
Search and Learning Algorithms for Two-Player Games with
Application to the Game of Hex

by

Chao Gao

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Computing Science

University of Alberta

c© Chao Gao, 2020



Abstract

Two-Player alternate-turn perfect-information zero-sum games have been suggested

as a testbed for Artificial Intelligence research since Shannon in 1950s. In this thesis,

we summarize and develop algorithms for this line of research. We focus on the game

of Hex — a game created by Piet Hein in 1942 and popularized by Jonh Nash in

1949. We continue on previous research, further bringing the strength of machine

learning techniques — specifically deep neural networks — to the game of Hex.

We develop new methods and apply them to solving and playing Hex. We present

state-of-the-art results for Hex and discuss relevant research on other domains. In

particular, we develop solving and playing algorithm by combining search and deep

learning methods. As a result of our algorithmic innovations, we produce stronger

solver and player, winning gold medal at the Computer Olympiad Hex tournaments

in 2017 and 2018.

ii



What I believe is that if it takes 200 years to achieve artificial intelligence, and

finally there is a textbook that explains how it is done; the hardest part of that

textbook to write will be the part that explains why people didn’t think of it 200 years

ago, because we are really talking about how to make machines do things that are on

the surface of our minds. It is just that our ability to observe our mental processes

is not very good and has not been very good.

— John McCarthy

iii



Acknowledgements

Many people deserve to be acknowledged for assisting me directly or indirectly in

creating this thesis. First of all, I thank my supervisors Ryan Hayward and Martin

Müller for supervising me. My initial interest in games were motivated by my keen

interest in playing Chinese chess as a hobby. Even though I roughly know how

computers play chess games, I was surprised to learn that super-human strength

program does not exist for the game of Hex, especially when considering its simplest

rules and straightforward goals. The other aspect of Hex that lures me is its close

tie to combinatorics and graphs; these properties have enabled many aspects of Hex

be studied in a rigorous mathematical manner rather than mostly empirical as in

many other games; I was intrigued to learn more about them, even though I finally

did not pursue these directions for my thesis.

My study of Hex with deep neural networks was inspired by the consecutive suc-

cesses of using deep learning techniques as a general tool for bringing advancement

in a number of areas, in particular the early breakthrough in playing the game of

Go. By 2016, it becomes clear to me that the next step of research in Hex should

be including deep learning to the game. Rather than straightforwardly adapting

deep networks into existing Hex algorithms, I tried to understand the essence of

each technique thus to invent new paradigms that should be more applicable to

Hex and probably other challenging games as well, and this thesis is a reflection of

my endeavour towards such an aspiration. In the process, I greatly appreciate the

support of Martin Müller for his expertise in multiple domains; his critical questions

on my work often pushed me to explore important things otherwise I would have

neglected. I am greatly grateful to Ryan Hayward for buying two GPU machines

to support my research; most experiments in this thesis were carried out on these

machines. His attention on writing also influenced me; the little book he gave to

me, The Elements of Style, which I originally thought of little use, turned out to be

a treasure for providing valuable guidance to me.

iv



I am also thankful to a number of people who have aided me. Previous re-

searchers in Hex including Jakub Pawlewicz, Broderick Arneson, Philip Henderson

and Aja Huang have provided me useful comments on codebase benzene. In particu-

lar, in 2018 summer, Jakub Pawlewicz helped me greatly for preparing the Computer

Hex tournament. Thanks Siqi Yan, Xutong Zhao, Jiahao Li, Paul Banse, Joseph

Meleshko, Wai Yi Low and Mengliao Wang for either doing tournament test for me

or temporarily contributing their GPU computation for the testing. Nicolas Fabi-

ano further discovered more pruning patterns in 2019 summer though these are not

discussed in this thesis. Thanks Kenny Young for passing me the working code of

MoHex 2.0. I am grateful to Noah Weninger for operating MoHex-CNN in 2017 and

helping me produce some training games. Thanks Cybera.ca for providing cloud

instances. Thanks Jing Yang for providing his pattern set and useful instructions

for 9×9 Hex solution.

I thank the useful discussion on a variety of general topics with Farhad Haqiqat,

Chenjun Xiao, Jincheng Mei, Gaojian Fan, Xuebin Qin, Chenyang Huang and Yun-

peng Tang; researchers that I known of while I was interning at Borealis AI: Bilal

Kartal, Pablo Hernandez Leal, and manager Matt Taylor; my manager at Huawei

Edmonton research office Henshuai Yao.

Finally, I am deeply grateful to my family for being supportive of my pursuit

— I am indebted to my parents, my brother, my sister, and in particular my wife

Sitong Li for her great companion, unconditional support and priceless patience.

v



Contents

1 Introduction 1
1.1 The Game of Hex as a Benchmark for AI . . . . . . . . . . . . . . . 1
1.2 Searching for Solutions with the Help of Knowledge . . . . . . . . . 4

1.2.1 Learning Heuristic Knowledge in Games . . . . . . . . . . . . 6
1.2.2 Principles for Heuristic Search in Games . . . . . . . . . . . . 9

1.3 Contributions and Organization of This Thesis . . . . . . . . . . . . 9

2 General and Specific Techniques for Solving and Playing Games 13
2.1 Strategy Representation . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Minimax Strategy and Solution Graphs . . . . . . . . . . . . 13
2.1.2 Strategy Decomposition . . . . . . . . . . . . . . . . . . . . . 15

2.2 Search and Learning Formulations . . . . . . . . . . . . . . . . . . . 18
2.2.1 State and Problem Space Graphs . . . . . . . . . . . . . . . . 19
2.2.2 Markov Decision Processes and Alternating Markov Games . 21

2.3 Techniques for Strategy Discovery . . . . . . . . . . . . . . . . . . . 23
2.3.1 Informed Best-first Search . . . . . . . . . . . . . . . . . . . . 23
2.3.2 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . 27
2.3.3 Deep Neural Networks . . . . . . . . . . . . . . . . . . . . . . 30
2.3.4 Combining Learning and Search: Monte Carlo Tree Search . 32

2.4 Hex Specific Research . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.4.1 Complexity of Hex . . . . . . . . . . . . . . . . . . . . . . . . 33
2.4.2 Graph Properties and Inferior Cell Analysis . . . . . . . . . . 34
2.4.3 Bottom Up Connection Strategy Computation . . . . . . . . 37
2.4.4 Iterative Knowledge Computation . . . . . . . . . . . . . . . 39
2.4.5 Automated Player and Solver . . . . . . . . . . . . . . . . . . 40

3 Supervised Learning and Policy Gradient Reinforcement Learning
in Hex 44
3.1 Supervised Learning with Deep CNNs for Move Prediction . . . . . . 44

3.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.1.2 Input Features . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.1.3 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.1.4 Data for Learning . . . . . . . . . . . . . . . . . . . . . . . . 47
3.1.5 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.1.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.1.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2 Policy Gradient Reinforcement Learning . . . . . . . . . . . . . . . . 56
3.2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.2.2 The Policy Gradient in MDPs . . . . . . . . . . . . . . . . . . 57
3.2.3 An Adversarial Policy Gradient Method for AMGs . . . . . . 58
3.2.4 Experiment Results in Hex . . . . . . . . . . . . . . . . . . . 61
3.2.5 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.2.6 Data and Supervised Learning for Initialization . . . . . . . . 61
3.2.7 Results of Various Policy Gradient Algorithms . . . . . . . . 62
3.2.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

vi



4 Three-Head Neural Network Architecture for MCTS and Its Ap-
plication to Hex 66
4.1 Background: AlphaGo and Its Successors . . . . . . . . . . . . . . . 66
4.2 Sample Efficiency of AlphaGo Zero and AlphaZero . . . . . . . . . . 71
4.3 Three-Head Neural Network Architecture for More Efficient MCTS . 73

4.3.1 PV-MCTS with Delayed Node Expansion . . . . . . . . . . . 74
4.3.2 Training 3HNN . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.4 Results on 13×13 Hex with a Fixed Dataset . . . . . . . . . . . . . . 78
4.4.1 ResNet for Hex . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.4.2 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.4.3 Prediction Accuracy of 3HNN . . . . . . . . . . . . . . . . . . 79
4.4.4 Evaluation in the Integration of PV-MCTS . . . . . . . . . . 81

4.5 Transferring Knowledge Using 3HNN . . . . . . . . . . . . . . . . . . 83
4.5.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.5.2 Prediction Accuracy In Different Board Sizes . . . . . . . . . 84
4.5.3 Usefulness When Combined with Search . . . . . . . . . . . . 85
4.5.4 Effect of Fine-tuning . . . . . . . . . . . . . . . . . . . . . . . 87

4.6 Closed Loop Training with 3HNN . . . . . . . . . . . . . . . . . . . . 88
4.6.1 Training For 2018 Computer Olympiad . . . . . . . . . . . . 88
4.6.2 Zero-style Learning . . . . . . . . . . . . . . . . . . . . . . . . 90

4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5 Solving Hex with Deep Neural Networks 98
5.1 Focused Proof Number Search for Solving Hex . . . . . . . . . . . . 98
5.2 Focused Proof Number Search with Deep Neural Networks . . . . . 100
5.3 Results on 8×8 Hex . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.3.1 Preparation of Data . . . . . . . . . . . . . . . . . . . . . . . 101
5.3.2 Policy and Value Neural Networks . . . . . . . . . . . . . . . 101
5.3.3 Empirical Comparison of DFPN, FDFPN and FDFPN-CNN 103
5.3.4 Using Three-Head ResNet . . . . . . . . . . . . . . . . . . . . 106

5.4 Solving by Strategy Decomposition . . . . . . . . . . . . . . . . . . . 107

6 Conclusions and Future Work 113

References 116

Appendix A Additional Documentation 129
A.1 Neurobenzene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
A.2 Visualization for a Human Identified 9×9 Solution . . . . . . . . . . 130
A.3 Published Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
A.4 From GBFS to AO* and PNS . . . . . . . . . . . . . . . . . . . . . . 132
A.5 Computing True Proof/Disproof Number is NP-hard . . . . . . . . . 141

vii



List of Tables

2.1 Approximate number of estimated states forN×N Hex, N = 9, 10, 11, 13.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2 Evolution of Computer Programs for Playing Hex. . . . . . . . . . . 42

3.1 Input features; form bridge are empty cells that playing there forms
a bridge pattern. Similarly, an empty cell is save bridge if it can be
played as a response to the opponent’s move in the bridge carrier. . 46

3.2 Prediction accuracy on test set from CNN models with varying d and w 49
3.3 Results of CNNd=8 ,w=128 against 4ply-Wolve and 1000 simulations

MoHex 2.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.4 Results of MoHex-CNN and MoHex-CNNpuct with same number of

simulations against Mohex 2.0. As Black/White means MoHex 2.0 is
as the Black/White. . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5 Results Against MoHex 2.0 of MoHex-CNNpuct and MoHex-CNN
with same time limit per move, 95% confidence. . . . . . . . . . . . 54

3.6 Input feature planes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.1 pσ, pπ, pρ, pσ and vθ architectures and their computation consumption. 67
4.2 Computation used for producing each player. For all Zero variants,

computation used to optimize the neural network was ignored. . . . 72
4.3 Winrates of MoHex-2HNN and MoHex-3HNN against Mohex-CNN

with the same time per move. For best performance, MoHex-3HNN
and MoHex-2HNN respectively use the neural net models at epochs
70 and 60. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.4 MoHex3H using 13×13-trained nets: win rate (%) versus MoHex 2.0
and MoHex-CNN. Columns 2-11 show strength by epoch. . . . . . . 86

4.5 MoHex3H using 9×9-trained nets: win rate (%) versus MoHex 2.0. . 86
4.6 MoHex3H using 9×9-trained nets, with p-head only: win rate (%)

versus MoHex 2.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.7 Detailed match results against MoHex 2.0. Each set of games were

played by iterating all opening moves; each opening is tried twice with
the competitor starts first and second, therefore each match consists
of 162 games. We use the final iteration-80 models for 2HNN and
3HNN from Figure 4.21. The overall results are calculated with 95%
confidence. MCTS-2HNN and MCTS-3HNN used 800 simulations
per move with expand threshold of 0. MoHex 2.0 used default setting
with 10,000 simulations per move. . . . . . . . . . . . . . . . . . . . 95

5.1 DFPN, FDFPN and FDFPN-CNN results for 8×8 Hex. The best
results are marked by boldface. Results were obtained on the same
machine. Computation time was rounded to seconds. . . . . . . . . 104

6.1 Status of solved Hex board sizes. For 10×10, only 2 openings are
solved. For other smaller board sizes, all openings have been solved. 114

viii



List of Figures

1.1 Two Hex games on 11×11 and 13×13 board sizes. Each move is
labeled by a number, representing the playing order. White won both
games by successfully forming a chain to connect his two sides. In the
left subfigure, the second move swaps the color — S labeled move g2
indicates that the player using black stone was originally assigned as
the second-player, effectively becoming the first-player after swap. . . 2

1.2 A 5-level solution for 3×3 Hex. A dotted line indicates that the
connected two nodes can be merged into one as they are equivalent.
Symmetric moves are ignored. This solution contains 34 nodes. . . . 7

1.3 The bridge connection pattern in Hex. The two black stones can be
connected via one of the two empty cells no matter if Black or White
plays first — they are virtually connected. . . . . . . . . . . . . . . . 8

2.1 The directed acyclic graph (edges are directed downwards) of a game.
Each node corresponds to a state, and is labeled with that state’s
minimax value score for player MAX . . . . . . . . . . . . . . . . . . 14

2.2 Example solution graphs for the first and second players. Each node
represents a game state; each edge stands for a legal action from its
upward game state. Value at each node is labeled with respect to the
player at root, i.e., the first-player. . . . . . . . . . . . . . . . . . . . 15

2.3 Grouping moves when proving s is losing . . . . . . . . . . . . . . . . 16
2.4 In the right figure, by symmetry, the winning strategy for Black can

be summarized by two identical and independent subgame strategies,
i.e., cells encircled with numbers 1 to 8 plus the black stone. This
subgame is called the 4-3-2 pattern in Hex; it can be composed from
bridge patterns. The starred nodes are dummy whose purpose is to
make the exposition of the decomposition clear. . . . . . . . . . . . . 17

2.5 Solution for 5×5 Hex by strategy decomposition. Each f edge is a
mapping whose argument is a set of moves and output is a single
response move. The graph can be further simplified by discarding
all squared nodes and merging all subgame nodes sharing the same
substrategy into one. Starred nodes are called branch nodes in [214]. 18

2.6 The 8-puzzle sliding tile problem [153]: Given an initial configuration
and rules for moving tiles, the objective is to find a sequence of moves
to reach the goal state. Such a puzzle can be directly translated into
a state-space graph, which is an OR graph where every vertex is a
decision node for the problem-solver. . . . . . . . . . . . . . . . . . . 19

2.7 The state-space graph for two-player alternate-turn games is an AND/OR
graph, where AND nodes are decision points controlled by an adver-
sary opponent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

ix



2.8 Tower of Hanoi problem space graph. P (D1→n; 1, 2, 3) represents the
problem to move n disks from tower 1 to 3 using 2. Leftmost branch is
actually a recursive solution to the problem. Identifying such a solu-
tion relies on the availability of well-ordered subgoals and purposeful
identification on the relations between parent goal and subgoals; such
a process is known as means-ends analysis [141]. It is also possible to
formulate this problem as a state-space OR graph; however, finding
a solution becomes more difficult. Solution graph from the leftmost
branch is actually a tree that grows exponentially; this is simply be-
cause for n disks, no solution required less than O(2n) steps exists. . 21

2.9 An illustration of searching for solution graph from a problem-space
graph. For G0. F1, F2 and F3 are alternative options; each of them
represents a collection of functions with ∪iargument(fi) = U , i.e.,
covers all legal opponent moves. Thus, each F node represents a
solution to a set covering problem, and it is unnecessary to explicitly
list all F nodes during search. Note that G0 could also represent
a first-player winning strategy by letting the argument set of each
function f be empty. . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.10 MDPs and AMGs are all special cases of Stochastic Games [179].
Repeated Games [188] contain one state, whereas MDPs contain
one player. The game of Hex belongs to Deterministic Alternating
Markov Games as for each action, the next resulting state is determin-
istic. Bandit games [117] are the intersection of MDPs and Repeated
Games as they contain single player with one state but with repeated
trials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.11 PNS example graph. Each node has a pair of evaluations (φ, δ), com-
puted bottom up. A bold edge indicates a link where the minimum
selection is made at each node. In PNS, all edge costs are 0, and a
recursive sum-cost is used. PNS often uses {1, 1} for h and h̄, there-
fore φ(n) and δ(n) can be interpreted as the minimum number of leaf
nodes needed to prove and disprove node n (with respective to the
player at n), respectively. . . . . . . . . . . . . . . . . . . . . . . . . 25

2.12 Relation of several search algorithms. AO* is a variant of GBFS in
AND/OR graphs, while A* is for OR graph. . . . . . . . . . . . . . 27

2.13 Illustration of convolution operation in 2D image. . . . . . . . . . . 31
2.14 An example Hex position and the corresponding graphs for Black and

White players. Image from [206] . . . . . . . . . . . . . . . . . . . . 35
2.15 Dead cell patterns in Hex from [87]. Each unoccupied cell is dead. . 35
2.16 An example of Black captured-region-by-chain-decomposition from [87];

cells inside of such a region can be filled-in. . . . . . . . . . . . . . . 36
2.17 The braid example that H-search fails to discover a SC connecting

to x and y (left). Either a or b could be the key to a SC. The right
subfigure shows a decomposition represented solution: after playing
at cell a, move 1 can be responded with b while any move in {2, 3, b}
can be answered by move 1. . . . . . . . . . . . . . . . . . . . . . . . 39

2.18 Searching for SC and VC by strategy decomposition. Finding there
is a SC for player P at position A equals to finding a P move that
will lead to a child position where there is a VC for P . . . . . . . . . 40

2.19 Knowledge computation visualized via HexGUI. Black played stones:
b8, f9 and e6. White played stones: c5, e4 and f2. Black to play.
a9, b9, c9, d9 and e9 are Black fillin. Gray shaded cells are pruned due
to mustplay; black filled cells with pink shading are captured; gray
filled with shading are permanently-inferior; green: vulnerable; ma-
genta: captured-reversible satisfying independence condition; yellow:
dominated by various domination patterns. Only five cells remain to
be considered after knowledge computation. . . . . . . . . . . . . . . 41

x



3.1 Hexagonal board mapped as a square grid with moves played at in-
tersections (left). Two extra rows of padding at each side used as
input to neural net (right). . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3 Distribution of (s, a) training data as a function of move number. . . 48
3.4 Top k prediction accuracy of the d = 8, w = 128 neural network model. 50
3.5 A game played by 1-ply Wolve (Black) against policy net (White)

CNN 1287
8 . The neural network model won as White. Note that we

tried to use solver to solve the game state before move 11, but solver
failed to yield a solution. . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.6 MoHex-CNN against Ezo-CNN: a sample game from 2017 computer
Olympiad. MoHex-CNN won as Black. . . . . . . . . . . . . . . . . . 55

3.7 Neural network architecture: It accepts different board size inputs,
padded with an extra border using black or white stones; the reason
for this transferability is that the network is fully convolutional. . . . 62

3.8 Comparison of playing strength against Wolve on 9×9 and 11×11 Hex
with different k. The curves represent the average win percentage
among 10 trials with Wolve as black and white. . . . . . . . . . . . . 64

3.9 On 11×11 Hex, comparisons between AMCPG-B and REINFORCE-
V with error bands, 68% confidence. Each match iterates all opening
moves; each opening was tried 10 times with each player as Black or
White. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.1 Computation costs for AlphaGo Zero and AlphaZero are far ahead of
other major achievements in AI [157]. . . . . . . . . . . . . . . . . . 71

4.2 A closed scheme for iterative learning. Gating was removed in Alp-
haZero, but some implementation found gating is important for stable
progress [148]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3 A problem with two-head architecture in PV-MCTS. The leaf node
is expanded (a) with threshold 0, otherwise (b) if N(s) is below the
threshold, no expansion and evaluation indicates that no value to
back up. f̂θ is the two-head neural net that each evaluation of state
s yields a vector of move probabilities p and state-value v. N (s) is
the visit count of s. . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4 PV-MCTS with a three-head neural net fθ: The leaf node s can
be expanded with any threshold. If the visit count of s reaches the
expansion threshold, s is expanded, the value estimate is backed up,
action values and move probabilities are saved to new child nodes.
If the visit count of s is below the threshold, the previously saved
action-value estimate can be backed up. . . . . . . . . . . . . . . . . 75

4.5 A game implies a tree, rather than a single path. For each state, the
value (+1 or -1) is given with respect to the player to play there. . . 77

4.6 A ResNet architecture for Hex with three heads. Each residual block
repeats twice batch normalization, ReLU, convolution using 32 3× 3
filters, then adds up original input before leaving the block. . . . . 79

4.7 Mean Square Errors of two- and three-head residual nets. . . . . . . 80
4.8 MSE (left) and top one move prediction accuracies (right) of two-

and three-head residual nets. . . . . . . . . . . . . . . . . . . . . . . 80
4.9 Results of MoHex-2HNN and MoHex-3HNN against MoHex-CNN.

All programs use the same 1000 simulations per move. MoHex-
2HNN uses playout result when there is no node expansion. After
epochs 70 and 60, MoHex-3HNN and MoHex-2HH’s performance de-
creased, possibly due to over-fitting of the neural nets: Figures 4.7
and 4.8 show that around epoch 70, the value heads of 3HNN gener-
ally achieve smaller value errors than epochs around 80 and 90. The
error bar represents the standard deviation of each evaluation. . . . 82

xi



4.10 A given Hex state of board size 8 ≤ N ≤ 19 is padded with black or
white stones along each border, then fed into a feedforward neural net
with convolution filters. A fully-connected bottom layer compresses
results to a single scalar v. . . . . . . . . . . . . . . . . . . . . . . . 84

4.11 13×13 training: prediction accuracy across boardsizes. . . . . . . . . 85
4.12 9×9 training: prediction accuracy across board sizes. . . . . . . . . . 85
4.13 13×13 training errors, with and without warm initialization. . . . . . 87
4.14 13×13 test errors, with and without warm initialization. . . . . . . . 88
4.15 Closed-loop learning schemes . . . . . . . . . . . . . . . . . . . . . . 88
4.16 On 13×13 Hex, around 10 training iterations was finished before par-

ticipating 2018 Computer Olympiad Hex tournament, using 2 4-core
GPU computers with GTX 1080 and GTX 1080Ti. 3HNN was ini-
tialized using MoHex generated data. The first three iteration used
32 filters per layer, 4–5 used 64 filters per layer, 6–7 used 32 filters per
layer, 8–10 used 128 filters per layer. The curve shows MSE or accu-
racy on all games played by Maciej Celuch from little golem. Celuch
is presumably the strongest human Hex player [124]; we dumped 620
games played by 2018 December. Noticeably, he did not lose any of
these games. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.17 Averaged win value for each opening cell on 13×13 and 11×11 Hex.
The numbers are consistent to some common belief in Hex; for ex-
ample, every cell more than two-row away from the border is likely
to be a Black win. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.18 On 9×9 Hex zero-style training with MoHex3HNN and MoHex2HNN.
Test the neural network model on MoHex2.0 selfplay games or ran-
domly generated perfectly labeled game states. Red curve is result
obtained under the same configuration except that a 2HNN is used.
The above two plots were tested on a test set of 149362 examples,
while the last one was from a smaller set of 8485 examples. . . . . . 93

4.19 AlphaZero-2HNN versus AlphaZero-3HNN. 2HNN uses expansion thresh-
old 0, nmcts = 160; 3HNN uses expansion threshold 10, nmcts = 800;
all other parameters are the same. . . . . . . . . . . . . . . . . . . . 94

4.20 MCTS-3HNN against MCTS-2HNN. Each match consists of 162 games
by letting each player starting from each opening cell once as Black
and White. MCTS-3HNN-160 means it uses 3HNN for 160 iteration
MCTS with expansion threshold of 0. MCTS-2HNN-160 means it
uses 2HNN for 160 iteration MCTS and expansion threshold of 0.
MCTS-3HNN-1s-e10 means the player uses 1s per move with expan-
sion threshold of 0. MCTS-2HNN-1s-e0 means it uses 1s per move
with expansion threshold of 0. . . . . . . . . . . . . . . . . . . . . . 95

4.21 AlphaZero-2HNN versus AlphaZero-3HNN. 2HNN used expansion
threshold 0, nmcts = 160; 3HNN used expansion threshold 10, nmcts =
800; all other parameters same. . . . . . . . . . . . . . . . . . . . . . 96

4.22 MCTS-3HNN against MCTS-2HNN. Each match consists of 162 games
by letting each player starting from each opening cell once as Black
and White. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.1 Focused Best-first Search uses two external parameters: a function
fR for ranking moves, and a way for deciding window size. Here,
assume fR(D) > fR(E) > fR(F ) > fR(G) > fR(C) > fR(B), and
the window size is simply set to a fixed number of 4. E is found to
be winning, then E is removed, and the next best node is added to
the search window. . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.2 Top-k prediction accuracy of the policy network on 8×8 Hex. . . . 103
5.3 A comparison between the performance of FDPFN using resistance

and policy network pσ with varying factor . . . . . . . . . . . . . . . 106

xii



5.4 Results of value training from single versus three-head architectures.
At each epoch, neural net model is saved and evaluated on each
dataset. In the right figure, the cyan line is produced by doubling
the neural network size to 12 layers. One epoch is a full sweep of the
training data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.5 A Hex position; White is to play. The optimal value of this position
is a Black win. Given an oracle machine, which can always predict
the winning move for Black, searching for the solution represented by
a solution-tree in the state-space graph requires to examine 44 ·1 ·42 ·
1 · 40 · 1 · 38 · 1 u 2.8 million nodes . . . . . . . . . . . . . . . . . . . 108

5.6 Decomposition-based solution to the Hex position in Figure 5.5. So-
lution to the original problem can be represented by a conjunction
of 9 subproblems; each of them can be decomposed further using a
similar scheme. Since it is known that Black can win using 4 black
stones, the solution-graph found by such decomposition contains at
most 94 = 6561 nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . 109

A.1 An example shows the evaluation of actions provided by neural net
model. For each cell, the upper number is the prior probability pro-
vided by policy head, the lower number is the value provided by
action-value head. Note that here the value is with respect to the
player to play after taking that action, thus a smaller value indicat-
ing higher preference for the current board state. Here, both policy
and action-value are in favor of f6. . . . . . . . . . . . . . . . . . . . 130

A.2 An example play by White. If it plays at D6, Black will respond at
E6 resulting to pattern 370. If White then plays at D8, then Black
will respond at B8, splitting pattern 370 into patterns 285 and 86.
In each cell, the lower number is pattern id, upper number is local
move name inside of that pattern. . . . . . . . . . . . . . . . . . . . 131

A.3 Leftmost is the full graph G; all the tip nodes are solvable terminal
with value 0; each edge has a positive cost. Four different solution
graphs exist for G, among which G3

0 is with the minimum total cost
of 5. However, if the cost scheme Ψ is defined as a recursive sum-cost,
both G2

0 and G3
0 are with minimum cost of 6. . . . . . . . . . . . . . 133

A.4 f1 selects solution-base from explicit graph G′. Every edge is with
cost 0; each tip node has an estimation cost provided by function h.
By definition of the recursive sum-cost scheme, G0 is the minimum
solution-base with cost 17 even though we see the true summed edge
cost is 15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

A.5 An example shows the drawback of AO* in selecting frontier node for
expansion. If D is expanded first, E will never be expanded; however,
if E is chosen first, both D and E will be expanded before the search
switches to correct branch C. We assume all edges in the graph have
a cost of 4, therefore the estimation provided by h in G′ is admissible. 139

A.6 The same as Figure A.5, edge costs are all 4. The difference is that
now each tip node has a pair of heuristic estimations, respectively
representing the estimated cost for being solvable and unsolvable. All
tip nodes are with admissible estimations from both h1 and h2. Here
h2 successfully discriminates that D is superior to E because h2(D) <
h2(E). Indeed, as long as h2(D) ∈ [0, 4] ∧ h2(E) ∈ [0,∞], h2 will be
admissible, hinting that the chance that an arbitrary admissible h2
can successfully chooseD is high. In respect to PNS, we call algorithm
AO* employing a pair of admissible heuristics PNS*. . . . . . . . . . 140

A.7 Deciding whether an SAT instance is satisfiable can be reduced to
finding the true proof number in an AND/OR graph. All tip nodes
are terminal with value 0. All edges are with cost 0, except those
linking to terminal (which have cost 1). . . . . . . . . . . . . . . . . 142

xiii



Chapter 1

Introduction

In this chapter, we first introduce the game of Hex, and discuss how it became a

domain for scientific research. As the major interest of this thesis lies on algorithms

for tackling the game from an artificial intelligence (AI) perspective, we overview

general techniques and principles for problem-solving in AI research, with a partic-

ular focus on the role of knowledge in search for two-player games. We discuss the

pioneering studies that use learning to harness knowledge in the game of checkers,

and highlight two fundamental principles used in heuristic knowledge guided search

for finding solutions in two-player games. Finally, we summarize our contributions

and outline the content of this thesis.

