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Abstract—Research in Game Artificial Intelligence distin-
guishes between fully observable, perfect-information games and
imperfect-information games, which hide part of the game’s full
information. In games with imperfect information, all possible
game states that are consistent with a player’s currently available
information about the progress of the game are called the
information set for that player. This information set can be used
for multiple purposes such as determining the expected outcome
of a certain move by evaluating it on all possible states in the
information set. While in theory there is no way to distinguish
states within an information set, players can use experience
and other context information to estimate which states are the
most likely. In this paper, we estimate a probability distribution
over an information set from historic data such that we can
assign a weight to each individual state. We achieve this by
training a Siamese neural network with triplets of comparisons
between different states in the information set given the context
of the previously obtained information. A first evaluation in the
game of Reconnaissance Blind Chess shows that we can learn
to identify the one true game state in a large information set
with high probability. In addition, when used within a naively
constructed RBC agent, this approach shows promising gameplay
performance. At the time of writing, a simple agent based on the
Siamese neural network is ranked #6 of all agents on the public
RBC leaderboard.

Index Terms—Siamese Neural Networks, Imperfect Informa-
tion Games, Artificial Intelligence, Reconnaissance Blind Chess

I. INTRODUCTION

Game AI has achieved superhuman performance in many
classic fully observable games such as chess [6], Go [17], and
backgammon [20], and recently also showed similar results
in the imperfect information game of Poker [5]. In imperfect
information games, the game state is only partially observable
to a player, which makes them an attractive area for artificial
intelligence research. There, learning strong game-playing
policies is especially difficult because of the uncertainty of the
situation. Agents have to account for the lack of information,
requiring the construction of probabilistic policies to avoid
being predictable and therefore exploitable. In fully observable
games, game tree search is a powerful tool, but it is much
harder to use in imperfect-information settings [3]. Not even
the root state of a search may be known, and defining optimal

strategies is much more involved than simply backing up
values from leaf nodes. To combat uncertainty and the much
larger game tree, game theory for imperfect information games
[22] clusters sets of states into information sets, sets of
positions which one player cannot distinguish from each other
given their information. However, being indistinguishable does
not imply that all such states are equally likely in practice –
good play by both agents will reach some states within an in-
formation set much more frequently than others. Furthermore,
observing the opponent’s past behaviour can give strong clues
about the likelihood of their actions. In this work, we employ
Siamese neural networks to learn a function from game data
which maps an information set I to a probability distribution
over the states in I, which estimates the probability of each
state being the true game state. This distribution is then used
to inform play by building a simple agent that uses perfect
information play on the most likely state with good empirical
success.

In the remainder of the paper, we will, after a brief intro-
duction to Reconnaissance Blind Chess (Section II), introduce
our approach for using Siamese neural networks and relate it
to the literature in that area (Section III). Data preparation
and the training process are described in more detail in
Sections IV and V, respectively. Finally, the quality of the
obtained solution is evaluated in a predictive setting as well
as in actual gameplay in a simple but powerful agent in
Section VII.

II. RECONNAISSANCE BLIND CHESS

Reconnaissance Blind Chess (RBC) [11] is an imperfect
information variant of classical chess. While the game pieces
start in the same arrangement as in classical chess, players
do not receive full information about their opponent’s moves
and are thus generally unaware of the exact configuration of
their opponent’s pieces. A turn of Reconnaissance Blind Chess
consists of four parts:

1) First, the player receives a limited amount of information
about the move of the opponent. If the opponent has
captured one of the player’s pieces, the player is only
notified about the square where the capture occurred.
For non-capture moves, no information is obtained.979-8-3503-2277-4/23/$31.00 ©2023 IEEE
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Fig. 1. Schematic overview of using a Siamese neural network for weighting RBC board states in an information set. The observation is preprocessed by an
observation encoding network, while both the real board and a sampled incorrect board are preprocessed by a board encoding network. Next, all are input
into the Siamese network. The distances of outputs in the embedding space model the probability of a board being true given the observations.

2) The player is allowed to sense parts of the board by
choosing a 3x3 area, which reveals all pieces in that
region. A player never receives any information about
the opponent’s sense.

3) With some minor differences, a player decides on a
move as in conventional chess. Due to the missing
information, players often cannot tell whether a move
is legal.

4) Finally, the player receives information about whether
their chosen move succeeded. Some illegal moves, such
as when the path of a long-ranging piece is blocked, are
truncated, and the player is notified about the true result
of their move.

