up to 1016 positions [6]). For the game of Awari, the entire
1012 state search space was computed and stored [7].

What might a deep-learning-based algorithm learn from
all this data? We start by training a neural net on the
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win/loss/draw values of database positions, to create a heuristic
evaluation function. Based on experience with other domains,
the algorithm should achieve generalizations by uncovering
patterns in the data. Some of these patterns might reflect the
game knowledge known to humans, while others could lead
to completely new insights, as has happened in games such
as backgammon and Go. The patterns might represent general
knowledge about a game that would transfer to other data sets,
such as checkers positions with more pieces, or with pieces
in different locations.

This paper reports on our experiences in applying deep
learning on data sets containing the game result of checkers
positions. The insights gleaned from this work include:

1) A deep learning solution can be implemented with a
fraction of the intellectual effort and computational time
that was required for the custom solution. Our results
indicate a tradeoff of accuracy and space versus effort
and resources.

2) The amount of data available is enormous and would
challenge any neural-net-based learning algorithm in
terms of memory usage and computing resources re-
quired. However, we show that even learning from
tiny subsets of the data is sufficient to achieve high
performance.

3) Deep learning can discover patterns that are general
enough to be applicable to positions that are significantly
different from those in the training set. This is a strong
demonstration of transfer learning in a complex domain.

4) The neural network can achieve good results as a pre-
dictor of a game position’s outcome. Combining that
with a one-ply search often gets better results. However,
dynamically choosing between using the model or the
search yields even better results.

II. BACKGROUND

A. Checkers

The popular game of checkers (8× 8 draughts) has simple
rules that give rise to deep and subtle play. The human World
Championship has been contested since 1840. In 1994, the
CHINOOK program became the (non-human) World Champion
[8]. The game was weakly solved to be a draw in 2007 [5].

Checkers is a two-player, zero sum, perfect information
game. It is played on an 8 × 8 checkered board using only979-8-3503-2277-4/23/$31.00 ©2023 IEEE



the dark squares [9]. Each side has 12 checkers that can move
forward diagonally. When a checker reaches the far end of the
board, it becomes a king and can move diagonally forward
and backward. Pieces are captured by jumping over them. If a
capture move is present in a position, then it must be played.
A player with no pieces on the board or no legal moves loses.

Fig. 1. Initial Checkers Position. Black to move.

Fig. 1 shows a checkerboard at the beginning of the game.
Columns are labelled ‘a’ to ‘h’ and rows ‘1’ to ‘8’. An example
of a first move for Black is moving the checker on ‘f6’ to ‘e5’.

B. Checkers Endgame Database

The CHINOOK endgame database (or tablebase) was com-
puted using multiple computers for over a decade [4], [10].
The retrograde analysis algorithm iteratively solves all po-
sitions with one piece (black or white, king or checker) on
the board, then computes all the two-piece positions, then
three-piece, and so on. Capture moves take a position with
N pieces on the board to one with less than N pieces, whose
value has already been computed. Using this methodology, all
positions with 2-10 pieces on the board have been computed,
as summarized in Table I. The 120 positions with one piece
on the board consist of 28 positions with one black checker,
28 positions with one white checker, 32 positions with one
black king, and 32 positions with one white king.

TABLE I
CHECKERS ENDGAMES.

# of Pieces # of Positions
1 120
2 6,972
3 261,224
4 7,092,774
5 148,688,232
6 2,503,611,964
7 34,779,531,480
8 406,309,208,481
9 4,048,627,642,976

10 34,778,882,769,216

The program computes only the win/loss/draw result (in
chess, they also compute a distance-to-win metric). A cus-
tom algorithm compresses the 4 × 1013 position values into

2.5×1011 bytes. The data is used during games by CHINOOK,
meaning the data organization has to support real-time decom-
pression, doing thousands of database queries per second.

C. Deep Learning and Residual Neural Network

Designing an endgame database that is storage and lookup
efficient is not a trivial task. It often requires designers to lever-
age application-specific knowledge and invent special tricks to
make it work. The rise of deep learning [11] provides us with
a promising tool, deep artificial neural networks (DNN), as
an alternative approach to using large custom-designed data
storage. Position-value lookup tables can be replaced by a
function computed by a DNN, as they are universal function
approximators [12]. In addition, they are particularly good
at generalization, implying that one could harvest most of
the benefits of an endgame database by training the neural
network on a small subset of all possible states. In terms of
access speed, modern deep-learning libraries and hardware are
sophisticated in parallelizing the neural network inference –
speeding up batched access significantly.