1.1 The Game of Hex as a Benchmark for AI

Hex is a two-player game that can be played on any N×N hexagonal board. Fig-

ure 1.1b shows a game on 13×13 board. Players Black and White are each given

a distinct pair of opposing borders. The game is played in an alternating fashion.

Black starts first. On their turn, a player places a stone of their color on an empty

hexagonal cell. The winner is the one who successfully forms a chain that connects

the player’s two sides of the board. In real play, to mitigate the first player’s ad-

vantage, a swap rule is often used — in the first turn, the second player can either

steal the first player’s opening move or play a move in normal fashion. Figure 1.1a

shows an example game where the swap move was played — the second player stole

the opening move g2, then the game continued with the first player using white

stones therefore actually playing second. The 11×11 board is commonly regarded

as the regular board size. The 13×13, 14×14 and 19×19 board sizes are also used

by human players.

1



a

a

b

b

c

c

d

d

e

e

f

f

g

g

h

h

i

i

j

j

k

k

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

1S

3

4

5

6

78

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23 24

25

26

2728

29

30

31

323334

35

3637

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

(a) 11×11 Hex

a

a

b

b

c

c

d

d

e

e

f

f

g

g

h

h

i

i

j

j

k

k

l

l

m

m

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

1

23

4

5

6

7

8

9

10

11

1213

1415

1617

18

19

20

21

2223

2425

2627

28

29

3031

3233

3435

3637

38

39

40

41

42

43

44

45

46

47

4849

50

51

52

53

54

5556

57

5859

6061

62

63

64

65

66

67

68 69

70

71 72

7374

75

76

77

78

79

80

(b) 13×13 Hex

Figure 1.1: Two Hex games on 11×11 and 13×13 board sizes. Each move is labeled
by a number, representing the playing order. White won both games by successfully
forming a chain to connect his two sides. In the left subfigure, the second move
swaps the color — S labeled move g2 indicates that the player using black stone
was originally assigned as the second-player, effectively becoming the first-player
after swap.

The game of Hex (originally called Polygon or Con-tac-tix) was created by Piet

Hein [86], possibly motivated by his dissatisfaction with properties of many board

games (e.g., chess), such as the existence of repetitions and the prevalence of draws.

Hein contemplated several principles in the design of Hex: fair — both players

shall have equal chance of winning; progressive — the same game position shall not

reappear during play; final — each game shall end in a limited number of moves;

comprehensible — beginners shall learn the rules quickly; tactical — the game shall

be non-trivial for playing strategically; and decisive — the game shall have no draws.

The game was later discovered and popularized by John Nash [137]; see [80] for a

full account for the history of Hex. In 1957, Martin Gardner [71] introduced the

game to the general public in an article to Scientific American, where he stated that

“Hex may well become one of the most widely played and thoughtfully

analyzed new mathematical games of the century.”

Hex can be thought of as a game on a planar graph, thus it is not surprising that

the game’s no-draw property (any filled board will have a winning path for exactly

one player) is related to a property that plays a key role in the proof of the four-color

theorem, namely that any planar graph can have a clique of size at most four [80].

Gale [62] showed that the no-draw property of Hex is equivalent to Brouwer’s fixed-

point theorem in two dimensions. Nash [137] proved by strategy stealing [24] that

a winning strategy exists for the first player, but the proof is non-constructive, i.e.,

2



an explicit winning strategy is unknown except on very small board sizes.

In a pioneering work for AI in the 1950s, Shannon [178] discussed the difficulty

of creating an AI agent for Hex and proposed an electronic model for playing the

game. As our goal is to apply state-of-the-art AI methods to the game of Hex,

we note that, for two-player games, relevant AI research can be divided into two

categories:

1. Solving algorithms aim to find the theoretic win/loss value of a game position

under the assumption of perfect play on both sides. This is further defined on

three hierarchical levels [4]; each higher level subsumes the lower one.

• Ultra-weakly solving determines what is the best outcome that the first

player can achieve from the initial position of the game (win, loss or

draw), given that the opponent is perfect. However, the strategy for

achieving such a goal is not required to be specified. Hex on any N×N
board is ultra-weakly solved by the strategy stealing argument.

• Weakly solving means to identify the winning strategy from the initial

position of the game if there is one, to find all second-player’s winning

strategies after each possible opening move of the first player if the game

is second-player win, or to specify the best strategies of both players that

would force the game to a draw.

• Strongly solving goes one step further by requiring to weakly-solve any

position that could occur by the rules of the game.

2. Playing algorithms aim to provide a good move for any arbitrary position.

How close the returned move is to being optimal can be difficult to specify

with mathematical precision; evaluation of these algorithms thus relies on

empirically competing against existing opponent players, such as strong human

professionals. Most research in classic games is of this sort. It is clear that

weakly solving a game implies perfect play.

Despite its simple rules, Hex presents significant challenges to AI research for

both playing and solving, primarily because of the large and near-uniform branching

factor, as well as the lack of reliable hand-crafted evaluation functions [204, 205, 206].

Devising an automated program for strongly solving arbitrary N×N Hex positions

is PSPACE-complete [30, 162]. In practice, their versatile reasoning ability for

3



decomposing strategies and pruning irrelevant regions has allowed human players to

find more efficient solutions than the best computer programs so far for board sizes

up to 9×9 [214, 215].

1.2 Searching for Solutions with the Help of Knowledge

Early research in AI, such as the calculus solver by Slagle [186], the General Problem

Solver (GPS) [141] and the Graph Traverser [53], were based on the plausible argu-

ment that intelligence is knowledge plus deduction, where knowledge refers to rules,

facts and intuition that can be encoded by humans, and deduction is achieved by

various search methods that operate on a structure exposed by the representation

of the problem.

The description of knowledge can be heuristic or exact. In certain cases, exact

knowledge is necessary for problem-solving. For example, to swiftly compute the

exact length of the hypotenuse of an right-angled triangle — the side opposite to the

right angle, exact knowledge of the Pythagorean theorem is needed. Indeed, even

the knowledge about the Pythagorean theorem itself is a consequence of precisely

applying logical deduction from a list of Euclidean postulates. However, apart from

this, in real-world environments, a large body of human knowledge is imprecise, but

it is ever-surprising to observe how much people can accomplish with that imprecise,

unreliable information known as intuition. People drive cars without knowing how

they function in detail and usually only have a vague picture of the road conditions

ahead. A five-year old child can easily distinguish a cat from a dog, but it is

hard to explain they do it. In computer science, imprecise yet helpful information

content is called heuristic knowledge [153]. Heuristics represent a trade-off on the

demand between theoretical and empirical problem-solving. In order to be practical,

heuristics must meet the need of simplicity and intelligibility, and at the same time,

they must be informative enough in discriminating bad and good choices.

The merits of heuristic and exact knowledge are often complementary in practical

problem-solving. Heuristic knowledge by its nature tends to be vague in describing

the quantity of interest; therefore, it may work well across a variety of domains,

but it can be outperformed by accurate, precise domain knowledge. For example,

in the task of finding the shortest path between a pair of source and goal nodes,

the A* algorithm [77] guides its exploration by summing the cost so far and the

estimated cost to goal. If for some nodes, the estimated cost to goal can be per-

4



fectly acquired, the search to goal will be accelerated. However, perfect information

represents an exact description about the domain to solve, whose benefit disappears

when transferring to other domains. Notable achievements such as solving Rubik’s

Cube [112] combine both heuristic and precise knowledge in their search, where the

perfect knowledge is generated by a procedure [49] and stored in a database. Simi-

lar techniques were used in solving checkers [172] with checkers endgame databases.

Other games such as Gomoku [3] and small board size Hex [82] were solved using

domain-independent systematic search with the help of domain-specific algorithms

for knowledge discovery, which were used for move pruning and early endgame de-

tection.

Search with the aid of problem-independent or problem-specific knowledge has

been extensively adopted in the field of operations research (OR) [160]. Similar to

the role of action description languages [130] in heuristic search planning [29], com-

binatorial optimization problems are typically expressed via formal integer linear

programming (ILP) models and solved by the help of relaxed models of linear pro-

gramming (LP). The solving procedure branch-and-bound [116] works by repeatedly

branching and bounding until the optimal solution is found or an external stopping

criterion is satisfied. Clearly, selecting the variable on which to branch, how to

branch and how to bound is crucial to practical problem-solving. Although some

strategies work for all ILPs, when it comes to specific problem, e.g., the infamous

Traveling Salesman Problem (TSP), problem-specific pruning (e.g., using domain-

dependent cut planes [145]) and splitting rules can lead to drastic performance

increase [10]. Essentially, those heuristic or exact information for guiding the search

are domain-knowledge summarized by ingeniously identifying special properties of

the problem model to solve. The difference between AI and OR algorithms is that

in OR, branch-and-bound search is conducted by continuously splitting and pruning

in the space of solutions while ensuring optimality. In AI, many algorithms [143]

work by repeating exploring the space of states until a desired goal is achieved.

For instance, in a single-agent game, A* variants model the problem as a gener-

ative model : starting from an initial condition, each action leads a new encoding

called state. The goal is to find a series of actions to achieve the goal condition.

A solution is generated incrementally during the process of search. Although the

procedure is generate-and-test, optimality analysis has to be done by referring to

split-and-prune [153].

5



Generalizing A* search for two-player games results in AO* [143]. Similarly, a

game position to solve can be encoded as a state, such as a two-dimensional array

to represent a Hex position. Solving requires repeated look-head by finding a move

such that the opponent is unable to refute no matter which move is used to respond.

Therefore, a solution for a game position is not a sequence of actions, but a graph-

represented strategy which can be thought as a prescription for choosing actions in

response to any adversarial moves (the formal definitions on how strategy could be

represented in two-player games will be discussed in Chapter 2.1). In practice, due

to the exponential growth rate of space requirement of look-ahead search, finding

an exact solution is not always be feasible. Search with heuristics might only be

able to find an approximate strategy for playing well. In either case, knowledge can

help solving or playing by providing more efficient encoding of state, better state

transitions (e.g., by heuristic or exact pruning of unpromising moves), and better

ways to conduct the systematic search.

To illustrate the effect of knowledge in the context of solving the game of Hex,

Figure 1.2 shows an exact solution to 3×3 Hex, where the only knowledge given to

computer is this: a state is winning if there exists a move that joins the player’s two

sides. More than 30 nodes are used to in the solution. However, if one more piece

of knowledge — bridge pattern ensures a safe connection (Figure 1.3) — is given, all

nodes beyond the second level of Figure 1.2 can be pruned, and a computer program

needs only two nodes to show the wining strategy.

1.2.1 Learning Heuristic Knowledge in Games

A fundamental question for an AI agent is where does the knowledge come from?

Humans gain knowledge in two ways: (1) by summarizing past experience, (2) by

deriving new knowledge through reasoning about already acquired knowledge. Ear-

lier attempts to expert systems [78] tried to automate the process of (2) by encoding

expert knowledge into rules and facts that computers can use to infer new knowl-

edge about a domain. However, the acquisition, maintenance and representation

of expert domain knowledge is difficult itself [19]. Another approach is to acquire

knowledge automatically from experiences by mimicking (1) using machine learn-

ing [131], whose aim is to learn a general concept [134] from experiences (represented

as data), which will lead to enhanced performance in solving subsequent problems.

The study of using machine learning to acquire knowledge in games was pio-

6



a

a

b

b

c

c1

1

2

2

3

3
1

2
3

a

a

b

b

c

c1

1

2

2

3

3
1

2
3

4

a

a

b

b

c

c1

1

2

2

3

3
1

2
3

4

a

a

b

b

c

c1

1

2

2

3

3
1

2
3

4

a

a

b

b

c

c1

1

2

2

3

3
1

2
3

4

a

a

b

b

c

c1

1

2

2

3

3
1

2
3

4

a

a

b

b

c

c1

1

2

2

3

3
1

2
3

4

a

a

b

b

c

c1

1

2

2

3

3
1

a

a

b

b

c

c1

1

2

2

3

3
12

a

a

b

b

c

c1

1

2

2

3

3
1

2 a

a

b

b

c

c1

1

2

2

3

3
1

2
a

a

b

b

c

c1

1

2

2

3

3
1

2

a

a

b

b

c

c1

1

2

2

3

3
12

3 a

a

b

b

c

c1

1

2

2

3

3
1

2
3 a

a

b

b

c

c1

1

2

2

3

3
1

2

3

a

a

b

b

c

c1

1

2

2

3

3
12

3

4

a

a

b

b

c

c1

1

2

2

3

3
12

3

4

a

a

b

b

c

c1

1

2

2

3

3
12

3

4

a

a

b

b

c

c1

1

2

2

3

3
12

3
4

a

a

b

b

c

c1

1

2

2

3

3
12

3 4

a

a

b

b

c

c1

1

2

2

3

3
12

3
4

a

a

b

b

c

c1

1

2

2

3

3
1

2
3

4

a

a

b

b

c

c1

1

2

2

3

3
1

2
3

4

a

a

b

b

c

c1

1

2

2

3

3
1

2
3

4

a

a

b

b

c

c1

1

2

2

3

3
1

2
3

4

a

a

b

b

c

c1

1

2

2

3

3
1

2
3 4

a

a

b

b

c

c1

1

2

2

3

3
1

2
3

4

a

a

b

b

c

c1

1

2

2

3

3
1

2

3
4

a

a

b

b

c

c1

1

2

2

3

3
1

2

3

4

a

a

b

b

c

c1

1

2

2

3

3
1

2

3

4

a

a

b

b

c

c1

1

2

2

3

3
1

2

3
4

a

a

b

b

c

c1

1

2

2

3

3
1

2

3 4

a

a

b

b

c

c1

1

2

2

3

3
1

2

3
4

a

a

b

b

c

c1

1

2

2

3

3

Figure 1.2: A 5-level solution for 3×3 Hex. A dotted line indicates that the con-
nected two nodes can be merged into one as they are equivalent. Symmetric moves
are ignored. This solution contains 34 nodes.

7



Figure 1.3: The bridge connection pattern in Hex. The two black stones can be
connected via one of the two empty cells no matter if Black or White plays first —
they are virtually connected.

neered by Samuel [168, 169] for checkers. Samuel argued that two sharply distin-

guished approaches exist to machine learning: (1) the general neural net approach

that tries to simulate human behavior by a connected network, and (2) a more

efficient problem-specific approach that is to produce a highly organized decision

network for specific tasks. The neural net approach was infeasible in that time

because the size of biological neural nets is far beyond those can be simulated by

computers, so he chose the (2) to study machine learning. Samuel chose checkers for

these reasons: large space — there was no existing algorithm guaranteeing win/loss;

the goal and rules for playing are well-defined; knowledge is the major reason for

well-playing performance; and the game is familiar to many people so that behavior

of the computer program can be assessed by human professionals.

Samuel considered two learning paradigms: rote learning and generalization

learning. The goal of rote learning is to memorize important search-produced eval-

uations for specific game positions and in the subsequent search, evaluations can

be reused without further look-ahead. For example, in a situation where a node

is reached after 3-ply look-ahead, if the evaluation of this node can be retrieved

from storage that was saved as a result of 5-ply search, then the evaluation of the

current position effectively simulates a 8-ply search. Samuel designed a number

of schemes to for efficient information storage. A polynomial scoring function is

used as the learning function. In generalization learning, feature weights are ad-

justed by referring to the game results of self-play or play against humans. In both

learning methods, look-ahead search is restricted to at most 20-ply due to hardware

limitation.

In later work [169], rote learning was improved by using an enhanced hash ta-

ble for more efficient information storage. More advanced search techniques, such

as alpha-beta pruning [109], were incorporated. Generalization learning was fur-

ther improved by training on higher quality games played by master players. The

8



program failed to reach top-human playing strength. Samuel blamed the polyno-

mial scoring function for not being expressive enough to approximate human expert

evaluations on checkers.

In this thesis, we pay particular attention to the learning model of artificial

neural networks [175] and show their usefulness in the game of Hex.

1.2.2 Principles for Heuristic Search in Games

To find the objective of interest with small effort, knowledge aided search procedures

are often driven by optimizing a certain cost measurement, even though the quest

is an arbitrary feasible solution, rather than the one with a minimum cost. For

example, for Rubik’s cube, the aim is to find any solution path — rather than a

shortest path — to achieve the goal. However, in practice, to find the goal fast,

the A* variant [112] searched the space by chasing a path that is likely to yield the

minimum cost. The same is true for two-player games. Given a Hex position, in

order to answer whether the it is a first-player win or not, search can be conducted

by chasing a surrogate objective of finding the smallest proof. Such an idea is called

small-is-quick principle. Yet, an exact measurement on which direction will lead to

the real smallest proof is usually unknown, external knowledge has to be used for

providing estimated proof sizes — such a selective exploration by treating guessed

metric as a true measurement is called the face-value principle. All best-first search

paradigms for single or two-player games adopt these two principles to guide the

problem-solving [153].

In this thesis, we develop new search algorithms in the presence of heuristic

knowledge from learned neural net models, and apply them for solving the game of

Hex.

1.3 Contributions and Organization of This Thesis

The contributions of this thesis are as follows:

• We provide a summary on various general/specific learning and search tech-

niques — these include informed best-first search [153], reinforcement learn-

ing [192] and deep learning [75] — related to solving and playing the game

of Hex. We discuss the limitation and usefulness of each, and highlight the

necessity for combining them together for better practical algorithms.

9



• We present experimental studies on supervised learning and model-free rein-

forcement learning with deep neural networks for Hex.

• We achieve state-of-the-art playing and solving results for the game of Hex

by devising novel algorithms that combine deep neural nets and search —

these include the developments of a three-head neural network architecture

for Monte Carlo tree search for better learning and search, and incorporating

deep networks to proof number search for more efficient solving of Hex states.

The rest of this thesis is organized as follows:

• Chapter 2 reviews and discusses general as well as specific techniques for solv-

ing and playing games, including an overview of important algorithms and

techniques that have been developed upon more general problem-settings, and

discussions on how they can be harnessed together for tackling the game of

Hex.

• Chapter 3 presents studies of using deep neural nets in supervised and model-

free reinforcement learning for Hex. We show that high move prediction ac-

curacy can be achieved using deep networks as the learning model, and the

trained model can be used to achieve better playing strength of the search.

We then develop a new reinforcement learning procedure and show that it

outperforms the vanilla methods in the game of Hex.

• Chapter 4 presents a three-head network architecture, and its practical merit

in Monte Carlo tree search and search-based reinforcement learning. Using

such an architecture, we develop a new Hex player called MoHex-3HNN, which

became the champion player in 2018 Computer Hex competition.

• Chapter 5 presents a study of incorporating deep network for more efficiently

solving Hex. Specifically, we show that by incorporating neural networks to

proof number search, faster solving can be achieved for Hex. We then discuss

the limitation of current search paradigms, and outline a new search method

for solving large board size Hex positions.

• Chapter 6 concludes the thesis by pointing a few promising future directions

for the game of Hex.

10



Publications

First-authored publications created during my PhD studies are as follows:

• Chao Gao, Ryan Hayward, and Martin Müller. “Move prediction using deep

convolutional neural networks in Hex.” IEEE Transactions on Games 10.4

(2017): 336-343. See [63].

• Chao Gao, Martin Müller, and Ryan Hayward. Adversarial policy gradient

for Alternating Markov Games. 2018 International Conference on Learning

and Representation workshop track. See [64].

• Chao Gao, Martin Müller, and Ryan Hayward. “Focused Depth-first Proof

Number Search using Convolutional Neural Networks for the Game of Hex.”

IJCAI 2017. See [65].

• Chao Gao, Martin Müller, and Ryan Hayward. “Three-Head Neural Network

Architecture for Monte Carlo Tree Search.” IJCAI 2018. See [66].

• Chao Gao, Kei Takada, and Ryan Hayward. “Hex 2018: MoHex3HNN over

DeepEzo.” ICGA Journal 41.1 (2019): 39-42. See [67].

• Chao Gao, Siqi Yan, Ryan Hayward and Martin Müller. “A transferable neural

network for Hex”. ICGA Journal 40.3 (2019): 224-233. See [69].

First-authored publications created during my PhD time but outside of the scope

of this thesis are

• Chao Gao, Guanzhou Lu, Xin Yao and Jinlong Li. “An iterative pseudo-

gap enumeration approach for the Multidimensional Multiple-choice Knapsack

Problem.” European Journal of Operational Research 260.1 (2017): 1-11.

See [68].

• Chao Gao, Bilal Kartal, Pablo Hernandez-Leal, and Matthew E. Taylor. “On

Hard Exploration for Reinforcement Learning: A Case Study in Pommerman.”

AIIDE 2019. See [70]. Although content of this paper is not in this thesis, its

discussion on the limitation of model-free reinforcement learning is related to

those in Chapter 3.2.

11



• Chao Gao, Pablo Hernandez-Leal, Bilal Kartal, and Matthew E. Taylor. “Skynet:

A Top Deep RL Agent in the Inaugural Pommerman Team Competition.”

RLDM 2019.

Further collaborated papers outside of the scope of this thesis are

• Xuebin Gao, Zichen Zhang, Chenyang Huang, Chao Gao, Masood Dehghan,

and Martin Jagersand. “BASNet: Boundary-Aware Salient Object Detec-

tion.” In Proceedings of the IEEE Conference on Computer Vision and Pat-

tern Recognition, pp. 7479-7489. 2019.

• Bilal Kartal, Pablo Hernandez-Leal, Chao Gao, and Matthew E. Taylor. “Safer

Deep RL with Shallow MCTS: A Case Study in Pommerman.” Adaptive and

Learning Agents Workshop at AAMAS 2019.

12



Chapter 2

General and Specific Techniques
for Solving and Playing Games

Before presenting our new algorithms for the game of Hex, we first give neces-

sary background. In this chapter, Section 2.1 reviews how strategy is represented.

Section 2.2 discusses two formulations used in search and learning algorithms. Sec-

tion 2.3 reviews and summarizes general search and learning techniques in the lit-

erature, how they are connected, how they can help to find the desired strategies

in two-player alternate-turn games. Finally, in Section 2.4, we survey the large

body of previous work on Hex and explain how some Hex-specific algorithms can

be improved by combining with general artificial intelligence methods.

Our improved Hex algorithms — presented in latter chapters 3–5 — rely on the

content in this chapter. Understanding these general methods, as well as their

commonalities and differences, helps understand how we came to our improved

algorithms. We hope that our comments here on the interconnections of various

methodologies will also be of use to researchers working on other AI problems.

2.1 Strategy Representation

We begin by reviewing strategy representations, examining their assumptions, and

discussing their advantages and shortcomings.

2.1.1 Minimax Strategy and Solution Graphs

Figure 2.1 shows the directed acyclic graph of all possible continuations of a game.

Two players, MAX and MIN, appear alternately in the layered graph; each node

represents a game state; each edge stands for a move. The first layer contains only

one node belonging to MAX. It represents the start of the game. Each leaf node

13



1 2 7 6 8 9 5 4

2 7 8 9

2 8

8

Figure 2.1: The directed acyclic graph (edges are directed downwards) of a game.
Each node corresponds to a state, and is labeled with that state’s minimax value
score for player MAX

has a utility score with respect to the MAX player; for any other node s, its score

is decided by maximizing (for MAX nodes) or minimizing (for MIN nodes) among

the scores from child nodes, as expressed in Eq. (2.1).

v(s) =


eval(s) if s is leaf

maxs′ v(s′) if s is MAX node

mins′ v(s′) if s is MIN node

(2.1)

In Figure 2.1, bold edges (representing best actions) indicate an optimal move se-

quence to achieve the best score for both players. An optimal minimax strategy

sequence is referred to as a principal variation, where the optimality is built on the

assumption that evaluation of leaf nodes is exact.

Rather than optimizing on seemingly correct score function, a player might only

want to find a strategy to win if it is possible or to prove that there is no winning

strategy at all. In such case, a solution-graph can be used to represent the sought

target. Similar to a principal variation, a solution-graph is identified from a directed

acyclic graph of a game, where each node has a value of either true (T ) or false

(F ). Figure 2.2 shows two examples of solution-graphs: subfigure 2.2a contains a

winning strategy for the first player, marked by bold edges; subfigure 2.2b has a

winning strategy for the second player — no matter which move the root player

chooses to play, the opponent can always refute it. Similar to Eq. (2.1), the value at

each node can be computed recursively using and (∧) and or (∨) logical operations,

as in Eq. (2.2).

14



F F T F T F F

F T T T

F T

T

T

(a) Bold edge shows a first-player winning
strategy.

F F T F T F F

F T F T

F F

F

F

(b) Bold edge marks a second-player win-
ning strategy.

Figure 2.2: Example solution graphs for the first and second players. Each node
represents a game state; each edge stands for a legal action from its upward game
state. Value at each node is labeled with respect to the player at root, i.e., the
first-player.

v(s) =


eval(s) if s is terminal

∧s′v(s′) if s belongs to first-player

∨s′v(s′) if s belongs to second-player

(2.2)

2.1.2 Strategy Decomposition

The solution graph defined in the previous section is identified on a graph with

reference to the optimal value of each game state. The drawback of this is that even

representing an arbitrary solution graph could be expensive: assume that on average

the branching factor is b and depth is d, the space required to represent a winning

strategy is Ω(bd/2). A natural question arises: is there any more space efficient

encoding for direct strategy representation in two-player alternate-turn games?