Thus, whenever we speak of one turn of RBC, this includes
two separate actions, sensing and moving, which are chosen
after another. Due to the imperfect-information nature, some
rules of RBC differ from normal chess:

• Players can attempt illegal moves. “If a player tries to
move a sliding piece through an opponent’s piece, the
opponent’s piece is captured and the moved piece is
stopped where the capture occurred” [21]. Other illegal
moves are converted into a pass of the turn.

• Players are not notified if their king is in check. They
can also move their king into check and castle through
and out of checks. Due to this rule, stalemate, i.e., not
being able to make a move without putting one’s king

into check, does also not apply in this game.
• Games end by capturing the opposing king.
These rules imply the following properties of RBC:
• A player receives enough information to always perfectly

know the placement of their own pieces.
• Draws only occur if the maximum number of turns

without capture is reached, which makes them rare in
practice.

• By remembering all obtained information, it is always
possible to compute the information set, i.e. the set
of game states that are consistent with the received
observations. However, the size of the information set
can become large, especially when sensing is ineffective
or players play erratically.

• Aggressive strategies that directly attack the opposing
king, which would be self-destructive in classical chess,
as well as speculative moves become a major factor.
Such strategies can win quickly if the opponent does not
recognise them.

III. OVERVIEW

In this section, we give a short overview of our learning
architecture, summarised in Figure 1, and define the used
terminology.

In an extensive-form imperfect information game, a game
state e captures all information of the current situation, in-



cluding the private information of all players. An information
set I for a player is a set of states {e1, e2, . . . , e|I|} which
are indistinguishable from that player’s perspective. In our
case, this is the set of boards that are consistent with all
the information a player has received throughout the game.
Formally, the private observation history at player’s turn t with
Ot = (o0, . . . , ot) implicitly defines their information set It.
In Figure 1, the observation history of the current player is
depicted at the bottom, consisting of the current position of
one’s own pieces, the name of the opponent, and the history
of previous senses and moves, including information about
whether the own moves were successful, and whether pieces
were captured by opponent’s moves (see Table I). Of the
boards in the information set, one is the correct board pt ∈ It,
whereas all other boards nt,i ∈ It\{pt} do not correctly reflect
the true hidden game state. In Figure 1, the correct board pt
is shown on the left, whereas the boards nt,i are shown in the
upper right corner.

We aim to estimate the probability of each state in the
information set by learning a function F : I → [0, 1] which
maps each ei ∈ I to the probability pi = F (ei) that ei is the
true state in the current game. F is trained from past game
data including each player’s observations as well as the full
true game state information at each move. More precisely, for
each observation Ot, we can derive |It| − 1 triplets of the
form ⟨Ot, pt, nt,i⟩, which indicate that in the information set
characterised by the observations Ot, the positive example pt
was the true game state, while each of the negative examples
nt,i was not. These triplets are used to train a Siamese
neural network (shown in the middle of Figure 1), which
uses the triplet loss for training. This should result in the
positive example pt being embedded in closer proximity to
the observation history Ot than the negative examples nt,i, as
described in more detail in the next section.

A. Siamese Neural Networks for Imperfect Information Games

Traditionally, Siamese neural networks [4], [7] are used to
compare the strength of a relationship of several options to an
anchor. A famous application of this is one-shot learning in
image recognition [12], [16]. Here, the network is trained to
model that the positive image p is more similar to an anchor
image a than a negative image n.

Given triplets ⟨a, p, n⟩, comparisons are constructed by
feeding all three items e ∈ {a, p, n} to a neural network
F , resulting in high-dimensional output embedding vectors
F (e). The parameters of F are trained such that distances
between these embeddings model the similarity of the inputs.
For a triplet ⟨a, p, n⟩, given a distance metric d, we define
dp = d(F (a), F (p)) and dn = d(F (a), F (n)), omitting the
argument a for brevity. The goal is that dp < dn as illustrated
in the sketch in the centre of Figure 1. This is commonly
achieved by minimising the triplet loss

Ltriplet(a, p, n) = max (dp − dn +m, 0) . (1)

The parameter m represents the desired margin between
positive and negative images – it controls how much the

distances must differ to achieve zero loss. As shown at the
top of Figure 1, we set m = 1 in our experiments. For the
distance metric, we chose the Euclidian distance.