A residual neural network (ResNet) [13] is a deep learn-
ing architecture that achieves state-of-the-art performance in
computer vision tasks such as image classification [13], object
detection [14], and semantic segmentation [15], as well as in
game-playing programs such as ALPHAZERO [16]. ResNet
uses skip connections to avoid the vanishing gradient problem,
where gradients become very small as they propagate through
many layers. This allows the training of very deep neural
networks.

III. METHOD

A. Board Representation

Inspired by ALPHAZERO [16], we represent each board po-
sition as a stack of binary planes where each plane represents
a specific piece type. For each plane, the dimension is 8 × 8
– same as the checkerboard. The locations of pieces of that
type are encoded as 1, while the rest are 0. With four types
of pieces in checkers (black king, white king, black checker,
white checker), the representation for one board position is
of dimension (4, 8, 8). Fig. 2 shows an example of a board
position and its representation.

B. Neural Network Architecture

We build a residual neural network, shown in Fig. 3, consist-
ing of an input convolution layer, five residual blocks with two
convolution layers each, and a classifier composed of two fully
connected layers. We make this decision based on experiments
with different numbers of residual blocks, fully-connected
layers, channels of the convolution layers, and neurons in each
fully-connected layer. The chosen structure represents a “sweet
spot” between performance and computational cost.

We run experiments on a subset of the 2-5 piece data
set to choose the best activation function from a number of
candidates. We chose Mish [17] as our activation function for
the neural network after comparing with rectified linear units



Fig. 2. Board Representation Example. a. The original board position. b. The
values of each plane corresponding to the piece type. c The representation of
the original position as a stack of planes.

(ReLU) [18], SELU [19], and tanh [11]. The Mish activation
function is defined as:

Mish(x) = x tanh(softplus(x)) = x tanh(ln(1 + ex)) (1)

We find batch normalization [20] necessary to stabilize and
speed up the convergence of the neural network. We run exper-
iments with batch normalization applied to the whole neural
network except for the output layer, to the residual blocks
only, and without batch normalization. The result suggests that
batch normalization on the residual blocks exclusively yields
the most robust learning curves and best final accuracy.

C. Loss Function

Our loss function is the weighted cross entropy loss (CE)
[21]. Given a predicted probability distribution [p1, p2, p3], a
true distribution [y1, y2, y3], a weight vector [w1, w2, w3], and
a weight exponent α, the loss is:

Weighted CE Loss = −
3∑

i=1

wα
i yi log(pi) (2)

Here we use vectors of dimension three because there are three
possible outcomes in a game of checkers.

The weight vector is important to remedy the effect of
unbalanced data sets. Let N1, N2, N3 denote the number of

Fig. 3. Residual Neural Network Architecture. a. The overall structure. b.
Structure of one residual block.

positions for each outcome class in the data set, respectively.
We calculate the weight vector as follows:

wi =
N1 +N2 +N3

Ni
(3)

where we assume 0 < N1, N2, N3. Whenever Ni = 0, we
let wi = 0. α controls the degree of the weights – larger
exponents emphasize the weighting.

D. Optimizer

For the optimizer, we use rectified Adam (RAdam) [22], a
more robust variant of Adam [23]. We use the default values
for the two hyperparameters of RAdam: the exponential decay
rates of the first (β1 = 0.9) and the second (β2 = 0.999)
moment of past gradients. In our testing, the performance
of RAdam is comparable to or superior to the alternatives
Adamax [23], Adagrad [24], and Adamw [25].

E. Hyperparameters

As shown in Table II, the hyperparameters include the
learning rate, the mini-batch size, the decay rate for batch
normalization, the weight exponent α for the loss function, and
the decay rates β1, β2 for the optimizer. The large number of
combinations prevents us from using an exhaustive grid search
due to the computational cost. As a result, we have treated
the hyperparameters independently and optimized them one
by one.



TABLE II
HYPERPARAMETERS.