Recall that in single-agent path-finding problems, a solution (strategy or plan)

can be represented as a series of action choices. In two-player games, however,

due to the existence of the adversarial opponent, each action has to be assessed by

taking into account all possible opponent responses. In other words, the fundamental

difficulty comes from the fact that to prove a game state s is losing, all legal moves

from s have to be evaluated individually. Thus, a more clever algorithm would

identify the relationships between substrategies of different moves and reuse them

across moves. This observation can help to reduce the size of a proof that a state s

is losing: instead of treating each move independently, we can divide the legal moves

15



(a) s is losing because every child of s has a winning action.

s

{ a1 , a 2 , a 3 } : a6 { a4 , a 5 } : a10

(b) All actions of s and the corresponding response are grouped

Figure 2.3: Grouping moves when proving s is losing

of s into different groups if we observe that among all branches only a few distinct

counter moves exist, i.e., moves leading to terminal nodes that fulfill the goal that

player at s is losing.

Figure 2.3a shows an example game: In order to prove that s is losing, all its

five actions a1 to a5 have to be evaluated. For each child node of s, there exists an

action leading to a terminal state (filled with black) where the player at s is losing.

However, the successful responses from child nodes of s have only two distinct forms:

a6 and a10. Thus, we can abstract actions at s and their responses into two groups,

resulting in Figure 2.3b.

The idea in Figure 2.3b can be further developed: if treating state s a second

player winning strategy, we see that s has been represented by subgame second

player winning strategies from two branches. Figure 2.3b is a decomposition-oriented

strategy representation. The number of filled black nodes in 2.3b may be further

reduced by merging game states sharing the same subgame strategy.

We illustrate these ideas using 5×5 Hex. To start the game, Black plays at the

center cell c3. It remains to prove that Black has a second-player winning strategy

from then on. Black tentatively plays a move at the center cell c3, as shown in

16



a

a

b

b

c

c

d

d

e

e

11

22

33

44

55

a

a

b

b

c

c

d

d

e

e

11

22

33

44

55

  c3

(a) Initially, the board is empty; Black
wants to prove that c3 is the winning move.

a

a

b

b

c

c

d

d

e

e

11

22

33

44

55

1

2 3 4

5 6 7 8

1

234

5678

1

2 3 4

5 6 7 8

{1,3,4,7,8}:2{2,5,6}:4

(b) Subgame strategy for 4-3-2 pattern
constructed using strategies for the bridge
pattern.

Figure 2.4: In the right figure, by symmetry, the winning strategy for Black can be
summarized by two identical and independent subgame strategies, i.e., cells encircled
with numbers 1 to 8 plus the black stone. This subgame is called the 4-3-2 pattern
in Hex; it can be composed from bridge patterns. The starred nodes are dummy
whose purpose is to make the exposition of the decomposition clear.

Figure 2.4a. Since the board is symmetric, to achieve the goal of connecting Black’s

two sides, it is enough to find a strategy to connect c3 to one side of the board

using only the lower half of the empty cells, e.g., d3, e3, a4, b4, . . . , e4, a5, b5, . . . , e5.

We can represent the strategy using mappings f2 , {a4, b4, a5, b5} → d4 and f3 ,
{d3, e3, c4, d4, e4, c5, d5, e5} → b4, where for each mapping, the argument is a set of

possible White moves and the output is a Black response. For each possible play

from these two mappings, the induced subgame can always be solved using the bridge

pattern strategy. Here, White moves e3, e4, e5, a4 are ignored, because they can be

put in either f2 and f3 or even responded by random Black move; see Figure 2.4b

for the illustration. From this example we see that, given only knowledge about the

bridge pattern, winning strategy for proving that the center move c3 in 5×5 Hex

can be represented less than 10 nodes, while using a solution-graph as in Figure 1.2,

a larger number of nodes would be required. Figure 2.5 further demonstrates that

a solution from such decomposition can also be viewed as a solution-graph; each

circular node represents a game strategy; each square F node stands for a collection

of mappings whose argument sets in union is the set of all White moves. In G

17



of Figure 2.5, it is Black’s turn, so opponent moves can be regarded as ∅. Using

this representation, an explicit winning strategy for 9×9 Hex identified by human

player and Go expert Jing Yang [214, 215] contains only around 700 nodes, while

with game state representation, even with extensive knowledge computation, the

state-of-the-art solver [149] finds a solution with around 1 million nodes 1.

G

F1

432

F2

B B

f2

B

f3

432

F3

B B

f4

B

f5

f1

G , 5×5 Hex
F1 , {f1}
f1 , ∅:c3
F2 , {f2, f3}
f2 , {a5, b4, b5} : d4
f3 , {c4, c5, d3, d4, d5} : b4
F3 , {f4, f5}
f4 , {d1, d2, e1} : b2
f5 , {a1, a2, a3, c1, c2} : d2
432 , 4-3-2 pattern
B , bridge pattern

Figure 2.5: Solution for 5×5 Hex by strategy decomposition. Each f edge is a
mapping whose argument is a set of moves and output is a single response move.
The graph can be further simplified by discarding all squared nodes and merging
all subgame nodes sharing the same substrategy into one. Starred nodes are called
branch nodes in [214].

2.2 Search and Learning Formulations

In this section, we review and discuss two types of formulations related to solving

and playing games. We start with state-space and problem-space graphs, then go

on to Markov Decision Processes (MDPs) and Alternating Markov Games (AMGs).

The former ones are used in search methods [153]. The latter are adopted in learning

1Obtained using Benzene: https://github.com/cgao3/benzene-vanilla-cmake

18



2 8

1

7 6 5

4

3 1 2

8

7 6 5

4

3

2 8

1

7

6

5

4

3 2

81

7 6 5

4

3 2 8

1

7 6 5

4

3 2 8

1

7 6 5

4

3

up down left right

start state goal state

⇒

up down left right

Figure 2.6: The 8-puzzle sliding tile problem [153]: Given an initial configuration
and rules for moving tiles, the objective is to find a sequence of moves to reach the
goal state. Such a puzzle can be directly translated into a state-space graph, which
is an OR graph where every vertex is a decision node for the problem-solver.

algorithms [123, 192].

2.2.1 State and Problem Space Graphs

A game of interest, for example, a single-player puzzle problem as in Figure 2.6

or the game of Hex, is described by (1) starting state, (2) rules of change, i.e.,

permitted actions; and (3) desired goals. This description can be translated, in a

straightforward manner, into a graph formally known as a state-space graph [153].

Each state refers to a complete description of a configuration of the game. The

whole state-space graph can be too large to be explicitly represented. An efficient

problem-solver therefore aspires to generate only a small portion of the whole state-

space graph to find the desired solution. In Figure 2.6, one important characteristic

is that every state is a decision point for the problem-solver, and each edge from

a state results in another state that is also a decision point for the problem-solver;

state-space graphs possessing only one decision maker are called OR Graphs [153].

For two-player alternate-turn games such as the game of Hex, not all nodes

belong to the same decision-maker, as shown in Figure 2.7. In this case, the effect of

an action for a problem-solver must consider all opponent responses. Such graphs

are referred to as AND/OR Graphs [153]. For OR graphs, the pursuit solution-

object is a solution path which represents a sequence of actions. For example, a

solution to the puzzle in Figure 2.6 is a sequence of moves to achieve the goal state.

For AND/OR graphs, a solution for the player at root node is an AND/OR solution

graph S satisfying the following properties: (1) S must contain the root node; (2)

all terminal nodes of S (those without any successor) are known and the same; (3)

19



a3 a4 a5 a6

a1

a7 a8 a9 a10

a2

us

opponent

us

Figure 2.7: The state-space graph for two-player alternate-turn games is an
AND/OR graph, where AND nodes are decision points controlled by an adversary
opponent.

for any AND node s in S, all successors of s are in S; (4) for any OR node s in S,

one successor of s must be in S.

We have seen in Section 2.1 that it could be more space efficient if a node is

used to represent a solution to a subgame, not just a single state. AND/OR graphs

can express not just state-space, but also problem-space graphs. The underlying

problem-solving methodology is viewing solving as a series of problem-reduction

steps. In this setting, each node of an AND/OR graph represents a problem or

subproblem. An AND node is a subproblem containing multiple subproblems that

must all be solved, whereas an OR node can be solved by solving any successor.

For example, solution to the Tower of Hanoi problem can be found by suc-

cessively reducing the problem into a conjunction of three subproblems. Such a

reduction oriented solution is a pure AND graph; it is identified from a problem

space graph from an AND/OR graph shown in Figure 2.8. Problem-solver that

excels at such a reasoning (i.e., by means-ends-analysis [141]) will eventually choose

the leftmost branch as this is the only feasible solution graph exhibited in Figure 2.8.

On the other hand, being a single-player puzzle game, Tower of Hanoi may also be

directly modeled into a state-space OR graph — the root node will contain two

edges representing that two actions choices: moving disk D1 to D2 or D3. This for-

mulation, however, fail to leverage the well-ordered dependencies between subgoals,

and finding a solution in this OR graph thus becomes more difficult [153].

For two-player games, recall that in state-space graph, each enumerating option is

an edge-represented legal move from its corresponding game state, in problem-space

graph, each nodeG represents a strategy, and each edge represents one step reduction

for G. For example, suppose for a Hex state s there is a Black winning strategy

20



P (D1→n;1,2,3)

······

P (D1→n-1;1,3,2)
P (D;1,2,3)

P (D 1→n-1;2, 1,3) P (D1→n-2

P (D n-1→ n ;2,1,3)
;1,3,2) P (D1→n-2;2, 1,3) P (D1;2, 1,3)P (D1;1, 3,2)

P (D2 ;1, 2,3)→n

Figure 2.8: Tower of Hanoi problem space graph. P (D1→n; 1, 2, 3) represents the
problem to move n disks from tower 1 to 3 using 2. Leftmost branch is actually a
recursive solution to the problem. Identifying such a solution relies on the availabil-
ity of well-ordered subgoals and purposeful identification on the relations between
parent goal and subgoals; such a process is known as means-ends analysis [141].
It is also possible to formulate this problem as a state-space OR graph; however,
finding a solution becomes more difficult. Solution graph from the leftmost branch
is actually a tree that grows exponentially; this is simply because for n disks, no
solution required less than O(2n) steps exists.

G, each edge from G can be a pair (D, c), where D is subset legal White moves

at G, and c is a Black counter move for all moves in D. Figure 2.9 schematically

illustrates one step strategy decomposition. G0 is the original game. There are n

mappings f1, f2, . . . , fn, where f : 2U → C. That is, U is the set of legal moves

in G0 and C is the set of counter moves. The total number of such mappings, i.e.,

n, can be 2|U | · |C|. However, most of these edges may be ignored by the problem-

solver, and from the state-space graph we know, it is certainly true that there exists

a solution by exploring at most |U |×|C| edges. The practical merit of searching in

the problem-space as defined in Figure 2.9, similar to that of Figure 2.7, depends

critically on how to ensure promising edge are preferentially explored.

2.2.2 Markov Decision Processes and Alternating Markov Games

A finite Markov Decision Process(MDP) [20, 158] can be expressed by a tuple

(S,A,R,P, γ) where S is a finite set of states, A a set of actions, R : S × A → R

a reward function, and P denotes the probabilistic transitions among states. The

Markov property states that the agent at time t is independent from all other pre-

vious states and actions, i.e., Pr(st+1|s1, a1, . . . , st, at) = Pr(st+1|st, at). The envi-

21



G0

F1

G1 G2

f1

G3 G4

f2

F2

G5 G6

f3

G7 G8

f4

F3

G5 G6

f5

Figure 2.9: An illustration of searching for solution graph from a problem-space
graph. For G0. F1, F2 and F3 are alternative options; each of them represents
a collection of functions with ∪iargument(fi) = U , i.e., covers all legal opponent
moves. Thus, each F node represents a solution to a set covering problem, and it
is unnecessary to explicitly list all F nodes during search. Note that G0 could also
represent a first-player winning strategy by letting the argument set of each function
f be empty.

ronment is fully described by transition probabilities and a reward function:

P(s′|s, a) = Pr(st+1 = s′|st = s, at = a)

R(s′|s, a) = E [rt+1|st = s, st+1 = s′, at = a]

The objective is to learn a policy to maximize the expected discounted cumulative

reward:

E
∞∑
t=k

γt−kRt−k+1,

where γ is a discounting factor 0 < γ ≤ 1 that controls the contribution of long-

term and short-term rewards. A policy π(a|s) is a function that maps any state s

to a probability distribution over all available actions at s, π(a|s) = Pr(a|s) ∀s ∈
S, ∀a ∈ A(s). Many single agent games, such as the 8-puzzle in Figure 2.6, can be

viewed as an MDP where transitions are deterministic. For this reason, analogous

to shortest path, finding an optimal policy for an arbitrary MDP is sometimes called

stochastic shortest-path problem [25].

MDPs are single-agent games, while we are primarily interested in two-player

games. Extending ideas from MDPs to two-player zero-sum alternate-turn games

results in Alternating Markov Games (AMGs) [123]. An alternating Markov game

is a tuple (S1,S2,A1,A2,R,P, γ) where S1 and S2 are respectively this and other

agent states, and A1 and A2 are the actions at each player’s states. MDPs can be

viewed as a special case of AMGs where |S2|= 0.

22



Stochastic Games

Repeated Games

Alternating
Markov Games

Deterministic
Alternating
Markov Games

MDP

banditBandit

Figure 2.10: MDPs and AMGs are all special cases of Stochastic Games [179].
Repeated Games [188] contain one state, whereas MDPs contain one player. The
game of Hex belongs to Deterministic Alternating Markov Games as for each action,
the next resulting state is deterministic. Bandit games [117] are the intersection of
MDPs and Repeated Games as they contain single player with one state but with
repeated trials.

Figure 2.10 shows the relations between various learning formulations. Although

some reinforcement learning algorithms developed for MDPs can be applied to two-

player games [123], strictly speaking, the game of Hex has two players but no

stochastic state transitions, thus it should be classified as a Deterministic Alter-

nating Markov Game (DAMG).

2.3 Techniques for Strategy Discovery

In this section we review best first search algorithms for AND/OR graphs and discuss

the connection between algorithmic variants. We then review reinforcement learning

and deep neural networks. Finally, we discuss algorithms that combine learning and

search, with a particular focus on Monte Carlo Tree Search. In these discussions, we

comment on how these methods could be applied to the game of Hex and how they

can be helpful to our goal of devising better playing and solving Hex algorithms.

2.3.1 Informed Best-first Search

The state-space graph can be too large to be explicitly represented. For example,

11×11 Hex contains about 2.38×1056 states [35], which is far beyond the capacity of

computer storage. Instead of creating the entire graph, rules of the game are given

23



for creating the graph incrementally. The hidden, complete graph is conventionally

refereed to as the implicit graph; the transparent, partial subgraph that an algorithm

works on is called the explicit graph; they are noted as G and G′ respectively. Leaf

nodes with no successors in G′ are called frontier or tip nodes. A tip node whose

value is immediately known is called terminal and can be solvable or unsolvable —

in the context of cost minimization, they are assigned values 0 and ∞, respectively.

The process of generating successors for a non-terminal tip node is called expansion.

Starting from a single node, a search paradigm enlarges G′ gradually by a se-

quence of node expansions. Suppose the merit of each node in G′ can be assessed by

a value function. To find a solution faster, it is natural to select the node with the

most promising evaluation for expansion, and after each node expansion, relevant

assessments must be updated. Following such an idea, a general best-first search

(GBFS) has been depicted in [153] for searching solution-graph in general AND/OR

graphs. Yet, one regularity for the AND/OR graph of a two-player alternate-turn

game is that AND and OR nodes appear alternately in layers. Therefore, for a

given recursive cost-scheme Ψ, it is possible to define a pair of intermingled value

functions {φ(n), δ(n)} recursively, as in Eq. (2.3).

φ(n) =


h(n) n is non-terminal tip node

0 n is terminal winning state

∞ n is terminal losing state

min
nj∈successor(n)

(c(n, nj) + δ(nj)) n is AND node

δ(n) =


h̄(n) n is non-terminal tip node

∞ n is terminal winning state

0 n is terminal losing state

Ψnj∈successor(n)(c(n, nj) + φ(nj)) n is OR node

(2.3)

If we interpret h(n) and h̄(n) as the difficulty of proving n is winning and losing

respectively (with respect to the player to play at n), using
∑

for Ψ, letting h =

h̄ = 1 and all edge cost c(n, nj) = 0, GBFS with Eq. (2.3) becomes proof number

search (PNS) [2], except that PNS was originally defined on trees. Figure 2.11 shows

an example for PNS, where node j is to be selected for expansion. After that, the

ancestor nodes of j will be updated due to the change in j.

If replacing Ψ as max in Equation (2.3), the goal becomes a minimax strategy.

To indicate that a game is zero-sum, it is natural to let h(n) and h̄(n) to be additive

24



a
1,2

b

2,1

d

0,∞

h

1,1

i

,0∞

e
1,2

j

1,1

k

∞0,

l

1,1

c
0,∞

f

∞ ,0

g
1,1

Figure 2.11: PNS example graph. Each node has a pair of evaluations (φ, δ), com-
puted bottom up. A bold edge indicates a link where the minimum selection is made
at each node. In PNS, all edge costs are 0, and a recursive sum-cost is used. PNS
often uses {1, 1} for h and h̄, therefore φ(n) and δ(n) can be interpreted as the min-
imum number of leaf nodes needed to prove and disprove node n (with respective
to the player at n), respectively.

inverses by restricting h(n) + h̄(n) = 0. In games literature, such a realization of

GBFS is called best-first minimax, and its practical performance in game-playing

has been studied in Korf et al . [113].

Given limited partial exploration of the implicit graph G′, goodness of root eval-

uation depends on the quality of evaluations by h. If further assuming that after

depth d, evaluations given by h must agree with true value of the game state (i.e.,

winning is always associated with a value larger than 0) and all edge costs are 0,

the remaining task is how to discover “optimal” root value by ignoring parts of the

graph without bypassing the optimal. Algorithms like αβ pruning [109] conduct a

depth-first search while maintaining two bounds α and β to prune further branches

if it is guaranteed that better values will never be discovered from these lines of

search. SSS* [156, 164, 190] achieves a similar goal but using a best-first mechanism

that runs multiple traversals to obtain sharper bounds for pruning. However, the

principal drawback of depth-first search is that decisions made by problem solver

are irrevocable, i.e., a second alternative will never be checked until work on the first

move is done. Such a feature makes the practical merits of αβ pruning depend on

the quality of move ordering [1, 170]. Iterative deepening modifies the depth-first

behavior by doing multiple depth-limited search. Other enhancements of αβ prun-

ing reexamine the assumption that evaluation below depth d is exact, proposing

a number of techniques, e.g ., forward pruning [52], quiescence search [17], to im-

prove the accuracy of leaf evaluations. Algorithms following similar lines of research

have produced superhuman playing programs in various games like Othello [135],

25



chess [40] and checkers [171], but less successful in some other games (e.g ., Go and

Hex) where simple and reliable evaluation function is difficult to construct [32]. In-

deed, because of the heuristic nature of evaluation function h, in some domains, αβ

based minimax search may even produce pathological behavior, i.e., deeper explo-

ration produces worse evaluations [138, 139, 140]. Pathology can occur because

optimizing upon heuristic evaluation could only compound estimation error [152];

in this sense, the high branching factors in Go and Hex also make them less suited

to moderately accurate evaluation based minimax search.

The development of PNS [4] was originally inspired by conspiracy number search [129],

with the motivation to design algorithms specialized to solve games, especially in

the presence of deep and narrow plays before reaching terminal nodes — where

techniques based on αβ pruning fixed-depth search become inadequate. PNS in its

naive form initializes {h(n), h̄(n)} as (1, 1) and assumes all edge costs are 0. Other

enhancements try to establish more informative initialization of proof and disproof

numbers at each newly created node [33, 34, 212]. Depth-first proof number search

(DFPN) [136] is a PNS variant that adopts two thresholds to avoid unnecessary

traversal of the search tree — it conducts Multiple Iterative Deepening (MID) until

these thresholds are violated. DFPN has the same behavior as PNS in AND/OR

trees, but exhibits lower memory footprint at the expense of re-expansion; it is also

complete in directed acyclic graphs [107]. DFPN is often more applicable than PNS,

and can often be improved by incorporating various general or game-dependent tech-

niques. Yoshizoe et al . [216] introduced λ search to DFPN to solve the capturing

problems in Go; threshold controlling and source node detection [105] were intro-

duced to DFPN to deal with a variety of issues from Tsume-Shogi.

We show the relations between several representative algorithms in a hierarchical

diagram of Figure 2.12. How they are connected is explained in Appendix A.4. These

algorithms assume the AND/OR graph is a DAG, i.e., no directed loops exist. For

general single agent finite MDPs, because of the existence of uncertainty nodes, the

underlying state-space can also be modeled as an AND/OR graph, though these

graphs may contain directed loops. A variant of AO*, namely LAO* [76], has been

proposed for such cases: it sidesteps the problem caused by directed loop using a

value iteration [158] procedure that will be discussed in the next section.

26



GBFS*

AO*

PNS*

PNS

DFPN

depth-first implementa-
tion with thresholds

edge cost 0 except those
to terminal with 1,
AND/OR tree

symmetric f1 and
f2, sum-cost

Best-first Minimax

symmetric f1 and f2,
max-cost

recursive cost scheme

A*

OR graph, sum-cost

αβ pruning is with
fixed-depth, exact leaf
evaluation, edge cost 0;
it is dfs with backtrack-
ing, does not belong to
best-first search family.
SSS* is best-first, but
assumes fixed-depth, ex-
act evaluation the same
as αβ

Figure 2.12: Relation of several search algorithms. AO* is a variant of GBFS in
AND/OR graphs, while A* is for OR graph.

2.3.2 Reinforcement Learning

Unlike search algorithms that aspire to explore a small portion of a space graph,

reinforcement learning (RL) methods aim to learn the true value of each node from

experience. In MDPs, the basis for RL is a set of Bellman Equations. For a given

policy π, let the value for state s under π be vπ(s). The Bellman equation is defined

as follows.

vπ(s) =
∑
a

π(s, a)
∑
s′

Pr(s′|s, a)(r(s, a, s′) + γvπ(s′)), (2.4)

where Pr(s′|s, a) is the transition function and r(s, a, s′) is the reward of taking a at

s, leading to s′. It is also popular to use an action-value function, defined likewise:

qπ(s, a) =
∑
s′

Pr(s′|s, a)(r(s, a, s′) + γvπ(s′)) (2.5)

These Bellman equations are the basis for policy evaluation [158], which com-

putes the true value function for a given π. The Optimal Bellman Equation is a

recursive relation for the optimal policy:

v∗(s) = max
a

∑
s′

Pr(s′|s, a)
(
r(s, a, s′) + γv∗(s

′)
)
, (2.6)

q∗(s, a) =
∑
s′

Pr(s′|s, a)(r(s, a, s′) + γmax
a′

q∗(s
′, a′)). (2.7)

27



Given v explicitly stores the value of each state, a value iteration procedure derived

from the optimal Bellman equation converges to optimal [20]. Alternatively, it

is possible to define a policy iteration [27, 94] by combining policy evaluation by

Equation (2.4) and policy improvement due to (2.6).

In Alternating Markov games, for RL algorithms, because there are two players,

the policy evaluation must involve two policies, i.e., π1 and π2. Bellman equations

for policy evaluation are as follows [123]:{
vπ1(s) =

∑
a π1(a|s)∑s′ Pr(s′|s, a)(r(s, a, s′) + γvπ2(s′)), s ∈ S1 and s′ ∈ S2

vπ2(s) =
∑

a π2(a|s)∑s′ Pr(s′|s, a)(r(s, a, s′) + γvπ1(s′)), s ∈ S2 and s′ ∈ S1

(2.8)

Action-value functions can also be defined in the same fashion [123]:{
qπ1(s, a) =

∑
s′ Pr(s′|s, a)(r(s, a, s′) + γ

∑
a′ π2(a′|s′)qπ2(s′, a′)), s ∈ S1 and s′ ∈ S2

qπ2(s, a) =
∑

s′ Pr(s′|s, a)(r(s, a, s′) + γ
∑

a′ π1(a′|s′)qπ1(s′, a′)), s ∈ S2 and s′ ∈ S1

(2.9)

Let π1 be the max player and π2 be the min player. Assuming π2 is an optimal

counter policy with respect to π1, we may rewrite the above equation as follows:

qπ1(s, a) =
∑
s′

Pr(s′|s, a)

{
r(s, a, s′) + γmin

a′

∑
s′′

Pr(s′′|s′, a′)[
r(s′, a′, s′′) +

∑
a′′

π1(a′′|s′′)qπ1(s′′, a′′)

]}
,

where s ∈ S1, s
′ ∈ S2 and s′′ ∈ S1.

(2.10)

π2 is replaced with a min operator, because π1 is fixed and the problem reduces

to a single agent MDP where an agent tries to minimize the received rewards.

Assuming that states in S1 belong to the max player, optimal Bellman equations

can be expressed as:{
v∗(s) = maxa

∑
s′ p(s

′|s, a)(r(s, a, s′) + γv∗(s′)), s ∈ S1 and s′ ∈ S2,

v∗(s) = mina
∑

s′ p(s
′|s, a)(r(s, a, s′) + γv∗(s′)), s ∈ S2 and s′ ∈ S1.

(2.11)

A value iteration algorithm according to this minimax recursion converges to opti-

mal [46]. However, because the policy evaluation in AMGs consists of two policies

π1, π2, the policy iteration, which alternates between policy evaluation and policy

improvement, can have four formats [45, 123]. The difference between AMGs and

MDPs is reflected in finding solutions using learning programming (LP): a finite

MDP can be solved by LP formulation and then computing optimal solution in

28



polynomial time w.r.t the number of states [123], whereas no LP solution is known

for AMGs [46].

In the earlier literature, the policy and value iterations above, either for MDPs

or AMGs, are called Dynamic Programming (DP) [94] algorithms. Implementation

of these methods requires an explicit knowledge of Pr(s′|s, a). By contrast, most

RL algorithms learn by assuming that the precise environment model is unknown,

thus learning has to be done by repeatedly exploring the environment. Such algo-

rithms interleave policy evaluation and policy improvement, and can be viewed as

generalized policy iteration [192].

To make RL algorithms practically useful, instead of explicitly representing every

state, a parameterized value function vθ or qθ can be used to approximate the

tabular function and generalize across states. In this way, RL algorithm such as

Q-learning and SARSA can be extended to work with parameterized approximated

functions (called function approximators), though they may diverge [192]. A second

approach is to directly use function approximator to represent policies and then

optimize parameter weights by following the observed reward signals. For example,

policy gradient methods [193] learn by iteratively adjusting a parameterized policy

with respect to an estimated gradient. These methods have stable convergence in

practice [155].

We provide a brief taxonomy of RL algorithms as follows. Depending on whether

the agent is aware of the transition model or not, RL algorithms can be divided into

model-free and model-based ; the former can be further classified into three cate-

gories: policy-based, value-based, and actor-critic [192]. A simple policy gradient

algorithm is REINFORCE [211]. Model-based RL can be divided into three types.

DP algorithms require an explicit model with exact representation for every possible

state. Search-based RL only requires rules for generating the next state after each

action; they can rely on a function approximator for generalization. The third type

tries learn an approximately correct model from experience; one example of such an

approach is Dyna [191].

Both value and policy-based RL are well-studied in MDPs. Two player alternate

turn zero-sum games are AMGs not MDPs [123]. In the literature, with a notion

of self-play policy, standard reinforcement learning methods developed in MDPs

have been applied to AMGs [180, 198] by simply negating the reward signal of the

opponent’s turn. However, since they do have fundamental differences, a careful

29



examination of these lead to better RL methods for two-player games, as we will

see in the next chapter.