As noted above, we apply a Siamese network to model the
probability of each specific board state of an information set,
using the observation history as the context. Thus, our training
triplets are of the form ⟨Ot, pt, nt,i⟩. Critically, in contrast
to previously discussed tasks, in the imperfect information
setting there is usually not a single “true answer”. Which
board actually occurs depends on the (generally unknown)
move choice of the opponent. However, an agent can attempt
to learn which board states are more likely from historical
training data.

A key technical difference between the image recognition
setting and our use case is that inputs to the Siamese network
usually share a common representation. In our setting, the
anchor, i.e., the observation history Ot, encodes a different
type of information than the two items that are compared, the
positive and negative boards. Therefore, we have to add two
small encoding networks, shown in blue and green in Figure 1,
which transform the board states and the observation history
respectively into matching latent encodings, which can then
be used as the inputs for the Siamese network.

B. Related Work

Siamese architectures have been used for tasks other than
image recognition. However, when used for game position
evaluations, they are often based on comparisons without
explicitly modelling the anchor. Tesauro used such pairwise
Siamese neural networks to evaluate which of two Backgam-
mon positions should be preferred over the other [19]. In
DeepChess [10], chess positions are again compared using
a twin Siamese neural network. Both of these applications
compare fully observable board states with each other and aim
to learn evaluations of the positions. In contrast, in our work,
we add a player’s observation history as a context, which is
required to relate the preference to a specific situation, and
fundamentally changes the way the neural network is trained.
In our work, it does not make sense to compare arbitrary
positions, as we can only decide between states in the same
information set. We also do not aim to compare which of the
two positions should be evaluated better, but rather we model
the likelihood of them occurring in real gameplay.

We may also view each triplet as a contextual preference,
denoted as (pt ≻ nt,i | Ot). In this context, our approach may
also be seen as a version of contextual preference ranking
(CPR), which uses Siamese neural networks for preference-
based decision-making [1]. In particular, Bertram et al. used
CPR to measure the synergy of cards in a collectable card
game. There, the Siamese network modelled how well a
selection of cards fits a set of previously chosen cards. Here,
we extend this idea of relating decisions to the context in
which they occurred to the case of observation histories
under imperfect information. We apply this method to the
game of Reconnaissance Blind Chess (RBC) and compute the
probability of each state in an information set of states actually



occurring in play, whereas in [1], CPR is used to predict a
player’s card choice. Furthermore, while the anchors are rather
unique in both applications, the number of different possible
choices was limited to only 15 or fewer from a total set of 265
cards, while the size of information sets and possible boards
in RBC is much larger.

IV. DATA AND PREPARATION

A large amount of gameplay data for RBC is openly
available [21]. We obtained 582 450 games as training data for
our network. Each recorded game includes a turn-by-turn list
of all observations received from each player’s perspective, as
well as other information such as the name of the opponent.
From this information, we form the anchors Ot, as shown
at the bottom of Figure 1. From the game record, it is
possible to fully reconstruct the information set for each player
and each action. For some players, mostly early versions or
malfunctioning ones without a reasonable sensing strategy,
the information set can grow too large, so we limit its size
to a maximum of 5 000 boards, which is rich enough for
our purposes. In addition to the information set and the
observations, we also extract which board represents the true
underlying game state. Together, the observations, the true
(positive) board, and one wrong (negative) board form the
triplets used for training the neural network (Figure 1). For
each game, we create one training sample for each decision
point for each player, resulting in a total of 27 million samples.
We split this data 90/10 into training and test data in order
to compute an out-of-sample accuracy estimate for the final
trained neural network. In training, we also take precautions
to prevent oversampling decisions with large information sets
(see Section V).

A. Representation of Boards and Observations

Each chess position is represented by a 12 × 8 × 8 bit
tensor which encodes the occurrences of the 12 different chess
pieces. This representation omits some details, such as castling
rights and turn numbers, but captures the vast majority of
information.

We represent a truncated history of observations as follows:
For each turn of the game, a 90 × 8 × 8 bit tensor (Table I)
encodes all information received from one player’s point of
view [2]. The majority of this encoding is taken up by
specifying the last-requested move by the player [18]. We
truncate the observation history to the 20 most recent turns,
padding the input if fewer turns were played and discarding
any turns further in the past. Finally, we one-hot encode the
50 most prominent opponent’s names in 50 8×8 planes, since
this information can have a large influence on the policy of
an agent [8]. If the opponent’s name is not in this list of
players, all 50 planes are set to zero. Thus, the total observation
representation is 20× 90+50 = 1850 bitboards of size 8× 8.