Primary Learning rate = 0.0002
Mini-batch size = 1024

Batch normalization Decay rate = 0.99
Loss function α = 0.5

Optimizer β1 = 0.9
β2 = 0.999

F. Technology

We use the deep learning framework JAX [26] and the
neural network library Haiku [27] to implement and train
our ResNet. Haiku transforms our neural network into a pure
function compatible with JAX. Then we use JAX’s automatic
differentiation transformation to compute the gradients and
JIT (just-in-time compilation) transformation to significantly
accelerate forward and backward propagation – speeding up
the training process. We implement our optimizer using Optax
[28], a library of optimizers compatible with JAX. During
training, we use TensorBoard [29] to visualize and monitor the
progress. In addition, we save checkpoints every five epochs
in the pickle format [30] to preserve the progress.

G. One-ply Search

Although the deep neural network is good at extracting
patterns and generalizing them to unseen data, it is not perfect.
Therefore, we propose to use a one-ply search algorithm to
improve the prediction accuracy once the neural network is
trained. For a position p, procedure findChildren generates the
children of p. That is, each child is a position (standardized to
Black-to-move) reachable from p after taking a move as Black.
If findChildren returns nothing (Black has no legal moves),
then the value is a loss. If the returned set is not empty,
we then apply a predict function that predicts the outcome
of each child. predict uses the neural network as the oracle
except for those positions where one side has no pieces (an
immediate loss). We identify the outcome of p through those
of its children. If any child position is losing then p is a win
for Black; If that does not hold, then it’s a draw for Black
in p if any child is a draw; Finally, if neither is present,
then Black must be losing. Algorithm 1 describes the one-ply
search algorithm that predicts the outcome of p.

H. Evaluation

To monitor the progress of training, we record the overall
accuracy (% of correct predictions with respect to the total
number of samples) and the recall (% of the correct predictions
for outcome i with respect to the number of positions of
outcome i) on the training set and the validation set.

For testing, we generate a normalized confusion matrix
where each row contains the percentages of the true outcome
and each column records the percentages of the prediction.
Specifically, the (i, j)-entry of the confusion matrix denotes
the percentage of the instances of class i predicted as class
j over the test set. Furthermore, we produce a table that

Algorithm 1 One-ply Search
Require: p

children← findChildren(p)
if children is empty then

return LOSS
end if
predictions← predict(children)
if LOSS is in predictions then

return WIN
else if DRAW is in predictions then

return DRAW
else

return LOSS
end if

correlates the neural network performance with that of the
search. It partitions the set of evaluation results into four
disjoint categories – the neural network and search are both
correct, only the neural network is correct, only the search is
correct, and both are wrong.

IV. EXPERIMENTS

A. Sampling

The sampling experiment investigates if our ResNet can
generalize to unseen data within the same databases by training
it on a subset of all data. Our data set consists of 10% of
the entire 2-6 piece databases and 0.1% of the 4 pieces vs.
3 pieces partition of the 7-piece database (referred to as the
7-piece data set). Beginning with a split of 70% for training,
10% for validation and 20% for testing, we shrink the training
set by a factor of ten for each consecutive experiment, down
to 0.1% of the original size. The size of the validation and
test sets are kept constant. For the 2-7 piece data set, Table III
summarizes the number of positions for each experiment. We
train the neural networks until the validation accuracy stops
improving.

Fig. 4 displays the normalized confusion matrices for the
test set. The left column lists the neural network’s confusion
matrices, while the right column shows those of the corre-
sponding one-ply search. Most errors occur for the drawing
positions. Table IV displays the correlation tables. The gener-
alization capability of the neural network is surprising – the
model has achieved 95.46% accuracy and the search 93.30%
accuracy on the test set when trained with a mere 10% of all
data in the 2-7 piece database. Moreover, for the 0.1% case
over 90% accuracy on a test set of roughly 58 million positions
is achieved with only 202,229 samples. Furthermore, the one-
ply search improves upon the ResNet in three out of the four
tasks, demonstrating its capability to increase the robustness
of the prediction when the neural network is imperfect.

B. Inter-database Generalization

Here we explore how the neural network trained on one
database can generalize to different databases: First, we train
our ResNet on a data set of 70% of the 4-piece database and



TABLE III
SUMMARY OF 2-7 PIECE SAMPLING DATA SETS.