2.3.3 Deep Neural Networks

We have seen from the previous section that, when the state-space is large, prac-

tically useful RL algorithms have to rely on effective function approximator for

generalizing across all states. Exploring only a subset of examples for grasping a

generally useful concept is exactly the promise of machine learning, whose challenge

is to find, by a process of training on some data, an approximately correct target

function that is able to generalize across unseen inputs.

A fundamental problem is how to represent inputs in a convenient format that

is easy to learn. Using neural networks for representation learning or feature learn-

ing [22] allows a system to automatically discover appropriate features from raw

data. In particular, deep learning with many layered neural networks [21, 118]

has been shown to be effective in practice; they exploit the composition hierarchies

of natural signals. The study of neural networks dates back to 1940s–1960s [175].

Convolutional neural networks (CNNs) have been shown to be particularly effective

for learning. The core idea of CNNs is to use filters (or kernels) for transforming

information from one layer to next. Such an idea was proposed in 1970s [61], and

became well-known after LeCun [119]. Figure 2.13 illustrates a convolution opera-

tor for a 2D input. Each filter (kernel) contains a vector of weights, applying which

step by step horizontally and vertically using the same filter transforms the original

picture into a new image. Here the filter is with size 3 × 3; the input image has

an extra border padding with 0, therefore the resultant image remains the same

size. More generally, for a W ×W image, suppose the padding is P , convolution

size is F × F , stride is S, then the resulting image has dimension W ′ ×W ′ where

W ′ = W+2P−F
S + 1.

A fundamental problem for deep neural networks is how to efficiently update

the connection weights, given the observed difference between the predicted output

and the labelled true result. Backpropagation [37, 54, 55, 103, 122, 166, 210] has

become a standard algorithm for training feedforward networks.

Due to computational and data acquisition limits, training many-layered net-

works was infeasible before the use of GPUs [144]. In 2012, the record-breaking

winner [114] (AlexNet) of the ImageNet classification contest [51] popularized the

30



22222

2
22222222222222

0 0 0 0 0 0 0

0
0

00
0 0

11111 11111 11111
11111

1 1
222222 1 0

0 11111
1 2 22222 11111 000000

10 1
1 1 1

1
1 1 100

00
0
00000000

-4444444
44444
00000 000000000 00000

000000

0000000
0 1

1 1

0 0
0

Source pixel

Convolution kernel
(emboss)

New pixel value (destination pixel)

-8-8-8-8-8

Center element of the kernel is placed over the 
source pixel. The source pixel is then replaced 
with a weighted sum of itself and nearby pixels.

 (4 x 0)
 (0 x 0)
 (0 x 0)
 (0 x 0)
 (0 x 1)
 (0 x 1)
 (0 x 0)
 (0 x 1)
(-4 x 2)

-8
+

Figure 2.13: Illustration of convolution operation in 2D image.

use of deep neural nets implemented with GPUs in the computer vision community.

The empirical success suggests that neural network depth is critical for achieving

high performance. The accompanied problem is that network training becomes

more difficult with increasing depth due to the phenomena of exploding and van-

ishing gradients. He et al. [84] proposed Residual Net (ResNet) that uses short-cut

connections to tackle the gradient vanishing/exploding problem, making it possible

to train neural nets with over 100 layers. In summary, research in deep learning are

mostly concentrated on the following aspects:

• Architecture. The choice of a neural net architecture can be critical to deep

learning applications. For a given application, a suitable CNN architecture

may be found by many trials and novel design.

• Optimization. In practice, backpropagation is usually implemented with Stochas-

tic Gradient Descent (SGD) [31] because the dataset is often too large to be

loaded as a whole.

In RL, there is a long history of using neural nets as function approximators [27,

198], because practical RL relies on expressive function approximation to generalize

learned knowledge to unseen states and many layered neural nets can approximate

arbitrary continuous functions on compact subsets of Rn [93]. Revived interest in RL

methods with neural nets as function approximators is partly due to faster training

methods on GPUs. Deep Reinforcement Learning (DRL) combines the progress in

31



deep learning and reinforcement learning, leading to improvements in playing Atari

games [132, 133, 173] and many continuous control applications [120, 176, 177, 183,

208].

In the game of Hex, another goal for neural architecture design is to let a model

obtained on some board size N×N transfer to other board sizes. Transfer Learn-

ing [146, 161, 217] studies how to transfer learned knowledge from a source domain

DS to a target domain DT . Given a neural net model trained source domain data,

common transfer learning scenarios [217] are as follows:

• Frozen. Trained neurons from a source task are copied to the target network

and kept fixed when training on the new dataset for the target task.

• Fine-tuning. The target network copies neurons from the source task, then

the whole network is optimized as usual.

We investigate transfer learning for Hex in Chapter 4.5.

2.3.4 Combining Learning and Search: Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) [47] has led impressive progress in Go [58, 180],

Hex [11, 96], and many sequential decision making problems [36]. Like other best-

search algorithms, MCTS grows a selective tree by concentrating on nodes with

better value estimates. Each search iteration consists of four distinct phases. (1)

The in-tree phase traverses the current tree from the root until a leaf is reached.

Child nodes are selected by a function such as UCT [111], which balances exploration

and exploitation. (2) The expansion phase expands a leaf node, typically after its

visit count has reached an expansion threshold. (3) Leaf nodes are evaluated, for

example by randomized rollouts. (4) Results are backpropagated in the tree. While

MCTS works without any game specific knowledge, its performance can often be

drastically improved by incorporating domain knowledge [73], better child node

selection and leaf evaluation.

Many improvements of MCTS has been proposed. UCT search [111] uses upper

confidence bound in the selection phase, striking a balance between exploration

and exploitation. Gelly et al . [74] propose Rapid Action Value Estimation (RAVE)

heuristic, which leads to a faster accumulation of statistics and better performance

in games where move values are only slightly influenced by their playing order.

32



MCTS based program Fuego [58] became the first computer player winning a game

against a 9-dan professional in 9×9 Go.

In the game of Go, several research groups showed that deep learning can in-

deed provide high quality expert move predictions [44, 125, 200]. This strength

was then used in conjunction with MCTS, leading to the Policy Value MCTS (PV-

MCTS) [180, 184] that uses a deep policy net to set prior move probabilities and a

value network for estimating the value of leaf nodes. The resulting AlphaGo pro-

gram [180] convincingly beat top human professional players [180] in 19×19 Go.

AlphaGo Zero [184] adopts the same search framework, but totally abandoned roll-

out; it yielded stronger playing strength as because better quality neural nets were

obtained by an iterated training that optimizes the neural net based on data gener-

ated by PV-MCTS with previous neural net models. These successes were achieved

on advanced hardware TPU [100] for fast neural net inference and large scale parallel

computation for data generation: AlphaZero used 5000 TPUs during training [181].

It is a research question how to further improve the efficiency of PV-MCTS on

regular hardware and obtain large number of high quality expert games with limited

computation resources. We present our result in improving AlphaZero style learning

in Chapter 4.

2.4 Hex Specific Research

In this section we review past research that are specific to the game of Hex.

2.4.1 Complexity of Hex

Determining the winner for arbitrary Hex position has been shown to be PSPACE-

complete [60, 162]; therefore, developing an automatic algorithm for solving arbi-

trary Hex position with polynomial time complexity is unlikely unless P=PSPACE,

consequently P=NP. In practice, what we are mostly interested in is the number of

existing states for a given board size.

For N×N Hex, the total number of reachable states is upper bounded by∑
x+y+z=N2∧(x=y∨x=y+1)

(
N2

x,y,z

)
, i.e., enumerating all possibilities by fillin the board

with x black stones, y white stones, and z empty cells (by the rule of Hex x = y+ 1

or x = y always holds assuming Black plays first). Consider also that each board

configuration has a symmetry by 180-degree rotation, the upper bound should be

halved. Therefore, when N = 11, such an estimation gives u 2.3835× 1056 [35].

33



However, the estimation method used above would count some states where a

win/loss is already decided many times, whereas to form a winning chain at least

2N − 1 stones have to played. This gives a lower bound on DAG∑
x+y+z=N2∧(x=y∨x=y+1)∧x+y≤2N−1

(
N2

x, y, z

)

. For N = 11 we obtain about 3.06× 1029. The estimation from [38] shows that for

N ×N Hex, the minimum number of steps required to win is at least N + dN/4e.
This provides us a way to estimate the lower bound for minimum size of state-space

where there is a solution graph: 1.39× 1021 for N = 11. Table 2.1 summarizes the

results for N = 9, 10, 11 and 13. These estimates imply that techniques for pruning

the state-space must be employed, otherwise solving Hex by exhaustive search even

on small board sizes such as 9×9 can be unachievable. As in Chapter 2.1, if regarding

the state-space is a tree of size bd, then a proof tree is of size bd/2. The numbers

in Table 2.1 further imply that the representing a solution can also be difficult

as the board size increases if no state pruning or state-aggregation techniques are

employed.

Table 2.1: Approximate number of estimated states for N×N Hex, N = 9, 10, 11, 13.

9×9 10×10 11×11 13×13

Upper Bound 1037 1046 1056 1079

Lower Bound 1022 1025 1029 1037

Lower Bound (Sol) 1014 1017 1021 1025

2.4.2 Graph Properties and Inferior Cell Analysis

A graph can be constructed from either Black or White’s perspective. For instance,

a Black Hex graph is created by treating two black borders as two distinct vertices,

every uncolored cell is a vertex with edges connecting neighboring cells; a black stone

on a location makes all pairs of neighboring cells become adjacent after the vertex

on which Black just played; such a procedure is in short called vertex implosion —

a white stone to a location deletes the corresponding vertex and all its edges. Black

wins if the two black border vertices become adjacent; conversely, White wins if the

two black border nodes are in two independent connected components. A White

graph can be built in the same fashion. Figure 2.14 demonstrates an example

from [206]. In Black’s Hex graph, Black is called the Short player and White the

34



Figure 2.14: An example Hex position and the corresponding graphs for Black and
White players. Image from [206]

Figure 2.15: Dead cell patterns in Hex from [87]. Each unoccupied cell is dead.

Cut player; in White’s graph, their roles are exchanged. If generalizing the concept

to arbitrary graph, the resulting game is called Shannon vertex-switching game or

Generalized Hex [15, 60, 99].

As suggested by Berge [23, 81], it is possible to prune some moves from a given

game state by analyzing the graphical properties of Hex. Techniques for proving

that a move can be discarded without changing the optimal value of a game state are

collectively called Inferior Cell Analysis (ICA). Depending on how they prune cells,

certain formal terminologies on a cell or a set of cells can defined, e.g., dead,vulnerable

captured vulnerable-by-capture and capture-domination cells. See [87]. Figure 2.15

shows several examples of dead cells.

While deciding an unoccupied cell is dead or not in arbitrary graph is NP-

complete [28], identifying and proving local dead-cell patterns can be useful in au-

tomated playing and solving Hex. See Figure 2.15 for some examples. A dead cell

can be filled-in with any color without altering game theoretic value of a Hex posi-

tion; similarly, a Black (or White) captured set C can also be filled-in with Black

(or White) stones. The process of artificially filling the board with either black or

white stones while ensuring game-theoretic value unchanged is called fillin in Hex.

Besides dead and captured cells, another type of fillin by Henderson et al . [87] is

called permanently-inferior.

Pruning by fillin is strong in the sense that filled cells are removed from con-

sideration by any continuation of a game position. Indeed, following a set of dead,

35



Figure 2.16: An example of Black captured-region-by-chain-decomposition from [87];
cells inside of such a region can be filled-in.

captured and permanently-inferior patterns, Henderson et al [91] described an ex-

plicit winning strategy using dN+1
6 e handicap cells on anyN×N board. The strategy

works by placing black stones in the row one cell away to border and apply fillin to

fill the row next to boarder permanently, then the resulting irregular Hex board can

be solved via a pairing strategy from Shannon [72].

A weaker type of pruning is to remove cells from given game state if a provable

better one exists. A reversible move can be bypassed while a dominated move can

be pruned given at least one dominating move retains [24]. Using these concepts,

captured-reversible and captured-domination have been defined [87, 90]. Other dom-

ination classes explored in [87] include induced-path and neighborhood domination.

Additionally, board decomposition [87] are useful for fillin or pruning, given that

a connection strategy in the relevant region is known. Figure 2.16 shows an exam-

ple of region fillin as a result of chain composition. For any given board position, it

seems that many cells can be either filled-in or pruned by chain or star decompo-

sition. However, the practical feasibility of these pruning relies on known explicit

strategy for constructing interboundary connection. For instance, for N×N Hex

where N ≥ 3 we have known that black acute corner opening is a loss [12, 18],

it follows that the remaining board cells together with four borders form a chain

decomposition with R containing all unoccupied cells, thus White captured-region-

by-chain-decomposition. However, white fillin the whole board is meaningless as

explicit strategy for preventing all black interboundary connection is missing. A

bottom-up connection strategy computation can be used for carrying out the prun-

ing or fillin of such kind in certain cases.

36



2.4.3 Bottom Up Connection Strategy Computation

We have seen in Chapter 2.1 that strategy for a game can be decomposed and

represented by subgame strategies. Anshelevich [6, 7] discovered that some connec-

tion strategies for local subgames of Hex can be computed in a bottom-up manner.

The algorithm H-search was proposed for building these strategies, which became

a critical component in the 2000 ICGA champion player Hexy [5]. Two types of

connection strategies are defined:

• Virtual Connection (VC) — given two endpoints x, y and a set of empty cells

A, (x,A, y) is a Black VC if there is a way to connect x and y by only playing

inside of A even if let White play first. That is, VCs represent second-player

connection strategies. A is called carrier of the VC.

• Semi-virtual Connection (SC) — given two endpoints, x, y, a set of empty

cells A, (x,A, y) is Black SC if there exists a k ∈ A Black plays at k first, then

(x,A\{k}, y) is a Black VC. That is, SCs stand for first-player connection

strategies; the first move k fulfilling a SC is called the key for that SC.

In a Hex graph, because a connected group of same-colored stones can be ab-

stracted into one point, for any N×N Hex from the empty board, there must be a

Black SC since it has been proved that there exists a first-player winning strategy.

The PSPACE-complete complexity result, however, implies that finding such SCs

for arbitrary Hex board size is difficult. Nevertheless, using the particular property

of Hex we can compute some connection strategies in a bottom-up manner. To

achieve this, H-Search uses some base cases and two combination rules.

1. Base Cases: any adjacent pair of same-colored endpoints form a base VC with

carrier ∅, i.e., ; any pair of same-colored endpoints with one empty cell

between them forms a base SC, i.e., .

2. AND-rule: Two VCs (x1, A1, x2) and (x2, A2, x3), with ({x1} ∪A1) ∩ ({x3} ∪
A2) = ∅, can be combined to form a new SC if x2 is an empty cell or a VC if

x2 has the same color as x1 and x3.

3. OR-rule: Two SCs (x1, A1, x2) and (x1, A2, x2), with A1 ∩ A2 = ∅, A1 6=
∅, A2 6= ∅, can be combined to form a new VC. The bridge pattern shown in

Figure 1.3 can be obtained by ORing the two base SCs sharing the same pair

of endpoints. This rule also applies to more than two SCs sharing the same

37



pair of endpoints, provided that their carrier intersection is the empty set and

none of them is the empty set.

Given a set of manually created base cases, H-Search automatically and repeat-

edly applies the above OR- and AND- rules until no more connections can be found,

resembling to automatic theorem proving [163]. The Apply OR Rule of H-Search is

recursively defined [7] and can be expensive in practice since it tries to find new

VCs by enumerating all combinations of semi-virtual connections sharing the same

two endpoints. As noted in [87], a number of ways could be used to make H-search

either find more connections or become faster in practice:

1. Enlarge the set of base connections.

2. Abandon superset carriers.

3. Allowing border to be midpoints.

4. ORing all SCs check: if ORing all SCs does not produce a VC indicate that

ORing any subset of them cannot produce a new VC.

5. When appplying the OR-Rule, backtrack immediately if the intersection does

not shrink (since it implies this SC is redundant).

6. Only check at most k combinations when applying the OR rule.

7. Limit the number of SCs and VCs stored for each pair of endpoints.

The last two schemes can reduce the number of connections that H-search can find,

but, arguably, they bring more benefit than harm due to the improved speed [87].

Indeed, even without these, H-search does not guarantee to find all connection

strategies, i.e., H-search is incomplete [7]. One simple example that H-search is

incapable to solve is called braid, illustrated in Figure 2.17 (left). A solution by

strategy decomposition is depicted in Figure 2.17 (right).

The reason that H-search cannot find a SC between x and y via AND-rule is

that all the VCs and SCs are intervened. The attainable VCs are (x, a, ∅), (x, 3, ∅),
(y, 1, ∅), and (y, b, ∅); SCs are (a, b, key = 2, ∅), (x, b, key = 3, ∅), (y, a, key = 1, ∅),
(a, b, key = 1, ∅), (a, b, key = 3, ∅). Applying AND-rule does not produce a SC

between x and y simply because there is no two VCs to concatenate. By defining

Partition Chains that can be computed in parallel with AND/OR rules, a Crossing

Rule is proposed in [87] to solve braid-type cases.

Although the improvement may lead H-search to find more connections, they do

not make H-search complete [87]. Pawlewicz et al. [151] observed that computational

38



x

a

2 3

b1

y

(a) The braid example

A

B

C

{1} : b

D

{2, 3, b} : 1

∅ : a

(b) Solve braid by decomposition

Figure 2.17: The braid example that H-search fails to discover a SC connecting to
x and y (left). Either a or b could be the key to a SC. The right subfigure shows a
decomposition represented solution: after playing at cell a, move 1 can be responded
with b while any move in {2, 3, b} can be answered by move 1.

efficiency is a major bottleneck for H-search, then described a more efficient data

structure for storing and updating VCs and SCs. In particular, the OR rule is

exponentially expensive with respect to the number of SCs between two endpoints,

while hard-limiting it to small (e.g., 3 or 4) prevents H-search from finding many

useful connections, Pawlewicz et al. [151] proposed semi-combiner and fast-semi-

combiner for producing critical subsets of VCs.

The source of incompleteness of H-search comes from the fact that its bottom-up

combination rules are just a special treatment to achieve the goal of solving subgames

by strategy decomposition. For the braid example, as in shown Figure 2.17b, the SC

between x and y can be formed by two VCs (x→ a and a→ y), but the AND rule

of H-Search failed to compute the SC. In general, as demonstrated in Figure 2.18, if

we want to prove that there is a SC in position A for player P , by decomposition, it

is equivalent to finding a move that will lead to a position where there is an VC. To

prove position B has a VC for player P is to decompose the VC into several smaller

VCs. Rather than using H-Search, in Chapter 5.4, we discuss the possibility of

searching for decomposition-based solutions with the help of deep neural networks.

2.4.4 Iterative Knowledge Computation

Not only inferior cell analysis can help H-search [87, 151], connection strategies from

H-search can also help to identify more fillin or inferior cells [87]. Therefore, for a

given Hex game state, combining these two types of knowledge computation results

an iterative procedure, sketched in Algorithm 1 [87].

Upon the termination of Algorithm 1, two possibilities exist: (1) the state-value

39



A

SC?

B

VC?

C

VC?

D

VC?

B

VC?

F1

E

VC?

F

VC?

f1

G

VC?

H

VC?

f2

F2

I

VC?

J

VC?

f3

K

VC?

L

VC?

f4

Figure 2.18: Searching for SC and VC by strategy decomposition. Finding there is
a SC for player P at position A equals to finding a P move that will lead to a child
position where there is a VC for P .

Algorithm 1: Iterative Knowledge Computation [87]

Input: A board position s
Result: Processed board position s′

1 For both players, compute dead, captured, permanently-inferior cells for
fillin; do this step repeatedly until no new fillin can be found;

2 For the player to play, compute dead-reversible, captured-reversible and
various domination cells for pruning;

3 For both players, run H-search on the fillin-reduced position;
4 Apply deduced connections, compute

captured-region-by-chain-decomposition,
dominated-region-by-chain-decomposition and
dominated-set-by-star-decomposition; if new fillin is produced, go to step
1, otherwise exit;

is decided, (2) the state-value is unknown but certain moves can be pruned. Such

an iterative knowledge computation at each game state has been implemented in

Benzene, available from 2, with visualization using HexGUI 3. See Figure 2.19. We

will use this platform to conduct our experiments in later chapters.

2.4.5 Automated Player and Solver

In Hex, a seminal work for designing a computer player is due to Shannon [178],

who proposed an electric-resistance based evaluation for playing the game. Research

for other games (e.g., DeepBlue for chess [40]) have produced human-level playing

machines. However, it has been shown that designing effective heuristic evaluations

for Hex is difficult: Concepts used in many other games for feature extraction,

such as material, balance, and mobility, are meaningless for Hex [205]. Evaluations

2https://github.com/cgao3/benzene-vanilla-cmake
3https://github.com/ryanbhayward/hexgui

40



Figure 2.19: Knowledge computation visualized via HexGUI. Black played stones:
b8, f9 and e6. White played stones: c5, e4 and f2. Black to play. a9, b9, c9, d9 and
e9 are Black fillin. Gray shaded cells are pruned due to mustplay; black filled cells
with pink shading are captured; gray filled with shading are permanently-inferior;
green: vulnerable; magenta: captured-reversible satisfying independence condition;
yellow: dominated by various domination patterns. Only five cells remain to be
considered after knowledge computation.

were based on either measuring properties of the game graph, such as network

resistance [178] and graph distance [204].

Table 2.2 summarizes some major computer programs developed for playing Hex.

Equipped with graph distance evaluation, together with an advanced implementa-

tion of αβ search, Queenbee [204] became the first program achieving novice level

strength. Inspired by Shannon’s model, using electronic circuit resistance as an

evaluation function in minimax search was used by Anshelevich [6, 7]; the resulting

program Hexy [5] defeated Queenbee. Improved programs based on a similar idea

include Six [79] and Wolve [13]. In all these programs, virtual connection computa-

tion is vital to the quality of evaluation, and they all use a form of H-search [7] for

computing VCs. The αβ player Wolve combines both ICA and VC to improve its

heuristic evaluation function.

Although the resistance-based evaluation can be improved by adding VC and

ICA information, it is still frequently pathological, as it tends to favor fillin and

dominated cells [87]. This problem was sidestepped by the development of Monte

Carlo Tree Search for Hex [11], which evaluates a game position by simulating

random playouts. The success of MCTS is due to its superior ability to focus the

41



Table 2.2: Evolution of Computer Programs for Playing Hex.

Year Program Brief Description

2000 Queenbee αβ with two-distance
2000 Hexy αβ with circuit resistance plus VC computation
2003 Six αβ with circuit resistance plus VC computation
2008 Wolve αβ with circuit resistance plus VC and ICA
2010 MoHex parallel MCTS with VC and ICA
2013 MoHex 2.0 parallel MCTS with stronger VC and ICA plus pattern-

based playout

search on promising nodes in the tree, by dynamically backing up the evaluations

from random sequences of self-play. Enhancements of MCTS increase the quality

of such biases by incorporating learned off-line prior knowledge [73]. MoHex 2.0 by

Huang et al. [96] uses preferences learned from expert game records. The program

is 300 Elo stronger than MoHex [96] on the 13×13 board size. Besides MoHex 2.0

and Wolve, recent strong computer players, such as DeepHex [150] and Ezo [196],

all use the VC and ICA computation available from the Benzene codebase.

As in Table 2.2, the discovery of H-search marked the beginning of successful

application of αβ search. The evaluation deficiency is only partially addressed by

VC computation. There are also work trying to improve the evaluation function

using more complicated network models [196], the resulting player failed to defeat

MoHex 2.0 [83]. Despite the playing strength of the recent programs in Table 2.2, a

mathematical guarantee on measuring the quality of their returned moves is lacking.

While statistical models, such Elo rating [56], have been developed for ranking

players, these models do not provide explanation how close a player’s move is to

optimal play, and in practice using a finite number of self-players do suffer from

problems such as Elo inflation [159].

Instead of heuristically playing well, the other research direction is developing

programs for solving Hex. Combining some ICA and VC computation, Hayward

et al. [82] showed that a DFS on state-space graph can solve arbitrary 7×7 Hex

openings in reasonable time. After extending inferior cell analysis and enhanc-

ing VC computation, all 8x8 openings were solved by Henderson et al. [89] via

DFS. Switching the search to PNS made the solving all 8×8 openings at least twice

faster [87]. To date, all 9×9 openings have been solved using parallel PNS with

stronger VC [149, 151].

42



Given the success of deep neural networks for playing, a natural research direc-

tion is to further improve MoHex 2.0 by using deep neural networks for improving

prior knowledge. Similarly, a PNS-based solving algorithm could incorporate deep

neural networks for better node expansion. We shall present the results of improving

PNS using deep neural networks in Chapter 5.

43



Chapter 3

Supervised Learning and Policy
Gradient Reinforcement
Learning in Hex

This chapter contains content from “Move prediction using Deep CNNs in Hex” [63]

and “Adversarial Policy Gradient for Alternating Markov Games” [64].

3.1 Supervised Learning with Deep CNNs for Move
Prediction

3.1.1 Background

The breakthrough [44, 125, 180, 200] in computer Go has shown that using deep

convolutional neural networks (CNN) [114] for representation and learning game

knowledge works better than earlier approaches — they showed deep CNNs can

produce very high prediction accuracy of expert moves after training on professional

game records. Motivated by the success in Go, we investigate how to use deep

convolutional neural nets to represent and learn knowledge in Hex. The goal is

use this knowledge for better for computer Hex programs— a task that poses the

following challenges:

• Representation of input. Compact representation is essential to any learning

model. Typically, feeding more input features to a neural net yields better

prediction accuracy. However, since trained neural nets will eventually be used

in search, evaluation needs to be sufficiently fast. Deep networks usually have

better learning capacity [84], but the development of a successful architecture

often requires many trials.

44



• Sophistication. Training data obtained from either human or computer game

records is usually imperfect. Appropriately dealing with imperfect training

data is essential.

• Search. Combining neural net with search efficiently is non-trivial. A challenge

is that the speed of neural nets on regular hardware is too slow to be intensively

used in the search.

The above challenges need to be solved one by one. In this section, focusing on

13×13 Hex, we conduct an empirical study of move prediction using deep neural

networks in Hex, and investigate the possibility of improving the search in MoHex

2.0 given that an accurate move predictor is obtained.

3.1.2 Input Features

Let s denote an arbitrary Hex position to be preprocessed into feature planes as

input to a neural net. Since the goal of Hex is to connect two sides of the board, to

represent this goal, we use extra two borders to pad the Hex board. See Figure 3.1

for the padding on a 13×13 Hex empty board. Note that we use two, rather than

one, border padding to highlight the importance of border stones for Hex. It is

usually desirable to encode some useful features to the feature planes. We encode

the common bridge pattern (see Figure 1.3) to the input. Table 3.1 lists the feature

representation in each plane. Bridge endpoints are those occupied cells where there

is a bridge pattern (as in Figure 1.3, the two black stones); a save bridge point is

an empty cell by playing where saves the bridge (so in Figure 1.3, if White plays on

one empty cell, the other one becomes a save bridge point for Black); similarly, a

make-connection point is an empty cell by playing where it enables a connection of

its neighbor cells of the same color. The input features consist of 9 planes with only

binary values. We tried to add history information as [200], but experimental results

show that it does not seem to help in Hex, perhaps because Hex is fully described

by the current board position plus the player to play and the playing order of each

stone is irrelevant to state evaluation.