B. Neural Network Architecture

To translate the two different representations of boards and
observation histories into a common input to the Siamese

TABLE I
ENCODING OF THE OBSERVATIONS IN ONE TURN

Number of planes Information represented

1 Square where the opponent captured one of our pieces
73 Last move taken, encoded as in AlphaZero [18]
1 Square where agent captured opponent’s piece
1 1 if the last move was illegal
6 Position of own pieces (One plane per piece type)
1 Last sense taken
6 Result of last sense (One plane per piece type)
1 Color

network, we use two small convolutional neural networks that
differ in input but share the same output format. In training, the
boards and observations are transformed using their respective
encoding network (blue and green in Figure 1) before reaching
the common Siamese neural network (orange).

1) Encoding Networks: The two encoding networks are
basic convolutional neural networks with 5 layers, 64 filters
per layer, and the ELU activation function [9]. They only differ
in the shape of the input, but share the same inner structure
and output. Each encoding network translates its input into a
feature tensor of shape of 128× 8× 8.

2) Siamese Network: The Siamese neural network is an-
other convolutional neural network. It is larger than the en-
coding networks with 10 convolutional layers and 128 filters
each, also uses ELU activations, but additionally utilises skip
connections. The output block of the network uses two more
convolutional layers but decreases the filter size from 3 × 3
to 1 × 1 to combine the different feature planes into one
final output. A single fully-connected tanh layer forms the
final output of the network. We tested several architectures
with more fully-connected layers, but predominantly using
convolutions worked much better. The dimensionality of the
resulting embedding space, i.e., the number of output neurons
of the final fully-connected layer, was set to 512 in order to
capture the complex relationships between the samples in the
triplets.

V. TRAINING PROCESS

The neural network is trained on the dataset described
in Section IV-A using mini-batches of 1024 triplets with a
learning rate of 0.0001. Larger learning rates significantly
harmed the training process. For gradient updates, we use the
AdamW algorithm [13]. The combined network, consisting
of both encoding networks and the Siamese network was
trained end-to-end, driving the encoding networks towards
latent representations that are most useful for the Siamese
network.

Our training procedure differs significantly from training
Siamese networks for image recognition. When training with
triplets of images, it is possible to choose arbitrary combi-
nations of images, as long as one can be considered more
similar to the anchor than the other. For our task, triplets are



more restricted. The preference of the positive board over all
the negative boards in its information set is only valid for the
specific history in which this decision occurred. In our data,
each anchor is associated with exactly one information set,
including one true board and numerous negatives. In order
to avoid oversampling of triplets from large information sets,
which would often occur with weaker agents that did not
choose senses that kept the information set small, we define
one epoch of training as follows:

• One epoch consists of seeing each anchor and positive
example exactly once.

• For each of those pairs, one single negative board is
sampled from all possible options. While it is possible to
use uniform sampling, this can easily lead to generating
uninformative triplets with unrealistic negative boards.
Instead, we choose triplets in a way that is related to semi-
hard triplets [16]: x negatives are randomly sampled from
the set and their distances to the anchor are computed.
For the computation of the loss and backpropagation,
only the negative in closest proximity to the anchor, i.e.
the one regarded most likely, is used. At the start of
training, x is set to 3 and it is increased after epochs
where improvements stall.

The Siamese neural network, evaluated in Section VII,
was trained until the evaluation loss stalled for 3 consecutive
epochs. In total, this process trained for 22 epochs, which took
61 hours on a single Nvidia A100 GPU. Our code is publicly
available.1

VI. A MINIMAL SIAMESE RBC AGENT

While we can evaluate the quality of the trained neural
network with conventional machine learning metrics (and we
will do so in Section VII-A), it is not clear how much a
real agent that plays Reconnaissance Blind Chess can profit
from improved information set probability estimation. For this,
we implemented and evaluated a minimalist RBC agent that
strongly utilises the Siamese neural network to aid sense and
move selection.