Baseline 10% 1% 0.1%
Training 202,238,136 20,223,804 2,022,368 202,229

Validation 28,891,154 - - -
Test 57,782,317 - - -

Fig. 4. Normalized Confusion Matrices of the Sampling Experiment. The
rows are ground truths and the columns are predictions. Each cell is the
percentage of positions over the test set. Left Column: neural network. Right
Column: one-ply search. a. baseline b. 10% of baseline c. 1% of baseline d.
0.1% of baseline. Darker colours indicate dominant table values.

test it on 6% of the 6-piece database. Then we train another
model on 70% of the 5-piece database and test it on 20% of
the 7-piece database. Our choice to train the neural network
on an even/odd-piece database and test it on another even/odd-
piece database is based on the concern of material advantage.
For all the positions in odd-piece databases, one of the players
has a material advantage, resulting in a different distribution
of outcomes from the even ones.

Table V summarizes the number of positions in each data set
of each task. Fig. 5 displays the normalized confusion matrices
of the neural network and the search for the aforementioned
two tasks. They demonstrate that our ResNet is able to general-
ize to unseen databases to some degree. Nevertheless, both the
neural network’s and the one-ply search’s performance degrade
on the drawing positions, where they predict Draw to be Win

TABLE IV
SAMPLING EXPERIMENT CORRELATION TABLES.

Baseline Model Correct Model Incorrect
Search Correct 52,321,877 (90.55%) 1,591,546 (2.75%) 93.30%

Search Incorrect 2,839,778 (4.91%) 1,029,116 (1.78%) 6.69%
95.46% 4.53%

10% Model Correct Model Incorrect
Search Correct 53,309,487 (92.26%) 2,002,055 (3.46%) 95.72%

Search Incorrect 1,648,779 (2.85%) 821,996 (1.42%) 4.27%
95.11% 4.88%

1% Model Correct Model Incorrect
Search Correct 51,183,270 (88.58%) 2,745,657 (4.75%) 93.33%

Search Incorrect 2,708,708 (4.69%) 1,144,682 (1.98%) 6.67%
93.27% 6.73%

0.1% Model Correct Model Incorrect
Search Correct 50,455,079 (87.32%) 3,515,282 (6.08%) 93.40%

Search Incorrect 2,004,385 (3.47%) 1,807,571 (3.13%) 6.60%
90.79% 9.21%

or Loss, and vice-versa. Table VI shows the correlation tables
on the 6-piece database and 7-piece database test sets. The
model trained on the 4-piece database achieves an accuracy of
approximately 82.68% on the 6-piece test set, while the search
scores 83.28%. The model trained on the 5-piece database
reaches an accuracy of 82.93% on the 7-piece test set, and the
search 80.56%. These are good results, but not impressive.

TABLE V
SUMMARY OF INTER-DATABASE GENERALIZATION DATA SETS.

4 Piece 5 Piece 6 Piece 7 Piece
Training 4,346,521 97,615,565 N/A N/A

Validation 620,931 13,945,080 N/A N/A
Test N/A N/A 153,162,235 38,110,526

Fig. 5. Inter-database Generalization Normalized Confusion Matrices. The
rows are ground truths and the columns are predictions. Each cell is the
percentage of positions over the test set. Left Column: neural network. Right
Column: one-ply search. a. train on the 4-piece database and test on the 6-
piece database b. train on the 5-piece database and test on the 7-piece database.
Darker colours indicate dominant table values.



TABLE VI
INTER-DATABASE GENERALIZATION EXPERIMENT CORRELATION

TABLES.

4 Piece → Model Model
6 Piece Correct Incorrect

Search Correct 107,115,684 20,430,421 83.28%(69.94%) (13.34%)

Search Incorrect 19,514,041 6,102,089 16.72%(12.74%) (3.98%)
82.68% 17.32%

5 Piece → Model Model
7 Piece Correct Incorrect

Search Correct 29,301,935 1,397,825 80.56%(76.89%) (3.67%)

Search Incorrect 2,302,548 5,108,218 19.44%(6.04%) (13.40%)
82.93% 17.07%

C. Transfer Learning

The experiments so far demonstrate two main points: a
network trained on one database can attain reasonable accuracy
on another database, and a model trained on a tiny fraction of
all data can generalize to the unseen data with high accuracy.
This is evidence that the neural network is learning generally
useful features that help to predict the outcome of checkers
positions. Nevertheless, we know little about the nature of
the learned features. To what extent are they specific to the
databases that the model has seen? Does the network actually
learn features that are applicable to other types of checkers
positions? In a transfer learning experiment, we first pre-train
two models from the 2-5 piece and 2-6 piece databases, then
test their performance on the 7-piece database, as in the inter-
database generalization experiment.