3.1.3 Architecture

Following on previous work in Go [44, 125, 200], the neural network we designed

for Hex is a straightforward stack of multiple convolution and non-linear activation

45



Figure 3.1: Hexagonal board mapped as a square grid with moves played at inter-
sections (left). Two extra rows of padding at each side used as input to neural net
(right).

Table 3.1: Input features; form bridge are empty cells that playing there forms
a bridge pattern. Similarly, an empty cell is save bridge if it can be played as a
response to the opponent’s move in the bridge carrier.

Plane Description Plane Description

0 Black played stones 5 White bridge endpoints
1 White played stones 6 To play save bridge points
2 Unoccupied points 7 To play make-connection points
3 Black or White to play 8 To play form bridge points
4 Black bridge endpoints

layers. Let d (at least one) be the number of convolutional layers. Let w be the

number of convolution filters in each layer. Input to the first convolutional layer

is of dimension 17 × 17 × 9 (13 plus 4 padding borders, 9 feature planes in total).

The first convolution layer convolves using filter size 5×5 with stride of 1, and then

applies ReLU to its output. Convolution layers from 2 to d− 1 zero pad the input

to an image of 15×15 (see Figure 2.13 on convolution operator), then convolve with

filter size 3× 3 and stride of 1. Likewise, each of them is followed by ReLU.

Following previous work in Go [44, 125, 200], to avoid losing information, no

downsampling layers such as max-pooling are applied. The final convolutional layer

convolves using one filter of kernel size 1 × 1 with stride 1. A bias is added before

applying the final softmax function. The output of this neural net is a probability

distribution over each move on the board. Figure 3.2 shows the architecture.

46



input , shape 17 × 17 × 9

(5×5, w) Convolution with
bias, followed by ReLU

...

(1 × 1, 1) Convolu-
tion with position bias

softmax

d − 1 repetition of
(3× 3, w) Convolution
with bias, followed by
ReLU

Figure 3.2: Architecture of d convolutional layers, each with w filters.

3.1.4 Data for Learning

A large amount of training data is essential for any deep learning model. According

to [96], pattern weights in MoHex 2.0 were trained on a dataset consisting of 19760

13x13 games from Little Golem 1 and 15116 games by MoHex played against Wolve.

We could not access the same dataset. Therefore, we generated a new dataset from

MoHex 2.0 selfplay. To enrich the generated examples, we randomly set the time

limit per move from 28 to 40 seconds, and played the tournament by iterating over

all opening moves with the parallel solver turned off. In this way, we collected 15520

games on board size 13×13. These selfplay games were produced on several Cybera2

cloud instances with Intel(R) Xeon(R) CPU E5-2650 v3 2.30GHz and 4GB RAM.

As a further preprocessing step, we extracted training examples from saved

games, and removed duplicated state-action pairs; as a result, 1098952 distinct

state-action pairs (s, a) are produced. We subsequently randomly selected 90% of

them as the training set and used the remaining 10% as a test set. See Figure 3.3

for a visualization of the distribution of state-action pairs with move numbers. Not

surprisingly, most positions are from the middle stage of the game.

No human games from Little Golem were used in our training: we found that

most human players at this site are weaker than MoHex 2.0, although the top player

could be significantly stronger.

1http://www.littlegolem.net
2http://www.cybera.ca

47

http://www.littlegolem.net
http://www.cybera.ca


 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0  20  40  60  80  100  120  140  160

nu
m

be
r o

f s
ta

te
s

move number

Figure 3.3: Distribution of (s, a) training data as a function of move number.

3.1.5 Configuration

The Hex board is symmetric under 180-degree rotation. Therefore, for each training

example, with probability 0.5, a rotated symmetric position is randomly selected to

train. The training target is to maximize the likelihood of move prediction in the

training examples. Let D be the training set. We used this loss function:

L(θ;D) = −
∑

(s,a)∈D

log pθ(a|s) (3.1)

For training, we used adaptive stochastic gradient descent optimizer Adam [104]

with default parameters. Compared to vanilla stochastic gradient descent, Adam

converged faster. We trained the neural net with a batch size of 128 per step. Every

500 steps, the accuracy is evaluated on test data. We stopped the training after

150,000 steps. The model that achieves the best test accuracy is saved. The neural

net was implemented with Tensorflow [128], and trained on an Intel i7-6700 CPU

machine with 32GB RAM and a NVIDIA GTX 1080 GPU.

3.1.6 Results

We present the prediction accuracy of several architectures with varying d and w.

Evaluation of the playing strength of the best neural network model is presented

subsequently.

Prediction Accuracy

Finding appropriate d and w requires experimentation: a too large network may

require more training data while too small ones may have insufficient capacity. We

48



therefore experimentally vary d and w. We start by letting w = 64, d = 5 as in [125],

and tried to double w to 128 (note that we stopped at w = 128 as another dou-

bling would make training overwhelmingly slow on the GTX 1080 GPU). Table 3.2

presents the top 1 move prediction accuracy for 5 different configurations.

Table 3.2: Prediction accuracy on test set from CNN models with varying d and w

Choices of d, w Best accuracy on test data

5 layers, 64 filters per layer 49.5%
5 layers, 128 filters per layer 53.4%
7 layers, 128 filters per layer 54.7%
8 layers, 128 filters per layer 54.8%
9 layers, 128 filters per layer 54.5%

Table 3.2 shows that neural nets with depths 7 − 9 produced better results

than the shallower ones. The best accuracy of 54.8% is with d = 8, w = 128,

whose accuracy on training data is 57.6%. For each architecture, the result was

obtained with early stopping, i.e., we stopped the training when the test accuracy

stopped improving for 10 consecutive epochs. As the previous work in Go [125], no

regularization is used.

It is of interest to know the top k accuracy for k > 1. If the accuracy is high

for relatively small k, this characteristic could be harnessed to effectively reduce

search width. Figure 3.4 shows the top k accuracy for the best d = 8, w = 128

neural network model with 9 input planes. For k = 8, the prediction accuracy is

above 90%. For k = 12, the predication accuracy exceeds 95%. We now proceed to

investigate playing strength of the best d = 8, w = 128 policy neural network model

both without and with search. For brevity, we call this model CNN 128
8 .

Playing Strength of CNN 128
8 without Search

A policy network model can be used as a player whose move is sampled from the

probabilistic outputs of the model. To see the strength of CNN 128
8 , we test its

performance by playing against the resistance evaluation used in Wolve [11, 13].

This is achieved by limiting Wolve to use 1-ply search. Note that 4-ply search was

used by Wolve in previous tournament [11, 13].

The match consists of 6000 games from opening board position where 3000 neural

net plays as Black, and 3000 as White. No swap rule was used. The result is that

CNN 128
8 won 48.9% of all games, which implies that the policy neural net model

49



0 2 4 6 8 10 12 14 16
50

55

60

65

70

75

80

85

90

95

100

k

A
cc
u
ra

cy
(%

)

Figure 3.4: Top k prediction accuracy of the d = 8, w = 128 neural network model.

has similar playing strength as the optimized resistance evaluation in Wolve. As for

speed, CNN 128
8 is more than 10 times faster than 1-ply Wolve.

Figure 3.5 shows a typical game played by the neural net model against Wolve.

The first move of Wolve is l2, presumably because there is a easily computable

virtual connection to the top which greatly influenced the resistance evaluation.

Move 11 of Wolve is problematic, as it became useless by White’s response move k8

— there is no way that Black can connect to the bottom by m7 unless White misses

l9.

The result is remarkable in the sense that, without any search, the neural network

model can still answer most black moves accurately, implying that the neural net

has already grasped some sophisticated aspects of the game.

a

a

b

b

c

c

d

d

e

e

f

f

g

g

h

h

i

i

j

j

k

k

l

l

m

m

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

1

23

4

5

6

7

8

9

10

11

1213

1415

1617

18

19

20

21

2223

2425

2627

28

29

3031

3233

3435

3637

38

39

40

41

42

43

44

45

46

47

4849

50

51

52

53

54

5556

57

5859

6061

62

63

64

65

66

67

68 69

70

71 72

7374

75

76

77

78

79

80

Figure 3.5: A game played by 1-ply Wolve (Black) against policy net (White)
CNN 1287

8 . The neural network model won as White. Note that we tried to use
solver to solve the game state before move 11, but solver failed to yield a solution.

50



It is also interesting to see how well the neural net plays against 4-ply Wolve.

Since this version of Wolve is slow, we only played 800 games in total. Table 3.3

shows the result. Table 3.3 also includes the result of CNN 128
8 against 1000 sim-

ulation limited MoHex 2.0. Even against these strong Hex bots, the neural net

could still achieve about 10% and 20% win as Black and White, respectively. As

a comparison, using deep-Q learning [132], after two weeks of training, Young et

al . [218] obtained a deep neural net model which achieved 20.4% win against 1

second limited MoHex 2.0 as Black and 2.1% as White. We note that in our Intel

i7-6700 CPU machine — which is faster than the machine used in [218] — MoHex

2.0 with 1000 simulations almost always takes a time around 1 second, which im-

plies that CNN 128
8 could have achieved a better result. We suspect this is due to

the following reasons: (1) The training data are different: in [218], the neural net is

first trained on a set of games generated from a randomized version of Wolve, and

then trained on games of neural net self-play. We believe those games are inferior

to the games accumulated from MoHex 2.0 self-play. (2) The training method is

different: Although Q-learning has been successful in Atari games [132], two-player

strategic games are more challenging in the sense that the opponent could be re-

garded as a non-stationary environment. (3) The input planes in [218] contain only

Black/White/empty points plus Black/White group information: our bridge en-

riched representation is better in the sense that it represents a key tactic for playing

Hex.

Table 3.3: Results of CNNd=8 ,w=128 against 4ply-Wolve and 1000 simulations Mo-
Hex 2.0.

Opponent CNN 128
8 as Black CNN 128

8 as White

4-ply Wolve 17% 3.25%
MoHex2.0-1000 33% 8.5%

Finally, although the comparison with Wolve shows that the playing strength of

CNN 128
8 is similar to resistance, it is advantageous over resistance in the sense that

it does not have the pathological behavior (favoring fillin and dominated cells) as

resistance nor does it require the computation of inferior cells and virtual connections

which are typically slow [87].

51



Integrating CNN 128
8 to MoHex 2.0

Our ultimate goal is to develop a stronger Hex player by combining the neural net

with search. The strength of look-ahead search is that it tries to build a state-

specific graph model, thus the possibility of sampling an erroneous action directly

from the policy network is reduced.

The major challenge for combining a neural net with search is that move eval-

uation by deep networks can be slower than traditional methods [125, 180, 200].

In computer Go, previous work either employs non-blocking asynchronous batch

evaluation [180] or simple synchronous evaluation [200]. In each approach, neural

network evaluation is used as prior knowledge in search tree, giving preferable child

moves higher prior probability.

We combine our neural network with MoHex 2.0, the reigning world champion

player since 2013. MoHex 2.0 is an enhanced version of MoHex [11]. It is built upon

Benzene, using the smartgame and gtpengine libraries from Fuego [58]. The major

improvement of MoHex 2.0 over the 2011 version of MoHex lies on the knowledge-

based probabilistic playout. Specifically, the MCTS in MoHex 2.0 work as follows:

• In-tree phase: In this phase, starting from the root node, a child node is

selected from its parent until a leaf is reached. At tree node s, a move is

selected according with the maximum score defined as:

(1− w)× (Q(s, a) + cb ×
√

lnN(s)

N(s, a)
)+

w ×R(s, a) + cpb ×
ρ(s, a)√
N(s, a) + 1

Here, N(s) is the visit count of s, N(s, a) is the visit count of move a at s,

Q(s, a) is the Q-value of (s, a), R(s, a) is the RAVE value [74], and ρ(s, a)

is the prior probability calculated from move pattern weights. The RAVE

weight w is dynamically adjusted during the search [74]; cb and cpb are tuning

parameters.

• Expansion: A leaf node is expanded only when its visit count exceeds an

expansion threshold, which is set to 10 in MoHex 2.0.

• Pattern-based playout : Pattern weights have been trained offline. In each

playout, a softmax policy selects moves according to move pattern weights.

52



• Backpropagation. After the playout, game result is recorded, then MCTS

updates values in visited nodes according to the playout result.

The best performance of MoHex 2.0 is achieved after tuning its parameters

by CLOP [48, 96]. Other optimizations implemented in MoHex 2.0 include: pre-

search analysis (Inferior cells and connection strategies are computed from the root

node before MCTS. If a winning connection is discovered, a winning move will be

selected without search); knowledge computation (Whenever the visit count of a

node exceeds a knowledge threshold, H-search [151] to compute virtual connection

and inferior cell analysis are applied; this often leads to effective move pruning);

and time management (A search is said to be unstable if by the end, the move with

the largest visit count disagrees with the move with highest Q-value. MoHex 2.0

extends the search by half of its original time in this case [96]). After the search

terminates, MoHex 2.0 finally selects a move with the largest visit count.

From MoHex 2.0 to MoHex-CNN

In MoHex 2.0, the prior knowledge ρ(s, a) is computed by a rough estimate from

relative move pattern weights. To see the effectiveness of our policy neural network,

the straightforward modification is to replace ρ(s, a) by pθ(s, a) — the move proba-

bility computed by our policy neural network CNN 128
8 . All other tuning parameters

are left unchanged.

The new program after adding neural net CNN 128
8 is named as MoHex-CNN. It

is implemented directly from the MoHex 2.0 code in Benzene, and compiled with

the Tensorflow C++ libraries. Similar to AlphaGo [180], we also prepare another

program MoHex-CNNpuct that uses a variant of PUCT [165]. It selects moves that

maximize Q(s, a)+cpb×pθ(s, a)×
√
N(s)

N(s,a)+1 . On the same i7-6700 CPU, 32GB RAM,

GTX-1080 GPU machine, we run several tournaments to compare MoHex 2.0 and

MoHex-CNN.

In practice, the evaluation speed of the neural network is a concern. Whenever

MoHex expands a node, prior pruning (using patterns to remove proved inferior

cells) is applied. Since those computations are costly and are independent from

neural net evaluation, we implement a evaluation method that runs in parallel with

prior pruning. As a result of this implementation, the computation overhead be-

comes small: in our experiments on the i7-6700 CPU machine with a GTX 1080

GPU, MoHex with CNNs took about 0.19 ms per simulation, while MoHex 2.0 took

53



about 0.17 ms.

The first tournament uses the same number of simulations for each program.

From the empty board, without the swap rule, 400 games were played by MoHex-

CNN and MoHex-CNNpuct against MoHex 2.0, in which MoHex 2.0 plays 200 games

as Black and 200 as White.

Table 3.4 shows the results. Under those settings, the new programs MoHex-

CNN and MoHex-CNNpuct are stronger than MoHex 2.0, since they consistently won

more than 62% over all played games. Since the difference between MoHex-CNN

and MoHex 2.0 lies only in the prior probability initialization, the results suggest

that the more accurate prior knowledge due to CNN can improve MoHex, given the

same number of simulations.

Table 3.4: Results of MoHex-CNN and MoHex-CNNpuct with same number of simu-
lations against Mohex 2.0. As Black/White means MoHex 2.0 is as the Black/White.

Opponent #Simulations As White As Black Overall

MoHex-CNN
103 94.5% 44.5% 69.5%
104 90% 56% 73%

MoHex-CNNpuct
103 86% 39% 62.5%
104 83.5% 53% 68.3%

The next experiment compares MoHex-CNN and MoHex-CNNpuct to MoHex

2.0 with equal time budget: 10 seconds per move. When the swap rule is used, the

second player has the option to steal the opening move, so we run the tournament

by iterating over all opening cells in the board. For 13×13 Hex, there are 85 distinct

openings after removing symmetries. For each opening, we run 5 games for each

color between MoHex-CNNpuct or MoHex-CNN against MoHex 2.0.

Table 3.5 summarizes the result of those 850 games played by MoHex with CNNs

and MoHex 2.0. Both MoHex-CNNpuct and MoHex-CNN have better performance

against MoHex 2.0 even with same computation time. Consistent with the results

in Table 3.4, MoHex-CNN plays better than MoHex-CNNpuct.

Table 3.5: Results Against MoHex 2.0 of MoHex-CNNpuct and MoHex-CNN with
same time limit per move, 95% confidence.

Opponent MoHex2.0 as White (%) MoHex2.0 as Black (%)

MoHex-CNNpuct 71.7± 0.1 53.2± 0.1
MoHex-CNN 78.6± 0.4 61.2± 0.4

MoHex-CNN won the 2017 computer Hex Olympiad against Ezo-CNN [197], an

updated version of Ezo [196] using neural networks as its move ordering function.

54



a

a

b

b

c

c

d

d

e

e

f

f

g

g

h

h

i

i

j

j

k

k

l

l

m

m

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

1

2 3

4

5

6

7

8 9

10

11

12 13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30 31

32 33

34

35

36 37

38

39

40

4142

43

44

45

46 47

48

49

50

51

52

53

5455

56

57

5859

60

61 62

63

64

65

66 67

6869

Figure 3.6: MoHex-CNN against Ezo-CNN: a sample game from 2017 computer
Olympiad. MoHex-CNN won as Black.

Figure 3.6 shows a game played in the Olympiad tournament where MoHex-CNN

won as Black.

3.1.7 Discussion

We achieved a prediction accuracy near 55% in predicting MoHex 2.0 moves, and

used the high prediction accuracy to produce a stronger Hex player. Even without

search, the neural network model plays Hex reasonably well; using a neural net

model as a learned prior in MCTS, our player MoHex-CNN surpasses MoHex 2.0

— the reigning champion player until 2016. Meanwhile, a number of new general

techniques have been explored by other researchers. Most of them were carried out

or became popular after our work on Hex. These techniques could be used to further

strengthen our Hex player:

• Instead of using a stack of convolutional layers, better neural nets have been

explored in computer vision. These architectures include Residual neural

nets [84, 85, 219]. A number of regularization techniques have been shown use-

ful in image recognition, such as dropout [189, 202], batch normalization [97],

stochastic depth [95], swapout [185].

• Instead of maximizing the likelihood of a single next move, studies in com-

puter vision and natural language processing showed that predicting a more

smoothed distribution can help to reduce over-fitting [154, 194]. Since the

Hex data we used to train our neural net is inherently imperfect, incorporat-

ing similar techniques may also be beneficial.

55



• The advancement of AI accelerators such as TPU [100] have greatly improved

the computational efficiency of deep neural networks. Appropriately using

them may improve the playing strength of Hex as well.

3.2 Policy Gradient Reinforcement Learning

We have seen that supervised learning can produce a moderately strong policy

network for playing Hex. Policy gradient reinforcement learning (PGRL) aims to

improve a policy function by trial-and-error. In this section, we investigate the

possibility of using PGRL for producing stronger policy network model in the game

of Hex.

There is a large body of research in RL algorithms, so we begin with a brief

review of these algorithms and then discuss their applicability to Hex. We propose

a new policy gradient variant specifically for two-player games and empirically show

its advantageous performance for Hex.

3.2.1 Background

Model-free reinforcement learning methods have been successfully applied to many

domains, including robotics [110], Atari games [132, 133, 173], and two-player board

games [180, 198]. RL algorithms can be split into two categories: value-fitting and

policy gradient. The value-fitting algorithms try to learn the optimal value function

for every possible states in the state-space. The primary disadvantage of value-

fitting methods such as Q-learning [132, 133, 207, 209] is that they are often unstable

when interacting with function approximation [27, 193]. To gain stable behavior,

extra heuristic techniques [121, 173] and extensive hyper-parameter tuning are often

required. By contrast, policy gradient methods explicitly represent a policy as a

function of parameters: they learn through iteratively adjusting the parameterized

policy by following estimated gradients of policy function, thus converging to at least

a local maximum [155]. Policy gradients are applicable to continuous control [176,

177, 183] or domains with large action space [180], where action-value learning

methods often become infeasible [120, 208].

Both value and policy based reinforcement learning are well-defined in MDPs,

where a single agent learns by exploring a stationary environment. As discussed

in Chapter 2.2.2, two-player alternate-turn perfect-information zero-sum games are

alternating Markov games, which are a generalization of MDPs by allowing exactly

56



two players pursuing opposing goals. Many popular two-player games — including

the game of Hex — are of such kind. The restriction of zero-sum in AMGs makes it

possible to define a shared reward function which one agent tries to maximize while

the other agent tries to minimize it. Due to such a property, using a selfplay policy,

RL methods in MDPs have been applied to AMGs [180, 198] by simply negating the

reward signal of the opponent. Tesauro [198] trained multi-layer neural networks to

play backgammon. Tesauro’s program learns the optimal value function by greedy

self-play, relying on the stochastic environment in the game of backgammon for

exploration; Tesauro [198] conjectured that the smoothness of the value function is

one major reason for the particular success of TD-Gammon. A recent study that

applies Deep Q-learning to Hex [218] failed to produce strong player.

As an alternative to value-fitting, a policy gradient method can be used to refine a

neural net policy model by learning from pure neural net selfplay. In the first version

of AlphaGo [180], policy gradient RL is used to improve the neural network model

obtained by supervised learning. The improved model was less useful for exploration

in search because of its strong bias towards a single move. However, due to its

better playing strength and fast speed, it was used as a standalone player to generate

training data for a value net [180], which was integrated into Monte Carlo tree search.

The policy gradient employed by AlphaGo is a variant of REINFORCE [211].

In the rest of this chapter, we examine the justifications of adapting standard

policy gradient RL to AMGs. Based on the difference between MDPs and AMGs,

we formulate an adversarial policy gradient objective. We then develop new policy

gradient methods for AMGs and apply our approach to the game of Hex. We show

that by modifying REINFORCE to estimate the minimum rather than the mean

return of a self-play policy, stronger pure neural net players can be obtained.

3.2.2 The Policy Gradient in MDPs

Let πθ be a θ parameterized policy. Note that for notation convenience, in the

following text we sometimes omit θ. Let dπ(s) be the state distribution under π. In

MDPs, the strength of π can be measured by

J(π) =
∑
s∈S

dπ(s)
∑
a

π(a|s)qπ(s, a), (3.2)

57



Consequently,

∇J(π) =
∑
s∈S

dπ(s)
∑
a

π(a|s)∇ log π(a|s)qπ(s, a) (3.3)

The above equation is a direct result of the Policy Gradient Theorem for MDPs [193],

which implies that the gradient of the strength of a policy can be estimated by

sampling according to π. The requirements are that π is differentiable and that

qπ(s, a) can be estimated. A PGRL that follows this scheme can be interpreted as a

kind of generalized policy iteration [192], where the gradient ascent corresponds to

policy improvement [101], and qπ(s, a) is obtained by policy evaluation. Depending

on how qπ(s, a) is estimated, policy gradient algorithms can be categorized into two

families: Monte Carlo policy gradients that use Monte carlo to estimate qπ, e.g.,

REINFORCE [211] and actor-critic methods [193, 208] that use another parameter

to approximate the action-value under π. The Monte Carlo policy gradient methods

have the advantage that the value estimate is unbiased, though in practice, they

could have higher variance than the action-critic ones.

3.2.3 An Adversarial Policy Gradient Method for AMGs

Unlike MDPs where the policy iteration [27, 192] is unique, with AMGs, four differ-

ent variants exist:

Algo.1 Fix πt1, compute the optimal counter policy πt2, then fix πt2, compute the opti-

mal counter policy πt+1
1 . Continue this procedure repeatedly until convergence.

Algo.2 Policy evaluation with πt1, π
t
2, switch both πt1 and πt2 to greedy policies with

respect to current state-value function. Continue this procedure repeatedly

until convergence.

Algo.3 Policy evaluation with πt1, π
t
2, switch πt1 to greedy policy with respect to the

current state-value function and then compute the optimal counter policy for

πt2. Continue this procedure repeatedly until convergence.

Algo.4 Policy evaluation with πt1, π
t
2, switch πt2 to greedy policy with respect to the

current state-value function and then compute the optimal counter policy for

πt1. Continue this procedure repeatedly until convergence.

58



Denote the joint strength for a pair of parameterized policies π1 and π2 as:

J(π1, π2) =
∑
s

dπ1,π2(s)
∑
a

π1(a|s)qπ1(s, a) (3.4)

Here, dπ1,π2(s) is the state-distribution (i.e., representing the frequency that s is

visited under policies π1 and π2) given π1 and π2. A natural question is what is

the gradient of J(π1, π2) with respect to π1 and π2 respectively? One tempting

derivation is to calculate the gradient for both π1 and π2 simultaneously by treating

the other policy as the “environment”. Similar to the mutual greedy improvement

in Algo.2, such a method tries to adapt each policy by referring to the value function

under current π1, π2, ignoring the fact that the other player is an adversary who will

also adapt its strategy as well. Another possible algorithm is to fix π1 and do a

fixed number of iterations to optimize π2 by normal policy gradient as in MDP,

then fix π2 for optimizing π1, repeating this alternatively. However, this algorithm

is analogous to Algo.1, which was shown to not converge in certain cases [45].

Following Algo.3 and Algo.4, given the action-value function under π1, π2, a more

reasonable approach for policy improvement is to switch π2 to greedy and optimize

π1 by policy gradient. Therefore, assuming π1 is the max player, we advocate the

following objectives

{
Jπ1(π1, π2) =

∑
s d

π1,π2(s)
∑
a π1(a|s)∑s′ Pr(s′|s, a) [r(s, a, s′) + γmina′ qπ2(s′, a′)]

Jπ2(π1, π2) =
∑
s d

π1,π2(s)
∑
a π2(a|s)∑s′ Pr(s′|s, a) [r(s, a, s′) + γmaxa′ qπ1

(s′, a′)] .
(3.5)

Therefore, the gradients can be expressed by{
∇Jπ1(π1, π2) = Eπ1,π2

[∇ log π1(a|s)∑s′ Pr(s′|s, a)(r(s, a, s′) + γmina′ qπ2
(s′, a′))]

∇Jπ2(π1, π2) = Eπ1,π2
[∇ log π2(a|s)∑s′ Pr(s′|s, a)(r(s, a, s′) + γmaxa′ qπ1

(s′, a′))] .
(3.6)

The above formulation implies that, when computing the gradient for one policy,

the other policy is simultaneously switched to greedy. This joint change forces the

current player to adjust its action preferences according to the current worst-case

response of the opponent, which is desirable due to the adversarial nature of the

game.

A straightforward implementation of Equation (3.5) is to obtain separate Monte

Carlo estimates for each next action, and then apply the min or max operator.

However, this may not be practically feasible when the action space is large. We

59



introduce a parameter k, approximating the true min/max by only considering a

subset of actions.

As a minimal modification on self-play REINFORCE, this algorithm works as

follows: (i) generate a batch of n games by a self-play policy; (ii) for each game, sam-

ple a single state-action pair (s, a) uniformly as a training example for this game;

(ii) instead of directly using the observed return z in the game as the estimated

action-value for (s, a), perform extra Monte Carlo simulations to estimate the min-

imum return for (s, a). We consider two Adversarial Monte Carlo Policy Gradient

(AMCPG) methods:

AMCPG-A: Run k self-play games from (s, a) using self-play policy π, then

take the minimum of these k returns and z.

AMCGP-B: Sample a state s′ from (s, a) according to the state-action tran-

sition p(·|s, a), and select the top k actions suggested by π for s′. For each

selected action, obtain an Monte Carlo estimate using self-play policy π, then

take the minimum of these k returns and z.