Building an RBC agent requires three main components:
(i) handling information received throughout the game, (ii)
choosing a sensing action, and (iii) selecting the move to be
played. Our agent is built around the idea of tracking the
information set of board states, starting with the initial piece
configuration and adding and removing states based on the
received information. The trained Siamese network is heavily
used for both sensing and moving. When sensing, the agent
aims to minimise a weighted measure of the information set
size, which is achieved by computing the weighted number
of board conflicts per sensing square (see Section VI-B). To
choose a move, the agent computes the most likely board
with the Siamese network and selects a move on that specific
board using the strong open-source classical chess program
Stockfish2 (see Section VI-C). Thus, the agent naively plays

1https://github.com/timobertram/Weighting-Information-Sets-with-Siame
se-Neural-Networks-in-Reconnaissance-Blind-Chess

2https://stockfishchess.org/

under the assumption that the Siamese network can always
identify the true board state.

Algorithm 1: Compute sense score of each square
Data: boards, weights
Result: scores
scores← list ();
end← min(100, len(boards));
for square ← 1 to 64 do

diffResults← list ();
for i← 0 to end do

res← senseResult (boards[i],square);
if res ∈ diffResults then

diffResults[res]←
diffResults[res] + weights[i];

else
diffResults[res]← weights[i];

end
end
scores[square]← 0;
s← sum(diffResults)
for res ∈ diffResults do

scores[square]←
scores[square] + (res/s) · (s− res);

end
end

A. Handling Information Sets

The majority of strong RBC agents are based on tracking
all possible board states, i.e. the information set I [15]. For
computing its probabilities, our agent also needs to track
I. After each opponent’s turn, the set of possible states is
replaced by all possible states that could follow each of the
boards in the previous set. If the opponent captured a piece,
this set typically stalls or decreases in size, as only a limited
number of previous states allow capturing pieces, while non-
capture moves greatly increase its size. Whenever the agent
itself senses or moves, it removes boards that are inconsistent
with the new observations. Sensing and moving never directly
increase the size of the set, and most of the time significantly
decrease it. Nevertheless, if sensing does not remove enough
states, the information set can grow very large over time.

B. Choosing a Sensing Action

Most strong RBC agents sense in a way that aims to mainly
reduce the information set size [15], and our agent follows
this practice. To sense, first, a probability distribution over
the whole information set is estimated from the distances in
the embedding space created by the Siamese network. The
distances of the embedded boards to the embedded history
are computed, inverted and normalised to sum to one. This
converts them into a probability distribution where boards in
closer proximity to the history have a higher weight. Based on
this, the agent computes a score for each of the 64 possible

 https://github.com/timobertram/Weighting-Information-Sets-with-Siamese-Neural-Networks-in-Reconnaissance-Blind-Chess
 https://github.com/timobertram/Weighting-Information-Sets-with-Siamese-Neural-Networks-in-Reconnaissance-Blind-Chess
https://stockfishchess.org/


sensing locations.3 The score estimates the expected number of
board state eliminations based on conflicts of possible sensing
results, weighted by the probability of each of the top 100
likeliest boards (see Algorithm 1). Finally, the square with the
highest score is chosen as the centre of the sense.

C. Choosing a Move

While the Siamese network influences the agent’s sensing
through board weighting, its move selection is influenced even
further. After receiving new information from the previous
sense, the agent appends this observation to its history, which
shifts the anchor in the embedding space. Then, the agent
again computes a probability distribution over the remaining
boards in the information set. Next, in the simplest and most
optimistic way, the agent chooses the most likely board and
queries Stockfish for the best move on that board.4

The success of this policy greatly depends on the accuracy
of the Siamese network. If it does not provide accurate predic-
tions, the agent will sense poorly as well as make inaccurate
moves that only work well on the wrong board. However,
whenever it correctly identifies the board, the agent plays as
if it had perfect information. We make two observations about
this agent’s optimistic behaviour:

1) The agent ignores potentially dangerous boards, that
could lead to immediate defeat if they are not regarded
as the most likely one.

2) In contrast to most other agents, our agent has no
concept of “cautious” moves that perform adequately
on many boards. Instead, it takes gambles based on
guessing the correct board.

While this policy is naive, our evaluations show that this
basic agent, which leaves vast room for improvement, already
achieves top-tier playing strength in RBC (see Section VII-B).

VII. EVALUATION

In order to evaluate the proposed approach, we test the
performance of the Siamese network in two ways: by its
accuracy of predictions on a held-out test set, and by the
playing strength of the simple Siamese RBC agent outlined
in Section VI.