The first half of Table VII shows the correlation tables for
this model. The network achieves an accuracy of 80.22% when
pre-trained on 2-5 pieces and 75.36% for 2-6 piece pre-training
(but 80.92% for using search). The drop in performance by
adding the 6-piece positions is an artifact of checkers. The 5-
piece database is dominated by wins – one side has a material
advantage – which is a good match for the 7-piece (4 pieces
versus 3) database. The 6-piece database is dominated by
draws – balanced material – meaning the network is learning
mostly on positions that are unlikely to help predict 7-piece
positions.

Next, we freeze (stop gradient) the residual blocks of the
two pre-trained networks, and fine-tune their classifier parts
for only five epochs on the 7-piece database. After only one
epoch, both pre-trained models achieve a validation accuracy
above 94%! Over the remaining four epochs, they improve by
another 0.5% (Fig. 6), to a final accuracy after transfer learning
of 94.9% (2-5 pre-training) and 95.2% (2-6 pre-training) on
the 7-piece database. The second half of Table VII displays
the correlation tables of the fine-tuned models on the test set.
This result strongly indicates that the knowledge gained on
a small piece count database transfers to checkers positions
with more pieces. The neural network clearly discovers some
general checkers patterns, and does not merely memorize a

position-outcome mapping.
As further evidence, Fig. 7 and Table VIII shows the results

where, instead of pre-training, we freeze the residual blocks
of a randomly initialized ResNet, then tune only the classifier
for 60 epochs on the 7-piece database. This network (random
model) has a validation accuracy below 90.5% after 60 epochs
and a similar accuracy on the test set. This eliminates the
possibility that the network achieves high accuracy simply by
mapping the input to a higher-dimensional space.

Finally, as a reference we train a ResNet directly on the
7-piece database until convergence. Table IX shows results
for the best checkpoint. The trained neural network is only
marginally better than the transfer learning models in Ta-
ble VII. The pre-trained models can learn features that are
at least similarly strong as those learned directly on the target
database.

TABLE VII
CORRELATION TABLES OF PRE-TRAINED NEURAL NETWORKS BEFORE

AND AFTER FINE-TUNING.

2-5 Piece Model Model
Pre-train Correct Incorrect

Search Correct 29,313,893 (76.92%) 1,682,679 (4.42%) 81.34%
Search Incorrect 1,258,510 (3.30%) 5,855,444 (15.36%) 18.66%

80.22% 19.78%
2-6 Piece Model Model
Pre-train Correct Incorrect

Search Correct 25,383,593 (66.61%) 5,454,699 (14.31%) 80.92%
Search Incorrect 3,334,511 (8.75%) 3,937,723 (10.33%) 19.08%

75.36% 24.64%
2-5 Piece → Model Model

7 Piece Correct Incorrect
Search Correct 34,695,990 (91.04%) 1,019,743 (2.68%) 93.72%

Search Incorrect 1,463,083 (3.84%) 931,710 (2.44%) 6.28%
94.88% 5.12%

2-6 Piece → Model Model
7 Piece Correct Incorrect

Search Correct 34,326,432 (90.07%) 969,666 (2.54%) 92.61%
Search Incorrect 1,971,422 (5.17%) 843,006 (2.21%) 7.38%

95.24% 4.75%

TABLE VIII
RANDOM MODEL CORRELATION TABLE.

Random Model Model Correct Model Incorrect
Search Correct 26,906,527 (70.60%) 1,926,654 (5.06%) 75.66%

Search Incorrect 7,515,449 (19.72%) 1,761,896 (4.62%) 24.34%
90.32% 9.68%

TABLE IX
REFERENCE MODEL CORRELATION TABLE.

Reference Model Model Correct Model Incorrect
Search Correct 30,257,729 (79.39%) 816,636 (2.14%) 81.53%

Search Incorrect 6,268,606 (16.45%) 767,555 (2.01%) 18.46%
95.84% 4.15%



Fig. 6. Learning Curves of the Pre-trained Models Fine-tuned on the 7-piece
Database.