Algorithm 2: Adversarial Monte-Carlo Policy Gradient (AMCPG-A and
AMCPG-B)

Input: A policy network πθ
Result: Improved policy π̂θ

1 ite ← 0 ;
2 while ite < maxIterations do
3 Self-play a mini-batch of n games E using π ;
4 N ← ∅;
5 for ei ∈ E do
6 Select a state-action pair (sj , aj) uniform randomly;
7 Let z(sj , aj) be the outcome with respect to action aj at sj in ei;
8 Let s′j be the next state after taking aj at sj ; at s′j , let

z′(sj , aj) =


A : Self-play k games using π, record the minimum outcome with respect to sj ;

B : Select top k moves of π, from each move self-play a game using π,

record the minimum outcome w.r.t sj ;

Ri ← min{z(sj , aj), z′(sj , aj)} ;

9 Append (sj , aj , R
i) to the mini-batch N ;

10 end

11 θ ← θ + α
|N|

∑|N|
i=1∇ log π(sij , a

i
j ; θ)R

i;

12 ite← ite+ 1;

13 end
14 return πθ;

Here, only minimum is used, because we assume the state-value are always given

with respect to the player to play at that state. It is easy to see that in AMCPG-

A, if mean operator is used rather than minimum, a variant of REINFORCE is

60



Table 3.6: Input feature planes.

Plane Description Plane Description

0 Black played stones 6 To play save bridge points
1 White played stones 7 To play make-connection points
2 Unoccupied points 8 To play form bridge points
3 Black or White to play 9 Opponent’s save bridge points
4 Black bridge endpoints 10 Opponent’s form bridge points
5 White bridge endpoints 11 Opponent’s make-connection points

recovered. When k = |A(s′)|, AMCPG-B becomes a genuine implementation of

Equation (3.5), but in this situation, even though each action-value’s estimation is

unbiased, bias could still be incurred when applying the min or max; this is known

as the winner’s curse problem in economics [41, 187].

3.2.4 Experiment Results in Hex

We apply policy gradient reinforcement learning to improve a policy net which

was trained by supervised learning. As a neural net model obtained by deep Q-

learning [218], although the policy gradient refined neural net model can be stronger

at playing, it is not helpful in guiding best-first search [180]. Therefore, in this exper-

iment we focus on studying the behavior of policy gradient reinforcement learning.

3.2.5 Setup

Since this experiment is intended to verify a new method rather than produce a

competitive player, we choose 9×9 Hex for the study due to its fast speed of training,

while using fully-convolutional neural network architecture that can output policies

for multiple board sizes. Figure 3.7 shows the detailed architecture design. For

W ×W input, after applying F × F convolution with stride S and padding P , the

output is W+2P−F
S + 1, which means that given fixed F , S and P , the output size

is solely decided by input width W ; therefore, for a given set of convolution filters,

fixed stride and padding, by feeding W ×W input feature planes, a vector of move

probabilities of size W 2 can be obtained. See Figure 2.13 for an example of 2D

convolution. We implement the network graph using Tensorflow [128].

3.2.6 Data and Supervised Learning for Initialization

The input has 12 binary planes, shown in Table 3.6. To initialize the neural net

weights, we first generate a dataset containing 106 state-action pairs by MoHex

61



raw input , boardsize × boardsize

(boardsize + 2 )× (boardsize + 2 )× 12

...

(1 × 1, 1) Convolution

softmax

5 repetitions of (3 ×
3, 128) Convolution
with bias, followed by
ReLU

Figure 3.7: Neural network architecture: It accepts different board size inputs,
padded with an extra border using black or white stones; the reason for this trans-
ferability is that the network is fully convolutional.

2.0 selfplay on 9×9 board. We train the policy neural net to maximize the log-

likelihood on this dataset. The training took 100, 000 steps, where each step is with

a mini-batch size of 64 and optimized using Adam [104] with learning rate 0.001.

After supervised learning, the obtained neural net model can be used for playing

in multiple board sizes. Its win-percentages against 1-play Wolve on 9×9 and 11×11

are respectively 13.2% and 4.6%; each test is done by iterating all opening moves

and with 10 games for each opening with Wolve as Black and White.

3.2.7 Results of Various Policy Gradient Algorithms

For comparison purposes, we implement three REINFORCE variants:

• REINFORCE-V: Vanilla REINFORCE using a parameterized self-play policy.

After a batch of n self-played games, each game is replayed to determine the

batch policy gradient update α
n

∑n
i

∑Ti
t ∇ log π(sit, a

i
t; θ)z

i
t, where zit is either

+1 or −1.

• REINFORCE-A: An “AlphaGo-like” REINFORCE. It differs from REINFORCE-

V by randomly selecting an opponent from former iterations for self-play.

• REINFORCE-B: For each self-played game, only one state-action pair is uni-

formly selected for policy gradient update. This algorithm differs from AMCPG-

62



A by using the mean of all k + 1 observed returns.

All methods are implemented using Tensorflow, sharing the same code base. They

only differ in a few lines of code. A self-play policy is employed for all algorithms,

which is equivalent to forcing π1 and π2 to share the same set of parameters. The

game batch size n is set to 128. For each self-play game, the opening move is selected

uniformly random. The learning rate is set to 0.001; vanilla stochastic gradient

ascent is used as the optimizer. The reward signal z ∈ {+1,−1} is observed only

after a complete self-play game. For all algorithms, the same neural net architecture

is used. As mentioned, the initial parameter weights were obtained from supervised

learning. Because the architecture is fully convolutional, the parameter weights can

be used on multiple board sizes.

We run policy gradient reinforcement learning for 400 iterations for each method,

on two different board sizes, 9 × 9 and 11 × 11, varying k ∈ {1, 3, 6, 9}. We use

Wolve [87, 151] as a benchmark to measure the relative performance of our learned

models. After every 10 iterations, model weights are saved and then evaluated by

playing against 1-ply Wolve. The tournaments with Wolve are played by iterating

all opening moves, each is repeated 5 times with Wolve as Black or White.

Figure 3.8 compares the strengths of these five algorithms. REINFORCE-B is

able to achieve similar learning speed with REINFORCE-V as a function of iteration

number, though in one game, REINFORCE-B only extracted one example to train

the neural network. This is perhaps because the reward signal in the same game

is too much correlated. Consistent with the finding in Go [180], REINFORCE-A

performed better on 9×9 and 11×11 Hex. However, the newly developed algorithms

AMCPG-A and AMCPG-B achieved better results even when k = 1.

While error bands in Figure 3.8 were not plotted for clear visualization of the

average performance, to further see the relative strength, we then show the compar-

ison of REINFORCE-V and AMCPG-B with error bands plotted in Figure 3.9. It

clearly shows that AMCPG-B performed significantly better than REINFORCE-V.

3.2.8 Discussion

We have presented a new policy gradient objective for AMGs. Experiment results

on the game of Hex show that optimizing towards the new objective led to a better

neural net player. However, as a model-free method, the merit of a policy gradient

63



0 100 200 300 400
0

0.1

0.2

0.3

0.4

Iteration

W
in
ra
te

a
ga
in
st

W
o
lv
e

REINFORCE-V
REINFORCE-A
AMCPG-B
REINFORCE-B
AMCPG-A

(a) 9× 9 Hex, k = 1

0 100 200 300 400
0

0.1

0.2

0.3

0.4

Iteration

W
in
ra
te

a
ga
in
st

W
o
lv
e

REINFORCE-V
REINFORCE-A
AMCPG-B
REINFORCE-B
AMCPG-A

(b) 9× 9 Hex, k = 3

0 100 200 300 400
0

0.1

0.2

0.3

0.4

Iteration

W
in
ra
te

a
ga
in
st

W
o
lv
e

REINFORCE-V
REINFORCE-A
AMCPG-B
REINFORCE-B
AMCPG-A

(c) 11× 11 Hex, k = 1

0 100 200 300 400
0

0.1

0.2

0.3

0.4

Iteration

W
in
ra
te

a
ga
in
st

W
o
lv
e

REINFORCE-V
REINFORCE-A
AMCPG-B
REINFORCE-B
AMCPG-A

(d) 11× 11 Hex, k = 3

0 100 200 300 400
0

0.1

0.2

0.3

0.4

Iteration

W
in
ra
te

a
ga
in
st

W
o
lv
e

REINFORCE-V
REINFORCE-A
AMCPG-B
REINFORCE-B
AMCPG-A

(e) 11× 11 Hex, k = 6

0 100 200 300 400
0

0.1

0.2

0.3

0.4

Iteration

W
in
ra
te

a
ga
in
st

W
o
lv
e

REINFORCE-V
REINFORCE-A
AMCPG-B
REINFORCE-B
AMCPG-A

(f) 11× 11 Hex, k = 9

Figure 3.8: Comparison of playing strength against Wolve on 9×9 and 11×11 Hex
with different k. The curves represent the average win percentage among 10 trials
with Wolve as black and white.

64



0 100 200 300 400

0.1

0.2

0.3

0.4

Iteration

w
in
-r
at
e

REINFOCE-V
AMCPG-B

(a) k=6

0 100 200 300 400

0.1

0.2

0.3

0.4

Iteration

w
in
-r
at
e

REINFOCE-V
AMCPG-B

(b) k=9

Figure 3.9: On 11×11 Hex, comparisons between AMCPG-B and REINFORCE-V
with error bands, 68% confidence. Each match iterates all opening moves; each
opening was tried 10 times with each player as Black or White.

refined neural net is rather limited. In the first version of AlphaGo [180], a policy

gradient refined network was used to produce data for training a value net. However,

later studies [184] show that training value net directly on human professional data

or search generated data with a novel architecture produce significantly better results

for search-based player. We report the use of value estimation network for stronger

Hex player in the next chapter.

65



Chapter 4

Three-Head Neural Network
Architecture for MCTS and Its
Application to Hex

This chapter contains content from the papers “Three-Head Neural Network Ar-

chitecture for Monte Carlo Tree Search” [66], “A transferable neural network for

Hex” [69], and a discussion with content from “Hex 2018: MoHex3HNN over Deep-

Ezo” [67]. We review the grand success of AlphaGo Zero and AlphaZero, discuss

some of their shortcomings, describe our three-head neural network and show em-

pirical results in Hex.

4.1 Background: AlphaGo and Its Successors

By defeating European champion Fan Hui, AlphaGo [180] became the first computer

Go program to reach professional level. AlphaGo was created as follows [180]:

1. Training a policy network pσ on human expert games from the KGS Go server.

These 160,000 games contain roughly 30 million state-action pairs.

2. Refining the policy network by policy gradient reinforcement learning, result-

ing in a stronger neural net player pρ.

3. Training a value network vθ on a dataset consisting of roughly 30 million

state-value pairs generated by pρ selfplay.

4. Training a fast rollout policy pπ on 8 million Go positions from the Tygem

server.

5. Integrating pσ, pπ and vθ into a policy value MCTS (PV-MCTS) algorithm.

66



Table 4.1: pσ, pπ, pρ, pσ and vθ architectures and their computation consumption.

Function Architecture Computation Hardware and Cost

pσ 13 layers, 192 filters per layer 50 GPUs for three weeks
pρ 13 layers, 192 filters per layer 50 GPUs for one day
vθ 13 layers, 192 filters per layer 50 GPUs for one week
pπ linear combination of features not provided

The architecture and computation for each neural network are listed in Table 4.1.

These trained linear or non-linear functions do not give superhuman playing strength.

They were used along with MCTS, where each search node s represents a game state.

The stored statistics for each action a of s are

{P (s, a), Nv(s, a), Nr(s, a),Wv(s, a),Wr(s, a), Q(s, a)}.

P (s, a) is the prior probability obtained by calling pσ(s), Wv(s, a) and Wr(s, a) are

accumulated total action value over Nv(s, a) and Nr(s, a) leaf evaluations by vθ and

rollout results by pπ, respectively, and Q(s, a) is the mean action value. PV-MCTS

repeatedly performs the following steps until a predefined search time is reached:

• Select: Starting from the root, at each node, select an action leading to the

child node that maximizes a PUCT [165] score:

Q(s, a) + cpuctP (s, a)

√∑
bNr(s, b)

1 +Nr(s, a)
.

This process is repeated until a leaf node s is reached.

• Evaluate: The leaf node s is evaluated by vθ and pπ.

• Expand: When a leaf’s visit count exceeds a threshold, i.e., N(s) > nth, the

node is expanded, and statistics over its actions are initialized to {N(s, a) =

0,W (s, a) = 0, Q(s, a) = 0, P (s, a) = p}, where p is the move probability of

action a from the output of policy network pσ.

• Backup: The evaluation results for each leaf node are backed up until the root

is reached.

After search terminates, in the root node, if the move with largest visit count does

not also have the best action-value, an extended search is conducted. Finally, the

most visited move is selected. The program played in two configurations, both with

parallel MCTS [43, 57]:

67



1. Single machine with 40 search threads, 48 CPUs and 8 GPUs.

2. Distributed with 40 search threads. 1,202 CPUs, and 176 GPUs.

The number of CPUs used is larger than the number of search threads because the

algorithm was implemented in asynchronous style, where many CPU workers are

used to perform the rollout after a leaf node is selected. The distributed version

is significantly stronger than the single-machine one, winning 77% games in head-

to-head match against the single machine version; it defeated Fan Hui, becoming

the first computer program achieving professional level strength [180]. A later ver-

sion called AlphaGo Lee defeated human world champion player Lee Sedol by 4–1

in a five-game public match; the key improvements over AlphaGo Fan are briefly

highlighted in [184]:

• Policy and value networks were enlarged to contain 256 filters per layer.

• Value network was trained on games played by AlphaGo selfplay. This process

is iteratively repeated for a few times.

• More advanced hardware TPUs were used when playing against Lee Sedol.

Continual improvements were made, resulting in AlphaGo Master which defeats Ke

Jie by 3–0. AlphaGo Master improves over AlphaGo Lee as follows [184]:

1. Plain CNNs were replaced with 20-block ResNet; each block (except the first

one) consists of 2 convolution layers, where each layer is with 256 3× 3 filters,

and instead of using two separate policy and value networks, a single two-head

network with policy and value outputs was used.

2. The two-head network was first trained on human professional game records,

then on data generated from AlphaGo selfplay. Again, the later phase was

repeated for a few times.

Later, the idea behind step 2 was further explored [184]: without using any hu-

man data to initialize the neural network, the program called AlphaGo Zero [184]

(with 40-block ResNet) achieved a strength stronger than AlphaGo Master. We

recapitulate the AlphaGo Zero algorithm in Algorithm 3.

Algorithm 3 is an iterative procedure alternating among three subroutines: (1)

using player PV-MCTS(fθ) for data generation; (2) using played games to retrain

68



Algorithm 3: AlphaGo Zero Algorithm

Input: Neural network hyperparameters, e.g., number of residual blocks;
allocated training resource, e.g., total number of training games

Result: fθ and PV-MCTS(fθ)
1 Function Main():
2 Let fθ be a θ parameterized two-head ResNet
3 Let PV-MCTS(fθ) a PV-MCTS with network fθ
4 D ← ∅
5 while computation resource not exhausted do
6 1. Run m parallel workers, each gi ← Search-Selfplay(fθ, 25000),

put gi to D
7 2. Sample the most recent 500,000 game data from D and reoptimize

the neural net parameter θ, obtaining θ′

8 3. Run a match between PV-MCTS(fθ, 1600) and
PV-MCTS(f ′θ, 1600), if θ′ won more than 55%, θ ← θ′

9 end

10 End Function
11 Function Search-Selfplay(fθ, n games):
12 Let s be the initial state of Go
13 g ← {}
14 while s is not the end of a game do
15 a,n(s)← PV-MCTS(fθ, s, 1600)
16 s← Play(s, a)
17 Resign the game if estimated root value is below a threshold vresign
18 Append a and n(s) to g

19 end
20 Add the game result to g
21 return g

22 End Function
23 Function PV-MCTS(fθ, s, n):
24 i← 0
25 while i < n do
26 Starting from s, select using PUCT until a leaf l is obtained
27 Evaluation by v,p← fθ(l) and Expand
28 Backup v along the selection path back to s

29 end
30 Let n(s) be a vector of visit counts for each move in s
31 Select an action a of s proportionally to its visit count
32 return a,n(s)

33 End Function

69



the neural net; and (3) using a gating subroutine to examine the strength of newly

produce neural net model, ensuring that the best network parameter will always

be used for data generation. The step (1) is embarrassingly parallel. The search

procedure PV-MCTS is crucial to the whole algorithm because it controls how data are

produced for improving the neural network weights; thus, some important details

omitted in Algorithm 3 deserve to be noted:

• In the selection formula, a noise is added to P (s, a): P (s, a) = (1− ε)P (s, a)+

εη(α) where η(α) ∼ Dir(0.03) (Dir represents a Dirichlet distribution), ε =

0.25.

• After PV-MCTS iteration finishes, select a move to play by sampling

a ∝ N(s, a)1/τ∑
bN(s, b)1/τ

.

Here, τ is a temperature; τ = 1 for the first 30 moves and τ ← 0 in the

remaining moves. For gating, τ ← 0 for all the moves.

By removing the Go specific designs in Algorithm 3, an AlphaZero algorithm

was first proposed in a preprint article [181], whose formal version was published

in [182]. AlphaZero is described as a general algorithm and its effectiveness was

verified in three games: chess, Shogi and Go. AlphaZero differs from AlphaGo Zero

by the following modifications:

• For input feature planes to the neural network, the augmentation using sym-

metry is removed because this is only applicable to Go, not Shogi and chess.

• It uses a new PUCT selection formula:

Q(s, a) + c(s)P ′(s, a)

√∑
bN(s, b)

1 +N(s, a)
,

where P ′(s, a) = (1− ε)P (s, a) + εη(α) where η(α) ∼ Dir(α), ε = 0.25, α is a

Dirichlet noise parameter. That is, the coefficient is now game-state dependent

c(s) = log((1+N(s)+cbase)/cbase)+cinit, where cinit = 1.25 and cbase = 19625;

however, this dynamic c(s) was not described in [181].

• Gating is removed.

• Number of MCTS simulations (i.e., iterations) per move is reduced to 800.

AlphaZero mastered Go, Shogi and chess after separate training on each.

70



Figure 4.1: Computation costs for AlphaGo Zero and AlphaZero are far ahead of
other major achievements in AI [157].

4.2 Sample Efficiency of AlphaGo Zero and AlphaZero

Although AlphaGo Zero and AlphaZero are seemingly simple, an important draw-

back is that they are sample inefficient. As in Figure 4.1, The computational cost of

training 40-block AlphaGo Zero is far larger than for other prominent AI achieve-

ments [157]. To see the strong correlation between computation and playing strength

in Go, in Table 4.2 we summarize the Elo strength and the computation hardware

for each AlphaGo variant. Except for AlphaGo Fan, all other programs used an it-

erative scheme illustrated in Figure 4.2. Training AlphaGo Zero 20-block, AlphaGo

Zero 40-block and AlphaZero used 4.9 and 29 and 140 million games, respectively.

The number of parallel workers used in training AlphaGo Zero was not given, but

can be estimated from provided data — on current commodity hardware the training

process could 1700 machine years [147].

To see the data inefficiency of these iterative algorithms, consider AlphaZero

20-block: 140 million games were produced while the total number of neural net

parameter updates is 700, 000, each with mini-batch 4096; multiplying these num-

bers shows a total of 286 million forward-backward passes. Considering that 140

million games were generated, this implies that on average two game positions were

selected from each game for training the neural net only once. In Go, a typical game

usually consists of several hundred game states, where each single game state was

71



Table 4.2: Computation used for producing each player. For all Zero variants,
computation used to optimize the neural network was ignored.

Version Computation Elo

AlphaGo Fan 50 GPUs for a few weeks 3144
AlphaGo Lee not given 3739

AlphaGo Master 20-block not given 4858
AlphaGo Zero 20-block a few thousand GPUs for 3 days ≈ 4500
AlphaGo Zero 40-block a few thousand GPUs for 40 days 5185

AlphaZero (Science) 5000 TPUs for 13 days ≈ 4500

TPUsTPUs/GPUsGPUs

Game Game 
BufferBuffer

ModelModel

TrainingTraining
Self-play gamesSelf-play games

GatingGating

Figure 4.2: A closed scheme for iterative learning. Gating was removed in Alp-
haZero, but some implementation found gating is important for stable progress [148].

processed by 800 iteration MCTS — calling the neural net 800 times while building

the search tree. This is in sharp contrast to other deep learning applications [75]

where no examples are discarded, and moreover, every example will be learned by

the neural network many times. This learning is also inefficient when compared to

how human professional players master the game of Go — apparently, they do not

play many millions of games to master the game.

The enormous demand on computation makes reproducing AlphaGo Zero and

AlphaZero, or applying them to other games difficult. But reproducing these results

is relevant, because how and why AlphaGo/Alpha Zero converge and what is their

most crucial component is largely unknown. Research projects studying such ques-

tions include Leela Zero [148] and ELF OpenGo [201]. These approaches either use

crowd-sourcing for computation or have access to thousands of GPUs for parallel

selfplay game generation. Here are some discoveries reported in [201]:

72



• Performance is almost always bounded by the neural network capacity, that

is, improvement can always be achieved by increasing neural network size as

more selfplay games are produced.

• The PUCT parameter in PV-MCTS is important.

• Learning (as measured by strength of the program) has high variance even in

the later stage.

• Elo measurement by selfplay has inflation; the monotonic increase of Elo score

did not capture the fluctuation in strength against a variety of opponents.

• The ladder tactic in Go was never fully mastered even with increased MCTS

simulations.

4.3 Three-Head Neural Network Architecture for More
Efficient MCTS

In terms of reinforcement learning, the algorithmic framework of AlphaGo Zero

and AlphaZero has been summarized as approximate policy iteration [26], where the

policy improvement is due to running PV-MCTS at each state, and policy evaluation

is achieved by regression with respect to the search-based selfplay game result [184].

However, such a high-level interpretation does not provide a detailed explanation on

convergence properties of the algorithm, nor does it give useful practical guidance

on how to select the hyperparameters for the search, the neural network or the

training. Another interpretation views the whole framework as an expert iteration

algorithm [8] by drawing connections to the Systems I and II psychological theory

of the human mind (fast intuition is represented by deep neural network and the

slow thinking is implemented by tree search) [59]. They applied the idea to 9×9

Hex and showed that they can produce a player stronger than MoHex 2011 but did

not surpass MoHex 2.0; see [64].

Due to our limited computational resources, instead of showing results of ap-

plying AlphaGo Zero, AlphaZero algorithms to the game of Hex, we developed a

three-head neural network architecture to improve the efficiency of PV-MCTS. In

rest of this chapter, we show the merits of this architecture in supervised learning,

transfer learning, and search-based Zero-style iterative learning.

73



4.3.1 PV-MCTS with Delayed Node Expansion

In AlphaGo Zero and AlphaZero, the policy value Monte Carlo tree search (PV-

MCTS) merges the expansion and evaluation phases. In the implementation, when-

ever expanding and evaluating a non-terminal leaf node, after new child nodes are

created, the move probabilities are saved to these child nodes; the state-value esti-

mate is backed up.

However, a common practice in MCTS is expanding a leaf node only when it has

been visited for a certain number of times. This scheme is used in the first version

of AlphaGo [180]. The rationale is that, since the neural net has two heads, when

evaluating the leaf node s, two outputs are given: the value estimate can be backed

up immediately, but if the node is not expanded, the policy output would be wasted.

See Figure 4.3.

s p, v = f̂θ(s)

v

(a)

s N(s) < threshold

v?

(b)

Figure 4.3: A problem with two-head architecture in PV-MCTS. The leaf node is
expanded (a) with threshold 0, otherwise (b) if N(s) is below the threshold, no
expansion and evaluation indicates that no value to back up. f̂θ is the two-head
neural net that each evaluation of state s yields a vector of move probabilities p and
state-value v. N (s) is the visit count of s.

To allow PV-MCTS to have delayed node expansion, we propose a three-head

neural net that outputs also a vector of action-values, illustrated in Figure 4.4. Each

evaluation of a leaf node s yields three outputs: a policy p, a vector of next action-

values q, and a state-value v. The policy and action-value information can be stored

by newly created child nodes. Therefore, in future MCTS iterations, when the visit

count of a leaf is below the expansion threshold, the stored action-value can be

74



backed up immediately. See Figure 4.4. On the other hand, if we tailor 2HNN to

delayed node expansion by forcing a leaf to back up its parent’s evaluation, a 3HNN

would be advantageous by enabling a deeper MCTS.

s p,q, v = fθ(s)

v

(c)

s+

s N(s) < threshold

q(s+,a)

(d)

Figure 4.4: PV-MCTS with a three-head neural net fθ: The leaf node s can be
expanded with any threshold. If the visit count of s reaches the expansion threshold,
s is expanded, the value estimate is backed up, action values and move probabilities
are saved to new child nodes. If the visit count of s is below the threshold, the
previously saved action-value estimate can be backed up.

Let PV-MCTS-2HNN be the PV-MCTS with two-head network, and PV-MCTS-

3HNN be the one with three-head net. If an expansion threshold parameter must be

used, PV-MCTS-2HNN can either 1) force the expansion threshold to be 0, or 2) use

fast rollout as leaf evaluation when the leaf node is below the expansion threshold

ζ ≥ 1.

For case 1), suppose PV-MCTS-2HNN and PV-MCTS-3HNN are allocated with

the same amount of computation time T̃ on the same hardware. Let t and t′ re-

spectively be time cost per simulation for PV-MCTS-2HNN and PV-MCTS-3HNN.

Assuming the time overhead for the extra action-head in 3HNN is negligible, then

t′ ≤ t since PV-MCTS-2HNN calls the neural net every simulation while PV-MCTS-

3HNN does not. Thus, the number of neural value leaf estimates received by PV-

MCTS-3HNN is T̃
t′ − T̃

t more than that of PV-MCTS-2HNN.

For case 2), a reasonable assumption is that PV-MCTS-3HNN and PV-MCTS-

2HNN will use equal computation time for the same number of simulations, we then

have the following observation:

75



Observation 1. Suppose that the total number of simulations for MCTS is T , and

the expansion threshold is ζ ≥ 1. Then, after the search terminates, PV-MCTS-

3HNN has received at least T − T
ζ more neural leaf value estimates than PV-MCTS-

2HNN.

Proof. The number of neural leaf estimates received by PV-MCTS-3HNN is T , since

every simulation will back up a leaf estimate of either state-value or action value.

For PV-MCTS-2HNN, let n̂ be the number of internal nodes after T simulations,

and L be the set of leaf nodes. The number of neural leaf estimates used by PV-

MCTS-2HNN is thus n̂, since the neural net is called whenever a leaf is expanded.

Another observation is that n̂ζ ≤ T , because T = n̂ζ +
∑

š∈LN(š), so n̂ ≤ T
ζ .

Therefore, PV-MCTS-3HNN uses at least T − T
ζ more neural leaf estimates than

PV-MCTS-2HNN.

4.3.2 Training 3HNN

Given a fixed set of games D generated by strong players, the loss function described

in [184] is this:

(4.1)L̂(f̂θ;D) =
∑

(s,a,zs)∈D

(
w(zs − v(s))2 − log p(a|s) + c||θ||2

)

Here, 0 < w ≤ 1 is a weighting factor that is used to control the relative weight of

the value loss. c is a constant for the level of L2 regularization. (s, a) is a state-action

pair from dataset D, and zs is the game result with respect to the player to play at

s. v(s) is the state-value head output, and p(a|s) is the policy head output. The

loss function simply combines policy, value losses and L2 regularization. Assuming

infinite expressiveness of the neural network, training by such a loss function forces

the neural network to predict the move probabilities and state-value of the players

that have been used for producing the dataset.