A. Board Ranking Accuracy of the Siamese Network

The experiments in this section evaluate the trained Siamese
network and its predictions against the ground truth data.
This evaluation provides a fine-grained test of how well the
network selects boards from a set. Together with the game-play
evaluations in Section VII-B, these results provide a strong
validation of our approach.

For each game position in the test set, we embed all states
in the information set as well as the observation history with
the Siamese network (see Figure 1). In the embedding space,

3In practice, the 28 border squares are ignored because the same (and more)
information can be obtained by sensing an adjacent interior square.

4We make some RBC-specific adaptions such as capturing the opponent’s
king if possible.

we rank all states based on their distances to the observations
and check the position of the true board in the ranking.

We report three metrics:
• top-k accuracy: how often is the true board ranked among

the top k boards?
• top-k-percentage accuracy: how often is the true board

ranked in the top k-percent boards (rounded up)? This is
similar to top-k accuracy but also takes into account the
variable size of the information set.

• pick-distance: the position of the true board in the ranking
of all boards in the information set.

All metrics are averaged across a large number of samples
from the unseen test set. As such, they should provide a
strong estimate of the generalisation performance of the neural
network.

We compare our results to three baseline rankings: ran-
dom ranking, ranking by the evaluations of the boards given
by Stockfish, and ranking by using the internal evaluations
of StrangeFish2. Ranking positions with Stockfish, or other
classical chess engines, is used in many RBC agents [11],
[15], and assumes that the opponent is more likely to play
moves that have a higher evaluation. While evaluations from
normal chess cannot directly translate to RBC evaluations and
often give vastly differing results, most of the current strong
RBC players use a chess engine, making this comparison more
relevant than it may seem at first glance. One of the strongest
agents, StrangeFish2 [14] is one of such players that bases
its evaluations on Stockfish, but makes several RBC-specific
adaptations.
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Fig. 2. Comparison of top-k and top-k-percent accuracy of the Siamese
network to random, Stockfish, and StrangeFish2 ranking. The average size
of the information set is 1100. The Siamese network vastly outperforms the
three baselines, achieving much higher accuracies than all other metrics.

Figure 2 shows the top-k (solid) and top-k-percent (dashed)
accuracy of the four methods. Ranking boards based on their
Stockfish evaluations achieves higher accuracies than random
ranking, with the additional adaptions of StrangeFish2 leading
to slight improvements over Stockfish. However, our Siamese



network beats the three baselines by a large margin. In more
than half of the samples (52%), the true board is ranked
first, so the network is able to correctly identify the correct
choice more often than not. In addition, with a top-50-percent
accuracy of 98%, the true board is ranked in the bottom half of
options only in a few exceptional cases. Also note that under
the assumption that Stockfish is able to select the best move,
this move will not only be played when the true board has been
correctly identified by our network, but may also be the best
move on an incorrectly selected board. In our experiments,
there were an additional 16% of such cases.

TABLE II
TOP-1 BOARD PREDICTION ACCURACY FOR DIFFERENT OPPONENTS.

OPPONENTS SORTED BY CURRENT ELO

Opponent Top-1 accuracy Opponent Top-1 accuracy

StrangeFish2 0.39 Stockenstein 0.29
Fianchetto 0.56 Testudo 0.38
JKU-CODA 0.41 genetic 0.25
Châteaux 0.45 Marmot 0.34
Kevin 0.54 Dyn. Entropy 0.35
ROOKie 0.44 trout 0.67
StrangeFish 0.46 attacker 0.93
Oracle 0.50 random 0.28
penumbra 0.43 No player 0.39

Table II breaks up the overall top-1 accuracy according to
opponents. This is important because the opponent is encoded
in the observation history, and therefore influences the embed-
ding. As a result, different boards may be selected for the same
information sets if opponents differ. Here, we can see that the
accuracy of the network is not dominated by single individual
players. Nevertheless, the predictability of move choices varies
between different players. Intuitively, random is one of the
least predictable opponents, but the Siamese network is able to
learn that this player often makes illegal moves, still allowing
for some modelling of how it will act. On the other end, boards
in games against the strongly scripted attacker are easiest
to identify. Altogether, the Siamese network can model all
opponents to some degree, including those with the highest Elo
ratings, Strangefish2, Fianchetto, JKU-CODA, and Châteaux.
This is especially reassuring given that the games of these
players result from dozens of different versions of different
strengths that all play under the same name. Finally, we
observe that the left column with higher-rated opponents seems
to be more consistent in predictability than the right column
with lower-strength players.