Fig. 7. Learning Curves of the (Stop Gradient) Randomly Initialized Model
Training on the 7-piece Database.

D. Combining the Neural Network with One-Ply Search

The previous experiments demonstrate that the neural net-
work inference and the one-ply search do not always agree.
While in some tasks, the one-ply search can get an overall
better accuracy at the end, in other cases, using the model
alone is better, or the advantage is negligible. Therefore, using
only one for inference implies a considerable opportunity cost.
Is there a way to dynamically switch between the model
and the search based on some criteria such that the ultimate
classifier is more accurate than either?

As a context for our next experiment, we first define the
highest probability from the distribution output by the neural
network given a position as its confidence for that position.
For instance, if the model outputs a distribution [0.80 (Draw),
0.15 (Win), 0.05 (Loss)] given an input board representation,
its confidence for this board position is 80%.

We discover a correlation between the neural network’s
quality of prediction and confidence – the higher the confi-
dence, the more likely the ResNet’s inference is correct. We
reuse the best baseline model from the sampling experiment,
whose correlation table is in Table IV. Using this neural
network, we generate Table X, a summary of the mean
confidences of the correctly and incorrectly classified positions
in the 2-7 piece validation set with respect to the outcome
class. One can realize a significant difference between the
mean confidence between the correct and incorrect predictions.
The difference across the outcome class is not as striking. We
also plot the distribution of the number of correct/incorrect
positions over bins of confidence levels in Figure 8. The higher
the confidence, the higher the ratio of the number of correct
to incorrect inferences.

Exploiting this property of the neural network, we propose
using a confidence threshold to dynamically switch between
the neural network and the one-ply search for each position.
That is – if the confidence of the neural network for a position
is higher than the threshold, then we accept the model’s
decision. Otherwise, the result of a one-ply search is used.

Among thresholds 70%, 80% and 90%, 80% gives the best
performance. Thus, we use 80% as the confidence threshold
to test our algorithm on the 2-7 piece test set. Table XI
displays the statistics of using the model only, the search only
and the threshold algorithm that merges the two dynamically.
Interestingly, the search-only method performs worse than the
model-only method but complementing the model inference
with search according to the threshold results in 55,441,847
correct mappings out of 57,782,317 positions in the test
set – 280,192 (0.5%) more than model-only and 1,528,424
(2.65%) more than search-only. This evidence supports the
effectiveness of our threshold algorithm.

TABLE X
MEAN CONFIDENCE TABLE.

Outcome Mean Confidence Correct Mean Confidence Incorrect
Draw 94.26% 74.86%
Win 98.54% 77.31%
Loss 97.71% 73.88%

TABLE XI
STATISTICS OF THE NEURAL NETWORK, THE ONE-PLY SEARCH, AND THE

CONFIDENCE THRESHOLD METHOD.

Method Correct Total Accuracy
Model-only 55,161,655 57,782,317 95.46%
Search-only 53,913,423 57,782,317 93.30%

Above threshold - Model used 52,782,198 53,899,336
Below threshold - Search used 2,659,649 3,882,981

Threshold 55,441,847 57,782,317 95.95%

V. CONCLUSIONS

This paper investigates using deep learning to approximate
the value of positions for the game of checkers. We discuss



Fig. 8. Confidence Distribution.

three ways that neural networks can be used in this context: the
network model, combining the model with a one-ply search,
and dynamically choosing between the model and search. The
latter technique is novel and holds great promise for exploiting
the information generated by a neural network – the prediction
and the confidence. Surprisingly, high performance can be
achieved even with a tiny sample of positions, allowing the
technology to be scaled up to even larger data sets.

For endgame databases, how do learned models compare
to using a database/tablebase? There are many factors to
consider, however the essence of the two approaches can
be summarized in two key differences. First, the tablebase
approach gives 100% accuracy, something that a learned model
cannot do in general. If accuracy is essential (e.g., you are
trying to prove the game-theoretic result of checkers), then
this is the limiting factor for learning. But the tablebase
approach does not generalize; the data is only applicable to
the set of positions that have been computed. The learned
approach creates patterns that can be applied to a broader
set of positions – transfer learning. Ultimately, the success
of AI depends upon programs being able to learn and apply
that learning in situations that extend and/or differ from the
learning environment. This work is a step in this direction.
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