At first glance, it seems more data intensive to train a three-head neural net,

since all action-values must be available. Instead of just using the actions appeared

in D, we show that by using the optimal consistency between parent and child node

values, we can augment extra action-values to train 3HNN on the same raw training

data as for 2HNN. Assume a game state has binary outcomes, either win or lose

with respect to the player at s. Then, for any given game state s, the following

relations hold:

76



• OR constraint: if s is winning, then at least one action leads to a losing state

for the opponent.

• AND constraint: if s is losing, then all actions lead to a winning state for the

opponent.

If the games in D were played by perfect players, for each game g ∈ D, g implies

a tree rather than a single trajectory. See Figure 4.5.

s1 a1

+1

s2 a2

−1

+1

s3 a3

+1

s4 a4

−1

+1

s5 +1

+1+1

Figure 4.5: A game implies a tree, rather than a single path. For each state, the
value (+1 or -1) is given with respect to the player to play there.

Therefore, we introduce the following loss term:

(4.2)LQ(fθ;D) =
∑

(s,a,−1)∈D

1

|A(s)|
∑

a′∈A(s)

(
q(s, a′)− 1

)2

where A(s) is the action set at s (i.e., to average up the augmented error).

The other observation is that for an input state s, we now have both action- and

state-value predictions. In two-player alternate-turn zero-sum perfect-information

games, suppose the value function v(s), q(s, a) are with respect to the player to play

at s or (s, a). The optimal Bellman equation is as follows:

v∗(s) = −min
a
q∗(s, a), s ∈ S, (4.3)

Here, v∗ and q∗ are the optimal state-value and action-value functions. To force the

state and action values to satisfy the optimal consistency, we further augment the

loss function by adding the optimal Bellman error as a penalty.

(4.4)LP (fθ;D) =
∑

(s,a,zs)∈D

(min
a′

q(s, a′) + v(s))2

77



Combining the usual state-, action-value and policy losses, we propose the fol-

lowing loss function:

(4.5)

L(fθ;D) =
∑

(s,a,zs)∈D

(
w

(
1

2
(zs − v(s))2 +

1

2
(zs + q(s, a))2

)

− log p(a|s) + c||θ||2
)

+ wLQ + wLP

Here, q(s, a) is equivalent to v(s′) if taking a at s leads to s′. w and c are

weighting parameters as in (4.1), v(s), q(s, a) and p(a|s) are predictions from a

3HNN fθ. The coefficient 1
2 is used to equally combine the weight of action-value

and state-value prediction errors. To ease parameter tuning, we also set the weight

of LQ and LP the same.

4.4 Results on 13×13 Hex with a Fixed Dataset

We demonstrate the effectiveness of 3HNN on 13×13 Hex. We use the same search-

generated dataset as for obtaining MoHex-CNN; see Chapter 3.1.

4.4.1 ResNet for Hex

We adopt a residual neural net [84] with 10 blocks; each block has two convolutional

layers; each layer has 32 3×3 filters. We use pre-activation [85] in each residual block,

which applies batch normalization [97] and ReLU before convolution. The input

features consists of 4 binary planes that contain only basic board state information:

black stones, white stones, empty points, and to-play. In Hex, each player owns

two of the board’s four sides: to indicate this, we pad each board’s side with a row

of stones of the appropriate color. See Figure 4.6 for the detailed neural network

design, where a batch normalization layer normalizes the signals for each batch

signal (see [97] for details). Refer to Chapter 3 Section 3.1 for the usefulness of

enriched input feature planes. Here, we follow the AlphaGo Zero and AlphaZero

trend, and rely on the advancement of residual network to automatically learn more

meaningful features.

4.4.2 Setup

The neural nets are implemented with Tensorflow 1.0, and trained with the Adam

optimizer [104] using the default learning rate with a mini-batch size of 128 for 100

78



Input 15×15×4

(3 × 3, 32)
Convolution

...
(1 × 1, 1)

Convolution

softmax, p

(1 × 1, 1)
Convolution

169 fully
connected units

1 fully con-
nected unit

tanh tanh

10 residual blocks

q v

(a) ResNet for Hex

x

Batch Normalization

Add

ReLU

32 3x3 convolution filters

Batch Normalization

ReLU

32 3x3 convolution filters

(b) A residual block

Figure 4.6: A ResNet architecture for Hex with three heads. Each residual block
repeats twice batch normalization, ReLU, convolution using 32 3 × 3 filters, then
adds up original input before leaving the block.

epochs, where one epoch is defined as a full sweep of the training data. As the

previous in Go [184], we set the L2 regularization constant c to 10−5, and the value

loss weight w to 0.01.

4.4.3 Prediction Accuracy of 3HNN

As in Chapter 3.1, the dataset is partitioned into disjoint training and testing sets.

To show the learning progress of the neural nets, at the end of each epoch, the

model parameters are saved and evaluated on the test data. We then plot the move

prediction accuracy and mean square errors (MSEs) in Figures 4.7 and 4.8. The

possible range of MSE is [0, 4.0].

We also train a 2HNN with identical residual architecture as our 3HNN except

that it has only policy and state-value heads. This can be emulated by ignoring the

action-value head in Figure 4.6, and optimizing the neural network with the loss

function (4.1).

Figures 4.7 (left) shows that the MSE from the newly introduced action-value

head in 3HNN achieves similar accuracy with the state-value head of 2HNN. Al-

though 3HNN did not produce significantly better predictions than 2HNN, it is

79



0 20 40 60 80 100
0.6

0.8

1

1.2

Epoch number

M
S
E

q-head test error of 3HNN

v-head test error of 2HNN

0 20 40 60 80 100
0.6

0.8

1

1.2

Epoch number

M
S
E

v-head test error of 3HNN

v-head test error of 2HNN

Figure 4.7: Mean Square Errors of two- and three-head residual nets.

0 20 40 60 80 100
0.6

0.8

1

1.2

Epoch number

M
S
E

q-head test error of 3HNN

v-head test error of 3HNN

0 20 40 60 80 100
0.45

0.5

0.55

0.6

Epoch number

A
cc
u
ra
cy

p-head test accuracies of 3HNN

p-head test accuracies of 2HNN

Figure 4.8: MSE (left) and top one move prediction accuracies (right) of two- and
three-head residual nets.

80



advantageous in the sense that it gives an additional vector of all action-values with

a single neural net forward pass.

Figure 4.8 compares the move prediction accuracy of 2HNN and 3HNN. The

networks have almost indistinguishable learning curves, because they are trained on

the same dataset with identical policy loss.

4.4.4 Evaluation in the Integration of PV-MCTS

We now present experimental comparisons between two and three heads nets in

the same search framework. As before, we build our programs upon the codebase of

MoHex 2.0 [58, 96, 151], and use MoHex-CNN from previous chapter as a benchmark

to measure the relative strength of the new programs. Denote MoHex-3HNN as

the implementation of PV-MCTS-3HNN, and MoHex2-2HNN for PV-MCTS-2HNN.

The key differences between MoHex-3HNN, MoHex-2HNN and MoHex-CNN are

reflected in their leaf evaluation:

• MoHex-3HNN uses the default expansion threshold 10 of MoHex 2.0.

• To simply experiment, we use either default expansion threshold or an expan-

sion threshold of 0. In the former case, when the leaf node’s visit count is

below the expansion threshold, MoHex-2HNN uses the pattern-based rollout

as MoHex 2.0.

• MoHex-CNN uses the default expansion threshold; it always use pattern-based

rollout from MoHex 2.0 as it does not use neural network for value estimation.

The same RAVE in-tree selection formula (as in Eq. (3.1.6)) is used for all

programs.

We evaluate neural net models at epochs 20, 30, . . ., 100 with an interval of

10. Each neural net model is combined the same MCTS implementation and played

against MoHex-CNN. To facilitate evaluation, we set the same 1000 simulations

per move for these players, which generally consumes about 1 second per move for

each player. Following a practice in the literature [96], the matches are played by

iterating all openings with symmetric moves removed. Each round of match consists

of 170 games, where each player plays an opening twice (as Black and White). Due

to the fast speed of evaluation, we repeat 5 rounds for each match. No swap rule

was applied.

81



0 20 40 60 80 100

50

60

70

80

Epoch number

W
in
ra
te

a
g
a
in
st

M
o
H
ex
-C

N
N

(%
)

MoHex-2HNN

MoHex-3HNN

Figure 4.9: Results of MoHex-2HNN and MoHex-3HNN against MoHex-CNN. All
programs use the same 1000 simulations per move. MoHex-2HNN uses playout
result when there is no node expansion. After epochs 70 and 60, MoHex-3HNN
and MoHex-2HH’s performance decreased, possibly due to over-fitting of the neural
nets: Figures 4.7 and 4.8 show that around epoch 70, the value heads of 3HNN
generally achieve smaller value errors than epochs around 80 and 90. The error bar
represents the standard deviation of each evaluation.

Figure 4.9 shows that PV-MCTS-3HNN is better than PV-MCTS-2HNN in this

setting. Both PV-MCTS-3H and PV-MCTS-2H achieve winrates larger than 50%

against MoHex-CNN, presumably because MoHex-CNN only uses neural net as

prior knowledge during the in-tree phase. As in observation (1), given that more

neural net estimates are more accurate than random rollouts, PV-MCTS-3HNN is

better than PV-MCTS-2HNN because it always uses neural net value estimation

while PV-MCTS-2HNN has to use playout result for each leaf below the expansion

threshold.

We then compare PV-MCTS-2HNN to PV-MCTS-3HNN by letting the former

have an expansion threshold of 0. To have a fair comparison, we give all programs

the same search time of 10s per move. The results are summarized in Table 4.3.

As a reference, we also include the result from PV-MCTS-2HNN with the default

expansion threshold.

Consistent to Figure 4.9, the results in Table 4.3 show that MoHex-3HNN still

achieves the best performance, significantly outplaying MoHex-CNN. With the de-

fault expansion threshold, MoHex-3HNN takes 0.3ms to execute one simulation on

82



Table 4.3: Winrates of MoHex-2HNN and MoHex-3HNN against Mohex-CNN with
the same time per move. For best performance, MoHex-3HNN and MoHex-2HNN
respectively use the neural net models at epochs 70 and 60.

Player As Black As White Overall
Win

MoHex-3HNN 76.5% 70.6% 73.5%
MoHex-2HNN threshold 0 65.9% 57.6% 61.8%

MoHex-2HNN default threshold 69.4% 56.5% 62.9%

average. MoHex-2HNN with expansion threshold 0 takes 1.8ms per simulation,

about 6 times slower, which explains MoHex-3HNN’s better performance given the

same time per move.

In head-to-head match, under the same setting using 10s per move, MoHex-

3HNN’s won 64.1% against MoHex-2HNN-0 and 70.6% against MoHex-2HNN-10,

where MoHex-2HNN-x means MoHex-2HNN with an expansion threshold of x.

MoHex-3HNN won 82.4% against MoHex 2.0 when both programs are giving the

same 10s per move.

4.5 Transferring Knowledge Using 3HNN

As we can see in Figure 1.1, the similarities between Hex on different board sizes

raise the following questions:

• To what extent can learned neural net knowledge be reused on a smaller board?

• To what extent can such knowledge be generalized to a larger board?

It is known that convolution filters are translation invariant. We have seen in Chap-

ter 3.2 that this property can be harnessed by designing a policy network that con-

tains only such filters, thereby creating a policy network that is transferable. Similar

to action probabilities, the q head in 3HNN could also be fully transferable if the

final fully connected layer is removed. This architecture is shown in Figure 4.10.

The major difference between Figures 4.6 and 4.10 is that the fully-connected layers

are removed from the q-head: by doing so, we expect that the action-value vector

can generalize to board sizes not used in training. This neural net can be trained

as before with the loss function of Eq. (4.5).

To study the how transferable the architecture is, we use three datasets from

different board size:

83



(N + 2)× (N + 2)× 4

(3 × 3, 32)
Convolution

...
(1 × 1, 1)

Convolution

softmax

(1 × 1, 1)
Convolution

1 fully con-
nected unit

tanh

tanh

10 residual blocks

q

v

p

Figure 4.10: A given Hex state of board size 8 ≤ N ≤ 19 is padded with black
or white stones along each border, then fed into a feedforward neural net with
convolution filters. A fully-connected bottom layer compresses results to a single
scalar v.

• On 8×8 Hex, 62853 games among MoHex 2011, MoHex 2.0 and Wolve.

• On 9×9 Hex, as in Chapter 3.2.

• On 13×13 Hex, as in Chapter 3.1.

4.5.1 Setup

We train the network with learning rate 0.001 and a mini-batch size of 128 for 100

epochs. Model parameters are saved after each epoch. L2 regularization constant c

is set to 10−5; value loss weight w = 0.01. We conduct two sets of experiments:

• Train the neural net on 13×13 games and investigate transferability to smaller

boards.

• Train the neural net on 9×9 games and investigate transferability to larger

boards.

In either board size, the dataset is split into 90% for training and the rest for test.

4.5.2 Prediction Accuracy In Different Board Sizes

We measure the prediction accuracy of the saved neural net models. Figure 4.11

shows the test prediction accuracy of p and q heads of the neural net models ob-

tained from learning on 13×13 games; for p head, the label is the move played in

the game dataset; for q head, the label for qa is the game result after playing the

84



0 20 40 60 80 100

0.5

0.55

0.6

0.65

Epoch number

A
cc
u
ra
cy

Accuracy on 13×13

Accuracy on 9×9

Accuracy on 8×8

0 20 40 60 80 100

0.4

0.6

0.8

1

Epoch number

M
S
E

MSE of q on 13×13
MSE of q on 9×9
MSE of q on 8×8

Figure 4.11: 13×13 training: prediction accuracy across boardsizes.

0 20 40 60 80 100

0.4

0.5

0.6

0.7

Epoch number

A
cc
u
ra
cy

Accuracy on 13×13

Accuracy on 9×9

Accuracy on 8×8

0 20 40 60 80 100

0.4

0.6

0.8

1

1.2

Epoch number

M
S
E

MSE of q on 13×13
MSE of q on 9×9
MSE of q on 8×8

Figure 4.12: 9×9 training: prediction accuracy across board sizes.

corresponding action a. As expected, neural net models optimized on 13×13 games

achieved high accuracy on smaller boards. Prediction accuracy on 8×8 and 9×9

are better than on 13×13, reflecting that smaller board sizes are easier to master.

Compared to Figures 4.8 and 4.7, this network’s q- and p-heads achieved slightly

larger errors. The benefit is that the new architecture to generalize its action-value

prediction to other board sizes.

It is more interesting to measure transferability from smaller boards to larger,

as on smaller boards it is easier produce high quality games. Figure 4.12 shows

prediction accuracy after training the net on 9×9 games. Surprisingly, both q and

p yield reasonable prediction accuracy even on 13×13 Hex. However, on 13×13

Hex, by comparison, prediction accuracy of Figure 4.12 is about 10% lower than in

Figure 4.11.

4.5.3 Usefulness When Combined with Search

How useful are our neural nets when used in search? We answer this question by

combining our nets with the MCTS of MoHex 2.0 as before. The v-head is board size

85



dependent, so we use it only when the running board size is the same as that used

in training; otherwise, only the q- and p-heads are used. In our implementation,

move prior and action-value are both stored at each node creation. We call this new

transferable neural net program MoHex3H.

We evaluate 10 neural net models at an epoch interval of 10. Each model is

combined with MoHex3H and played against MoHex 2.0. Table 4.4 shows the results

on boardsizes 9×9 to 13×13. We did not include 8×8 data, because positions on

this board are easily solved [89, 151]. For all programs, we allow 104 simulations

per move. Each tournament is played by iterating over all N×N opening moves.

As before, each opening is used twice, with each program playing as first-player and

second-player; and no swap rule.

Table 4.4: MoHex3H using 13×13-trained nets: win rate (%) versus MoHex 2.0 and
MoHex-CNN. Columns 2-11 show strength by epoch.

Board
Epoch

10 20 30 40 50 60 70 80 90 100

9×9 71.0 64.8 69.1 75.9 73.5 77.2 69.1 74.7 77.8 67.9
10×10 71.0 78.0 66.5 71.0 82.5 83.5 80.5 78.0 78.5 72.5
11×11 67.4 67.8 71.5 74.0 71.9 76.4 74.8 78.5 78.1 76.4
12×12 67.0 71.9 70.5 73.6 76.4 78.5 78.1 77.4 79.9 75.7
13×13 63.0 63.3 68.3 69.8 73.7 76.3 74.9 75.4 74.3 74.9
13×13 44.1 42.9 46.5 55.3 58.8 61.2 55.3 52.4 61.2 55.3

Table 4.4 shows results against MoHex 2.0 using net models learned from the

13×13 dataset. The high p- and q-head prediction accuracy shown in Figure 4.11

yields strong play on smaller board sizes. MoHex-CNN only plays on 13×13 Hex,

so we include the result against MoHex-CNN in the last row: MoHex3H defeats

MoHex-CNN with this transferable neural net, although the win rate is lower than

that of a three-head net with fully connected bottom layer (MoHex-3HNN achieved

win-rate over 70%; see Table 4.3).

Table 4.5 shows the results against MoHex 2.0 using the models learned from the

9×9 dataset. The resulting program defeats MoHex 2.0 even on boardsize 13×13,

Table 4.5: MoHex3H using 9×9-trained nets: win rate (%) versus MoHex 2.0.

Board
Epoch

10 20 30 40 50 60 70 80 90 100

9×9 63.6 69.1 63.0 65.4 65.4 72.2 74.7 72.8 71.6 72.8
10×10 63.5 70.0 71.5 68.0 67.0 75.5 76.0 76.0 76.5 77.5
11×11 62.8 58.3 64.0 66.1 69.0 66.1 67.8 64.0 66.1 65.7
12×12 51.0 45.8 56.2 53.5 45.8 60.1 54.9 49.3 58.7 58.0
13×13 35.3 39.4 47.1 47.6 46.5 42.9 42.4 42.9 52.9 54.1

86



Table 4.6: MoHex3H using 9×9-trained nets, with p-head only: win rate (%) versus
MoHex 2.0.

Epoch
Board

9×9 10×10 11×11 12×12 13×13

90 68.5 75.5 68.2 65.3 60.6
100 68.5 70.5 70.7 67.4 63.5

0 20 40 60 80 100

0.45

0.5

0.55

0.6

Epoch number

A
cc
u
ra
cy

Train accuracy with random init.

Train accuracy with warm init.

0 20 40 60 80 100
0.7

0.8

0.9

1

1.1

Epoch number

M
S
E

Train value error with random init.

Train value error with warm init.

Figure 4.13: 13×13 training errors, with and without warm initialization.

although its margin of victory there is less than on other boardsizes. MoHex 2.0’s

playout policy was trained mostly on 13×13 games [96]. A possible explanation

is that the low q-head prediction accuracy is insufficient to match the strength of

MoHex 2.0 playouts. To verify this, we ran extra tournaments with the q-head

in MoHex3H’s search disabled, forcing MoHex3H to use the same pattern-based

playouts as MoHex 2.0. By comparing the results in Tables 4.5 and 4.6, we can see

that, at epochs 90 and 100, the winrate against MoHex 2.0 dropped on boardsizes

9×9 and 10×10 but rose on boardsizes 11×11 and larger, suggesting that the p-head

consistently aided the search, while the q-head was insufficiently accurate to replace

pattern-based playouts on larger boardsizes.

In summary, we conclude that (1) without fine-tuning, transferring neural knowl-

edge to larger board sizes is harder than to smaller and (2) when transferring to

larger boar sizes, the learned p-head seems more robust than the q-head.

4.5.4 Effect of Fine-tuning

We further investigate fine-tuning 9×9-trained neural models on 13×13 data. Specif-

ically, we use the neural net model at epoch 100 in Figure 4.12 to initialize training

on the 13×13 dataset.

Figures 4.13 and 4.14 compare the learning curves on the same 13×13 dataset

87



0 20 40 60 80 100
0.45

0.5

0.55

0.6

0.65

Epoch number

A
cc
u
ra
cy

Test Accuracy with random init.

Test Accuracy with warm init.

0 20 40 60 80 100
0.7

0.8

0.9

1

Epoch number

M
S
E

Test error with random init.

Test error with warm init.

Figure 4.14: 13×13 test errors, with and without warm initialization.

Neural Network Model

Parallel PV-MCTS Workers

Game Buffer

Gating

Selfplay

Training

Existing Games

Initialization

(a) Closed-loop training for Olympiad

Neural Network Model

Parallel PV-MCTS Workers

Game Buffer

Selfplay

Training

(b) Zero-style closed-loop learning

Figure 4.15: Closed-loop learning schemes

with warm initialization and starting from random weights. Notice that learning

benefits from warm initialization: the neural net learns faster and achieves better

accuracy. This strength gain is amplified with search: when used with the MCTS

of the previous section, the resulting player quickly passes 70% wins against MoHex

2.0: at epoch 10, the win-rate is already 72.4%. By comparison, Table 4.4 shows

that with random weights initialization this took more than 40 epochs.

4.6 Closed Loop Training with 3HNN

We now present AlphaGo Master, AlphaGo Zero and AlphaZero style closed loop

training with 3HNN. These can be summarized as the flowcharts in Figure 4.15.

4.6.1 Training For 2018 Computer Olympiad

To prepare for the 2018 Hex tournament, we conducted a closed loop training on

13×13 and 11×11 Hex, following the scheme in Figure 4.15a.

88



Figure 4.16 shows the testing results of the saved neural net models tested on

games of Maciej Celuch, the best human player on the website little golem [124].

Due to limited computation power and our uncertainty about key parameter choices,

these results are noisy as the experiment was not conducted in a fully automatic

manner. Some intentional or accidental interruptions happened during the process

around one months of training. For example, we thought a 10 block ResNet with 32

3× 3 filters per layer would be large enough for training on 13×13, but we did not

see obvious playing strength increases from iteration 2 to 3; we then increased the

network to 64 filters and observed some improvement. Then, two iterations later,

because of the slower speed, we changed back to 32 filters for another 2 iterations.

These unsatisfying results eventually pushed us to use 128 filters per layer, and

then we saw significant improvement in MoHex-3HNN. Finally, we used a 128 filters

per layer 10-block three-head ResNet for participating in the 2018 Computer Hex

tournament. The other parameters we were uncertain about and had switched

between a few choices include:

• Whether to use RAVE.

• PUCT constant cpb.

• How many MCTS iterations to use for selfplay.

• How many epochs to train the neural network given recently generated selfplay

games.

AlphaGo Fan [180] used a PUCT constant of 5.0 and no RAVE. We initially

considered such a choice but did not observe better performance. We tried to tune

the PUCT constant, and eventually found that the default 2.47 with RAVE worked

best. This is consistent with later empirical analysis reported for ELF OpenGo [201].

We tried different numbers of MCTS iterations for selfplay game generation varying

from 1000 to 10000, and different epochs for training the neural networks on each set

of newly generated sample games (one epoch means a full sweep of the set of training

dataset). We had to trade-off between game quality and speed of learning because

the goal was to obtain strong player in time for the competition. On the 11×11

board, a similar approach was used on another contributed 1 GPU computer; the

starting neural network was the same as for 13×13. Therefore, in the first iteration,

1Thanks Mengliao Wang

89



0 1 2 3 4 5 6 7 8 9 10 11 12
0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

Iteration

A
cc
u
ra
cy

(M
S
E
)

On final positions
On all positions

0 1 2 3 4 5 6 7 8 9 10 11 12
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Iteration

M
ea
n
S
qu
ar
e
E
rr
or

(M
S
E
)

Q-head on final positions
V-head on final positions
Q-head on all positions
V-head on all positions

Figure 4.16: On 13×13 Hex, around 10 training iterations was finished before partic-
ipating 2018 Computer Olympiad Hex tournament, using 2 4-core GPU computers
with GTX 1080 and GTX 1080Ti. 3HNN was initialized using MoHex generated
data. The first three iteration used 32 filters per layer, 4–5 used 64 filters per layer,
6–7 used 32 filters per layer, 8–10 used 128 filters per layer. The curve shows MSE
or accuracy on all games played by Maciej Celuch from little golem. Celuch is pre-
sumably the strongest human Hex player [124]; we dumped 620 games played by
2018 December. Noticeably, he did not lose any of these games.

random playout rather than a value net was used for evaluating leaf nodes. In total,

for 13×13 Hex, a total number of 0.48 million selfplay games were produced before

participating the Computer Olympiad.

Our competitor DeepEzo [195] used a variant of minimax that adopts a policy

and value network, trained iteratively for 2.6 million of games [102, 195]. DeepEzo

achieved over 80% win-rate against MoHex 2.0 on 13×13 Hex. In the competition,

MoHex-3HNN defeated DeepEzo 7–0 on 13×13 and 5–0 on 11×11. See [67].

Finally, we present statistics in our selfplay games for the winning probability

for each opening on 13×13 and 11×11 Hex.

4.6.2 Zero-style Learning

To further verify the performance of 3HNN in zero-style training, considering that

automatically running the iterative procedure could be computationally intensive,

we conducted the Hex experiment on relatively small board size 9×9. Following the

flowchart of Figure 4.15b, we used these configurations:

• For MCTS, we turn off playout and knowledge computation. We leave the in-

tree selection formula with RAVE unchanged. To be consistent with AlphaGo

Zero and AlphaZero, we add Dirichlet noise to prior probability provided by

neural net: p(s, a) = (1 − ε)p(s, a) + εDirichlet(α) where ε = 0.25, α = 0.03.

90



Figure 4.17: Averaged win value for each opening cell on 13×13 and 11×11 Hex.
The numbers are consistent to some common belief in Hex; for example, every cell
more than two-row away from the border is likely to be a Black win.

91



The default expansion threshold of 10 is used.

• For each selfplay game, at each state, we conduct a nmcts = 800 iteration

MCTS. For the first ndither moves in a game, after search terminates, randomly

sample move a ∝ N(s,a)1/τ∑
bN(s,b)1/τ

. We set ndither to 10 due to short move sequence

in 9×9 Hex.

• For neural net, we use the 10-block three-head ResNet as in Figure 4.6.

• We use 60 selfplay workers; each produces 200 games per iteration.

• We use synchronous training. At each iteration, the training worker collects

all games from all selfplay workers, and then re-optimizes the neural net with

stochastic gradient descent with momentum 0.9. The initial learning rate is

0.005, decayed by factor 0.95 each iteration. Training is with a mini-batch size

of 128, using the following loss function:

L(fθ;D) =
∑

(s,a,zs)∈D

((
(zs − v(s))2 + (zs + q(s, a))2︸ ︷︷ ︸

R1

+
max(−zs, 0)

|A(s)|
∑

a′∈A(s)

(zs + q(s, a′))2

︸ ︷︷ ︸
R2

+ (min
a′

q(s, a′) + v(s))2
)

︸ ︷︷ ︸
R3

−πT (s) logp(s) + c||θ||2
)

Here, D contains the set of 200 games generated at each iteration; for each D,

we optimize the neural net for 5 epochs, i.e., sweeping D for 5 times. R1, R2

and R3 are the three newly added loss terms for the loss used in AlphaZero.

On 9×9 Hex for MoHex 2.0, around 10 seconds per move generates strong play-

ing, but there is no guarantee that these data used for testing is error-free. To

further see the result, we randomly produce a set of game states and using solver to

perfectly label these positions; we obtained 8485 examples. See Figure 4.18 for the

comparison in detail. From Figure 4.18 we see that AlphaZero-3HNN learned faster

than AlphaZero-2HNN. The high fluctuations of the curve from AlphaZero-2HNN

is due to its slow learning. We do not use selfplay Elo to measure learning progress

primarily because of the inflation phenomenon [201].