Figure 3 provides more insights into the performance of
the network by summarising the individual pick-distances for
a large number of samples. The Siamese ranking is clearly
better at modelling player behaviour than the three baselines.
In the majority of cases, the pick distance is below 10, and only
about 5% of samples have a distance over 100. For the method
that many other agents use, namely ranking or weighting by
Stockfish, many samples have much higher distances, and
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Fig. 3. Comparison of pick-distance of the true board, using the Siamese
network, Stockfish, StrangeFish2, and random ranking. Individual samples per
method have small uniform noise on the x-axis added for better visualisation.
The Siamese network has some amount of outliers due to the stochastic nature
of the task, but is generally able to achieve a very high ranking of the correct
choice and a median rank of 1.

StrangeFish2 only improves this slightly.

B. Playing performance

In this section, we evaluate the agent described in Section VI
on the publicly available RBC leaderboard [21], which allows
for comparison of its strength against a variety of players,
including many of the strongest known agents.

TABLE III
ABLATION STUDY OF COMPONENTS OF PROPOSED RBC AGENT. ELO IS

OBTAINED FROM THE RBC LEADERBOARD.

Sense weighting Board selection
ELO

Uniform Stockfish Siamese Random Stockfish Siamese

✔ ✔ 1197
✔ ✔ 1253

✔ ✔ 1204
✔ ✔ 1419
✔ ✔ 1534

The RBC leaderboard is a freely available service which
provides automated testing against all other currently active
agents. While active players change, a small selection of agents
is always connected, whose strength varies from rather basic
to state-of-the-art. This ensures that players can be assigned a
representative Elo rating, albeit with some variance.

Our test on the leaderboard involves two parts; evaluating
the full Siamese Optimist agent, and ablation studies where
the sense weighting or board selection is replaced by a
baseline method to separately test their effect on the player
rating. The results of this are shown in Table III. In all
versions, sensing uses Algorithm 1, only differing in how the
weights are computed. For Uniform, all weights are equal, for



Stockfish, all boards are evaluated by Stockfish and weights
are generated proportionally to how high that evaluation is
from the opponent’s perspective, and for Siamese, boards are
weighted in inverse proportion to the distance of the board
to the observation history Ot in the embedding space. For
playing, all agents use Stockfish to compute the best move
but differ in the board selection strategy: Random chooses a
board randomly, Stockfish chooses the board with the highest
Stockfish evaluation from the opponent’s view and Siamese
uses the learned embedding to choose the board that is closest
to the observation history.

The resulting Elo ratings of each version (Table III) match
the observations from Section VII-A. In both parts of the
player, replacing the Siamese network with other options
results in much worse performance, especially when changing
the board selection. Selecting a board randomly results in very
weak players for all weighting methods. Selecting based on
Stockfish’s evaluations only performs well when using the
Siamese sense-weighting, but the fully Siamese player is still
more than 100 ELO points stronger than that version. At the
time of writing, the fully Siamese version SiameseOptimist is
ranked #6 on the public leaderboard.

VIII. CONCLUSION AND FUTURE WORK

We trained a Siamese network to estimate situation-specific
occurrence probabilities of states in an information set. Our
experiments confirmed that the learned network is able to
perfectly identify the true state in a large number of cases,
even when the information set is large. In addition, we show
that this allows for a simple perfect-information approach
to the imperfect-information game of Reconnaissance Blind
Chess. The agent naively assumes that the network can always
identify the correct state in the information set, resulting in
only a single game position to consider, and uses the chess
engine Stockfish to generate a strong move for that position.
While limited, this makes the game much easier to play for
an agent and shows surprisingly strong performance, such that
our agent is currently ranked among the strongest on the public
leaderboard. The surprising strength of perfect information
gameplay in imperfect information games was recently also
observed in [3]. Integrating our weighting of positions in the
information set with their Monte-Carlo search for evaluating
these positions seems to be an obvious and promising direction
for future work.

Despite this, we consider the fact that moves are still
selected using Stockfish to be the main weakness of our
current approach. In particular, RBC-specific policies, such as
strategies using speculative attacks on the opponent’s king, can
not be generated in this setting. Thus, changing the final move
selection, for example, to an RBC-specific neural network, or
conducting a search with our learned probability distributions,
may further improve our agent.

Although only tested in one domain so far, our approach is
general, allowing its future use in other imperfect-information
decision-making tasks, which we also intend to explore.
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