The major reason for the slow learning of AlphaZero-2HNN in Figure 4.18 is

that setting nmcts = 800 makes the generation of a training game time-consuming.

92



0 10 20 30 40 50 60 70 80 90 100
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Time (h)

M
ea
n
S
qu
ar
e
E
rr
or

(M
S
E
)

Zero-style training on 9×9 Hex, test on 10s-MoHex2.0 generated game dataset

3HNN: action-value head
2HNN: state-value head
3HNN: state-value head

0 10 20 30 40 50 60 70 80 90 100
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Time(h)

P
re
d
ic
ti
on

A
cc
u
ra
cy

Zero-style training on 9×9 Hex, test on 10s-MoHex2.0 generated game dataset

3HNN: policy head
2HNN: policy head

0 10 20 30 40 50 60 70 80 90 100
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Time (h)

M
ea
n
S
qu
ar
e
E
rr
or

(M
S
E
)

Zero-style training on 9×9 Hex, test on perfect examples

3HNN: action-value head
3HNN: state-value head
2HNN: state-value head

Figure 4.18: On 9×9 Hex zero-style training with MoHex3HNN and MoHex2HNN.
Test the neural network model on MoHex2.0 selfplay games or randomly generated
perfectly labeled game states. Red curve is result obtained under the same config-
uration except that a 2HNN is used. The above two plots were tested on a test set
of 149362 examples, while the last one was from a smaller set of 8485 examples.

We therefore conducted another experiment by reducing nmcts = 160 and run

AlphaZero-2HNN and AlphaZero-3HNN. To further encourage exploration, we changed

the Dirichlet noise parameter α to 0.15, ndither = 30, and in-tree formula to PUCT

with cpuct = 1.5. Figure 4.19 contains the comparison: AlphaZero3HNN did not

achieve better prediction accuracy on the test data. To see if the learned 3HNN is

really weaker than 2HNN, we conduct a head-to-head match between the networks

generated at each iteration. Figure 4.20 contains the match results, which indi-

cate that MCTS-3HNN is mostly stronger than MCTS-2HNN. Same as for training,

in our test, we turn off the knowledge computation for MCTS-2HNN and MCTS-

3HNN.

We suspect that one reason that 3HNN failed to achieve smaller state-value

prediction error is due to the R2 term in the loss function. By injecting R2, we

93



0 10 20 30 40 50 60 70
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Iteration

M
ea
n
S
qu
ar
e
E
rr
or

(M
S
E
)

Zero-style training on 9×9 Hex, test on near-perfect play generated game dataset

3HNN: action-value head
3HNN: state-value head
2HNN: state-value head

0 10 20 30 40 50 60 70
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Iteration

P
re
d
ic
ti
on

A
cc
u
ra
cy

Zero-style training on 9×9 Hex, test on near-perfect play generated game dataset

3HNN: policy head
2HNN: policy head

0 10 20 30 40 50 60 70
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Iteration

M
ea
n
S
qu
ar
e
E
rr
or

(M
S
E
)

Zero-style training on 9×9 Hex, test on perfect examples

3HNN: action-value head
3HNN: state-value head
2HNN: state-value head

Figure 4.19: AlphaZero-2HNN versus AlphaZero-3HNN. 2HNN uses expansion
threshold 0, nmcts = 160; 3HNN uses expansion threshold 10, nmcts = 800; all
other parameters are the same.

assume the action made by MCTS player is the best action. However, this is not true

because of the dithered action selection mechanism (i.e., ndither = 30). To see the

effect of R2, we run another AlphaZero-3HNN by removing R2. Figure 4.21 shows

the result along with comparison to AlphaZero-2HNN: without R2, AlphaZero-

3HNN obtained neural network models with smaller state-value prediction errors on

both test sets.

Figure 4.22 shows the head-to-head match results between MCTS-3HNN and

MCTS-2HNN, where the 3HNN models were obtained without using R2 in training.

MCTS-3HNN defeated MCTS-2HNN as learning goes on. This is consistent to the

learning curves in Figure 4.21.

In addition, we test our final iteration models of 3HNN and 2HNN by playing

against MoHex 2.0. The same as in [9], we let MCTS-2HNN and MCTS-3NN use

nmcts = 800, and MoHex 2.0 use nmcts = 10000. MCTS-3HNN and MCTS-2HNN

respectively achieved mean win-rates 91.57 ± 1.8 and 89.7 ± 3.317 (both with 95%

94



10 20 30 40 50 60 70 80
40

42

44

46

48

50

52

54

56

58

60

62

64

66

68

70

Iteration

W
in

(%
)

MCTS-3HNN-1s-e10 vs MCTS-2HNN-1s-e0
MCTS-3HNN-160 vs MCTS-2HNN-160

50%

Figure 4.20: MCTS-3HNN against MCTS-2HNN. Each match consists of 162 games
by letting each player starting from each opening cell once as Black and White.
MCTS-3HNN-160 means it uses 3HNN for 160 iteration MCTS with expansion
threshold of 0. MCTS-2HNN-160 means it uses 2HNN for 160 iteration MCTS and
expansion threshold of 0. MCTS-3HNN-1s-e10 means the player uses 1s per move
with expansion threshold of 0. MCTS-2HNN-1s-e0 means it uses 1s per move with
expansion threshold of 0.

confidence); see Table 4.7. In comparison, the Zero implementation PGS-EXIT in [9]

achieved a win-rate of 58% against MoHex2.0-10000 for 800-simulation search. This

indicates the high quality of our AlphaZero implementation for both 3HNN and

2HNN.

Table 4.7: Detailed match results against MoHex 2.0. Each set of games were
played by iterating all opening moves; each opening is tried twice with the competi-
tor starts first and second, therefore each match consists of 162 games. We use the
final iteration-80 models for 2HNN and 3HNN from Figure 4.21. The overall results
are calculated with 95% confidence. MCTS-2HNN and MCTS-3HNN used 800 sim-
ulations per move with expand threshold of 0. MoHex 2.0 used default setting with
10,000 simulations per move.

Player
Set

1 2 3 Overall

MCTS-2HNN-800 86.4% 92.0% 90.7% 89.7%± 3.32
MCTS-3HNN-800 93.2% 91.4% 90.1% 91.57± 1.77

The results in this section were obtained on a server with 56 Intel(R) Xeon(R)

CPUs (E5-2690 v4 2.60GHz), 500GB RAM, with 6 Tesla P100 GPU each with 16

GB RAM 2.

2Thanks Huawei Canada for providing the computation resource

95



0 10 20 30 40 50 60 70 80
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Iteration

M
ea
n
S
qu
ar
e
E
rr
or

(M
S
E
)

Zero-style training on 9×9 Hex, test on near-perfect play generated game dataset

3HNN: action-value head
3HNN: state-value head
2HNN: state-value head

0 10 20 30 40 50 60 70 80
0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

Iteration

P
re
d
ic
ti
on

A
cc
u
ra
cy

Zero-style training on 9×9 Hex, test on near-perfect play generated game dataset

3HNN: policy head
2HNN: policy head

0 10 20 30 40 50 60 70 80
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Iteration

M
ea
n
S
qu
ar
e
E
rr
or

(M
S
E
)

Zero-style training on 9×9 Hex, test on perfect examples

3HNN: action-value head
3HNN: state-value head
2HNN: state-value head

Figure 4.21: AlphaZero-2HNN versus AlphaZero-3HNN. 2HNN used expansion
threshold 0, nmcts = 160; 3HNN used expansion threshold 10, nmcts = 800; all
other parameters same.

4.7 Discussion

In this chapter, we provided a thorough review of recent advances in the game of

Go. We developed a new three-head network and applied it to the game of Hex,

and obtained significant playing strength improvement over the previous state-of-

the-art. In the 2018 Computer Hex tournament, our player convincingly defeated

a strong competitor which uses a two-head deep neural networks for move selection

and game state evaluation. We further investigated the merit of the three-head

network in zero-style learning, and showed that it can lead to stronger 9×9 Hex

player. There have been other research explorations on improving the efficiency

of AlphaZero learning, e.g., using multiple small and large networks in the tree

search [115]. Combining these improvements with three-head network might lead

to further improvement.

96



5 10 15 20 25 30 35 40 45 50 55 60 65 70
30

35

40

45

50

55

60

65

70

Iteration

W
in

(%
)

MCTS-3HNN-160 vs MCTS-2HNN-160
50%

Figure 4.22: MCTS-3HNN against MCTS-2HNN. Each match consists of 162 games
by letting each player starting from each opening cell once as Black and White.

97



Chapter 5

Solving Hex with Deep Neural
Networks

In this chapter we focus on solving Hex with the help of deep neural networks.

5.1 Focused Proof Number Search for Solving Hex

As discussed in Chapter 2.4.5, all 8×8 Hex openings were first solved by Henderson

et al . [89] after extending the inferior cell analysis of Hex positions [82], adding a

better implementation of H-search, and using DFS for exhaustive search. Focused

Depth First Proof Number Search (FDFPN) [87] performed better than DFS with

backtracking and straightforward DFPN. We can view FDFPN as a combination of

best-first (BF) and backtracking (BT) search strategies (see BF-BT combinations

in [153]). At each node, by setting a search window that is smaller than the branch-

ing factor, FDFPN behaves locally like normal BF, while globally it looks like DFS

with BT. DFS with BT works well when there is an accurate move ordering, but

fails disastrously if the move ranking is poor, while BF ranks the potential of each

frontier node based all nodes explored so far, so the combination of BF and BT

enables the search to harness the strength of a good move ordering function while

preserving its basic best-first principle.

With proof number search (PNS), reducing the width to a small fixed value

may not be helpful, because PNS exploits the non-uniform branching factor for

selecting a most promising node to expand. When expanding a node, FDFPN uses

the following formula to select a subset of child nodes to the search:

child limit = base + dfactor × |live children|e (5.1)

Here, base ≥ 1, and the widening factor 0 < factor < 1; live children is a set that

98



A

B C D E F G

A

D E F G C B

⇓

A

D F G C B

⇓

Figure 5.1: Focused Best-first Search uses two external parameters: a function fR
for ranking moves, and a way for deciding window size. Here, assume fR(D) >
fR(E) > fR(F ) > fR(G) > fR(C) > fR(B), and the window size is simply set to a
fixed number of 4. E is found to be winning, then E is removed, and the next best
node is added to the search window.

contains all child nodes that have not been solved. Once a node x in live children is

found to be winning (corresponding to a losing move from its parent), it is removed.

Then, FDFPN either maintains the same child limit or introduces a new child to

the search. If x is losing, it is clear that other child nodes can be ignored since its

parent node becomes solved as a win. Figure 5.1 shows the scheme behind FDFPN.

The strength of Equation (5.1) comes from the observation that assuming node

n has N child nodes, and k nodes are proved winning before a losing child is found,

then at most max(0, N − k− base− dfactor × (N − k)e) child nodes are ignored by

the BF search. However, the potential drawback is that when the move ordering

function is poor, i.e., when the losing child node x is given a rank kx and kx > lmax,

where lmax is the maximum index of the selected child nodes when expanding their

parent, then at least bkx−b−factor×N1−factor c + 1 nodes must be solved as winning before

including x to the search. To see why, assume that at least n nodes are solved

before including x to search: then n+ b+ factor × (N − n) ≥ kx, thus n is at least

bkx−b−factor×N1−factor c+ 1.

So, the effectiveness of FDFPN depends on two features: (1) the computation of

widening size and (2) the use of an external move ordering function for accurately

99



selecting promising moves. In [87], (1) was manually set to a fixed factor, and (2)

was achieved with the resistance-based heuristic evaluation [87] function in Hex.

For (1), it is uninformative to adopt a static widening factor for all expanding

nodes regardless their likelihood of being a win or a loss; for (2), the resistance-based

evaluation function, even with ICA and H-search [151], is often inaccurate, as noted

in [87].

Deep convolutional neural networks (CNNs) [114, 119] have been successfully

used in a variety of domains for providing reliable heuristic knowledge. Motivated

by their success in game-playing [180, 184], as we have seen in Chapter 4, we show

how to improve FDFPN using policy and value neural networks.

5.2 Focused Proof Number Search with Deep Neural
Networks

The move ordering function in FDFPN is only used to select a set of promising

moves in the search tree: The strict order of the selected moves does not matter

much since proof number search uses proof or disproof numbers to choose a most

proving node (MPN). Trained policy networks can provide reliable move selection

by mimicking expert play [125]; therefore, our first modification of FDFPN uses

such a policy network to replace resistance as the move ordering function.

The next question is how many promising moves should be selected. A widening

factor that is too large leads to decreased performance, while a factor that is too

small increases the likelihood of initially missing an existing winning move. Ideally,

the widening size should also be a function of value of the expanding state, which can

be estimated by a value network. Hence our second modification is this: whenever

expanding a state s, pick the widening size of s by the information provided by a

value net vθ(s). Specifically, for state s, suppose vθ(s) = −1 indicates a loss and +1

a win, the revised formula is as follows:

l(s) = base + df (s)× |live children|e (5.2)

where f (s) is defined as

f (s) =

{
min{factor , 1 + vθ(s)} if vθ(s) < 0

factor otherwise
. (5.3)

As in Eq. (5.1), factor is a parameter. This minor revision causes only one

difference: when vθ(s) is close to −1, the smaller noisy estimation value will be

100



used as the widening factor. So the smaller the estimation, the fewer child nodes

are selected. This may seem counter-intuitive, since if a state s has an optimal

value of −1, then eventually all its children must be solved to prove that s is losing.

However, a losing node corresponds to a winning move for its parent state. Proof

number search prefers nodes with small branching factor, therefore giving a losing

node a small widening size makes its parent favor this node, which is desirable. On

the other side, if a state is losing, all child nodes must be solved, and it is better to

solve them consecutively rather than letting the search jump around.

The algorithm for FDFPN with CNNs is sketched in Algorithm 4. In practice,

the TTStore function may have collision (resulting in failure for future TTLookup) ,

a collision resolution as in [149] is adopted. The revision lies on line 12 where policy

and value networks are called. Results are then used to set search window size and

select promising moves.

5.3 Results on 8×8 Hex

5.3.1 Preparation of Data

This 8×8 board size dataset was used in Chapter 4.5. Here, we describe how it is pro-

duced. We generated the expert games by playing tournaments between Olympiad

computer players in the Benzene project: Mohex 2.0 [96], MoHex 2011 [11] and

Wolve [13]. To enrich this data, (1) we conducted tournaments with randomly se-

lected time settings each move (5s to 10s); (2) we iterated all one or two stone

openings; and (3) neither player used solver during play. We collected 62853 games

in total. Each game includes win/loss game result. No swap rule and no resign are

used. Extracting these games gives 6.5 × 105 distinct state-action (s, a) and state-

value (s, z) pairs. A position s can appear in two or more games but be associated

with different win/loss results: we thus use the average to label these states. Let A

be the set of games that s have been played, and r(s, g) is the playing result (either

+1 or −1) for game g: we label s by z =
∑
g∈A r(s,g)

|A| . The dataset is split into 90%,

10% training and test sets.

5.3.2 Policy and Value Neural Networks

We use separate policy and value networks in our experimentation. We use a policy

network with 5 hidden layers. After padding borders, the input has a size of 10 ×
10× 5. The first layer uses 48 3× 3 filters with stride of 1, and then applies ReLU.

101



Algorithm 4: Focused depth-first proof number search with external pol-
icy function pσ and value function vθ.

Input: A board position
Result: +1 or -1

1 Procedure FDFPN-CNN(root)
2 root.φ, root.δ ←∞,∞
3 MID(root)
4 if root.φ = 0 then return +1
5 else return −1

6 Function MID(s)
7 TTLookup(s)
8 if node is terminal then
9 Evaluate(s)

10 TTStore(s)
11 return

12 Compute child limit l(s) by vθ, pσ
13 while s.φ > δMin(s, l) and s.δ > φSum(s, l) do
14 child, δ2 ← SelectChild(s, l)
15 child.φ← s.δ − φSum(s, l) + child.φ
16 child.δ ← min{s.φ, δ2 + 1}
17 MID(child)
18 if child.φ = 0 then
19 Prune child
20 Select a new child if necessary

21 end

22 end
23 s.φ← δMin(s, l)
24 s.δ ← φSum(s, l)
25 TTStore(s)

26 Function SelectChild(s, l)
27 δbest ← δ2 ←∞
28 cbest ← nil
29 foreach c ∈ l(s) do
30 TTLookup(c)
31 if c.δ < δbest then
32 cbest ← c
33 δ2 ← δbest
34 δbest ← c.δ

35 end
36 else if c.δ < δ2 then
37 δ2 ← c.δ
38 end

39 end
40 return cbest, δ2
41 Function δMin(s, l)
42 minδ ←∞
43 foreach c ∈ l(s) do
44 TTLookup(c)
45 minδ = min{minδ, c.δ}
46 end
47 return minδ

48 Function φSum(s, l)
49 sumφ← 0
50 foreach c ∈ l(s) do
51 TTLookup(c)
52 sumφ = sumφ+ c.φ

53 end
54 return sumφ

102



0 1 2 3 4 5 6 7 8 9 10 11
50

55

60

65

70

75

80

85

90

95

100

k

A
cc
u
ra

cy
(%

)

Figure 5.2: Top-k prediction accuracy of the policy network on 8×8 Hex.

The second layer zero pads an image into 10 × 10 and convolves using 3 × 3 filters

with stride of 1, and then applies ReLU. Hidden layers 3 and 4 repeat the process

of layer 2 . Hidden layer 5 convolves with 1× 1 kernel size filters with 64 biases for

each cell. The final layer is a softmax function.

We train the policy network to maximize the log-likelihood of move a at state

s with ∆σ ∝ ∂ log pσ(a|s)
∂σ . Using Adam optimizer [104] with a mini-batch of size 64,

we train the network for 2× 105 steps. The top one prediction accuracy on the test

and training data are respectively 60.86% and 67%. Figure 5.2 contains the top-k

prediction results. It shows that the top-10 accuracy exceeds 95%.

The first 6 layers of our value network are exactly the same as the policy network.

After layer 6, we use one kernel size 1× 1 filters with stride 1. We then use a layer

with 48 fully-connected units. The final layer uses a tanh function to compress the

output to [−1,+1].

We train the value network to minimize the mean square error (MSE) between

the predicted value vθ(s) and label value z, i.e., ∆θ ∝ ∂vθ(s)
∂θ (z−vθ(s)). Using Adam

optimizer [104], with a mini-batch of 64, we train the value network for 1.6 × 105

steps. The obtained model achieves a MSE of 0.067 on the training set, and 0.083

on the test set.

5.3.3 Empirical Comparison of DFPN, FDFPN and FDFPN-CNN

As before, we built FDFPN-CNN upon the FDFPN [151] solver inside of Benzene.

We use the serial version, accessible from https://github.com/jakubpawlewicz/

benzene/tree/jvc2. After training, the network models are exported as static

graph models for solely forward-inference in C++. Two parallel calls were used for

103

https://github.com/jakubpawlewicz/benzene/tree/jvc2
https://github.com/jakubpawlewicz/benzene/tree/jvc2


neural network inference while doing knowledge computation.

As suggested in [87], base is set to 1 and widening factor is set to 0.2 for FDFPN.

We also prepared a DFPN that includes all child nodes to search at each node ex-

pansion. The DFPN is implemented on the same codebase by removing the focused

behavior of FDFPN in Benzene. To see the effect of adding the neural network

models in search, we use the same factor = 0.2, base = 1 for FDFPN-CNN.

We now compare the performance of DFPN, FDFPN and FDFPN-CNN on

solving 8×8 Hex openings.

Table 5.1: DFPN, FDFPN and FDFPN-CNN results for 8×8 Hex. The best results
are marked by boldface. Results were obtained on the same machine. Computation
time was rounded to seconds.

Opening DFPN FDFPN FDFPN-CNN
#node time #node time #node time

a1 47383 240 30462 71 12063 46
a2 264718 489 104581 161 61900 116
a3 370973 1350 212140 486 103940 275
a4 1418942 4482 570207 1167 217130 477
a5 3929824 11128 1797393 3377 1226009 2856
a6 525308 1177 272614 473 295163 474
a7 3230008 10067 2874465 5496 1058361 2615
a8 1408664 4024 844403 1799 572892 1300
b1 49607 265 30317 73 12490 43
b2 204342 421 123728 140 48074 82
b3 89920 405 39683 115 19077 82
b4 541376 2003 270571 565 186693 455
b5 463360 1974 193799 526 100489 368
b6 563084 1808 497961 931 223486 576
b7 19182 53 12146 25 6601 16
b8 54590 201 15106 47 12150 43
c1 46926 226 28775 58 10645 38
c2 128112 287 43899 74 118384 133
c3 125365 521 56597 154 25819 82
c4 56951 281 18687 54 11618 54
c5 54388 271 28816 85 17600 63
c6 41018 205 30637 88 10536 45
c7 93673 278 60134 114 42389 90
c8 40562 183 14157 40 20327 63
d1 44295 192 14858 35 10649 34
d2 51451 147 89900 140 16309 37
d3 62776 269 24926 75 12177 48
d4 20368 94 13265 43 8469 35
d5 13821 85 6914 22 4068 20
d6 63014 345 93313 256 13876 59
d7 63574 192 79214 137 40337 87
d8 44634 198 15472 37 14363 40

SUM 14132209 43861 8509140 16864 4534084 10752

104



Table 5.1 shows the results of DFPN, FDFPN and FDFPN-CNN for solving all

32 8×8 Hex openings. Both FDFPN and FDFPN-CNN solved every opening faster

than DFPN — the cumulative time of DFPN is respectively 2.6 and 4.1 times larger

than those of FDFPN and FDFPN-CNN. This indicates the focused search has been

beneficial.

FDFPN-CNN solved most opening positions faster than FDFPN. The largest

improvement was on opening a7 where FDFPN-CNN used computation time 2614s,

instead of 5496s for FDFPN. FDFPN-CNN solved all 32 openings with cumula-

tive time 64% that of FDFPN. The total number of node expansions of DFPN,

FDFPN and FDFPN-CNN are respectively 14132209, 8509140 and 4534084. There-

fore, FDFPN-CNN expanded 53% nodes of FDFPN for all 32 openings. FDFPN-

CNN did not perform better than FDFPN on every case: on openings a6, c2, c8,

FDFPN-CNN’s results are worse than those of FDFPN.

Effectiveness of the policy neural network

To further show the advantage of the policy net over the resistance evaluation, we

conducted an ablation comparison between FDFPN and FDFPN-pσ, a program that

replaces the move ordering function with the policy net model pσ. Using base = 1,

we varied the widening factors 0.1 to 1.0 at an interval of 0.1.

Figure 5.3 shows the results with varying factor values, where FDFPN-resistance

is the original FDFPN, FDFPN-pσ uses the policy net. Both programs achieved best

performance with widening factor of 0.2; however, FDFPN-pσ used less time than

FDFPN. This is true for all widening factors below 0.5. FDFPN-pσ becomes slight

worse than FDFPN when the widening factor is larger than 0.7. Perhaps that the

policy net was not trained to rank all moves but to predict the strong moves played

by expert players. Overall, FDFPN-pσ is 17.3% faster than FDFPN with the best

factor of 0.2. In terms of node expansion, it is 14.3% less than FDFPN.

The results in Figure 5.3 confirm that with small widening factors, which are

desirable for focused search, the policy net is more reliable at selecting promising

moves than the resistance evaluation function. Although FDFPN-CNN enabled

faster solving, an exponential reduction in search space was not observed. This is

because the neural network knowledge, unlike these from inferior cells, are essentially

heuristic. That is, they can provide more accurate guidance to the search, but do

not lead any exponential pruning in the state-space.

105



 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

ti
m

e
widening factor

FDFPN-resistance
FDFPN-pσ

Figure 5.3: A comparison between the performance of FDPFN using resistance and
policy network pσ with varying factor .

5.3.4 Using Three-Head ResNet

Although the value network helped solving 8×8 Hex openings faster, research progress

in Go [180, 184] showed that a single-head value net can exhibit overfitting while by

forcing policy and value share one ResNet achieved better results. We conjecture

that similar overfitting could happen in Hex when using a single-head value network,

and using a three-head architecture may alleviate the problem. To verify this, we

prepared a set of randomly generated 8×8 positions, and then use our solver to label

the true value of these examples. We generated 58590 such positions in total. See

Figure 5.4 for the training results. With the single-head value network, the training

value error was quickly reduced to almost 0, so did the test error on examples split

from the same game dataset for training, but test result on the randomly generated

perfect examples implies that such value net has poor generalization. With three-

head network of the same size, the generalization error was reduced. In the latter

case, to improve generalization, a simple and effective approach is enlarging the net-

work size — as shown in Figure 5.4 (right) after doubling the layers in three-head

net, test error on randomly generated examples decreased.

So far there are no satisfying theoretical results on how deep neural networks

generalize. It has been shown that deep network can fit randomly generated data

just as well as natural images [220]. These deep models also have great memoriza-

tion capacity [14]. Empirical evidence [98] suggests that using one deep network

with auxiliary learning tasks often achieve good results. The three-head ResNet

adds two auxiliary tasks (policy and action-value) for the state-value learning. Fig-

ures 5.4 shows that the auxiliary tasks indeed helped the neural net to achieve better

generalization.

106



0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Epoch Number

M
ea

n
S

qu
ar

e
E

rr
or

(M
S

E
)

Using single-head value network, 6 layers, 48 filters per layer

Train
Test on examples split from game dataset

Test on randomly generated perfect examples

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Epoch Number

M
ea

n
S

qu
ar

e
E

rr
or

(M
S

E
)

Using three-head network, 6 or 12 layers, 48 filters per layer

Train
Test on examples split from game dataset

Test on randomly generated perfect examples
Test on randomly generated perfect examples (12)

Test on examples split from game dataset (12)
Train (12)

Figure 5.4: Results of value training from single versus three-head architectures. At
each epoch, neural net model is saved and evaluated on each dataset. In the right
figure, the cyan line is produced by doubling the neural network size to 12 layers.
One epoch is a full sweep of the training data.

5.4 Solving by Strategy Decomposition

We saw in Chapter 2.1 that a fundamental difficulty in solving Hex is that strategy

representation in a state-space graph can be overwhelmingly large, while decomposition-

based representation can reduce the solution size. To further see this in Hex, consider

the following example in Figure 5.5. Assume that we do not use H-search, and our

goal is to find the solution for this Hex position. Further assume that we can access

an oracle, who always provides a winning move for Black player if there is one. To

solve this position by state-space search, we can expand the tree as follows:

• 1-ply: Enumerate all White moves.

• 2-ply: For each White move, use the oracle to obtain a Black winning move.

• 3-ply: For each frontier, enumerate all White moves.

• 4-ply: For each frontier node, use the oracle to obtain a Black winning move.

• 5-ply: For each frontier node, enumerate all White moves.

• 6-ply: For each frontier node, use the oracle to obtain a Black winning move.

• 7-ply: For each frontier node, enumerate all White moves.

• 8-ply: For each frontier node, use the oracle to find a Black winning chain.

107



Figure 5.5: A Hex position; White is to play. The optimal value of this position is
a Black win. Given an oracle machine, which can always predict the winning move
for Black, searching for the solution represented by a solution-tree in the state-space
graph requires to examine 44 · 1 · 42 · 1 · 40 · 1 · 38 · 1 u 2.8 million nodes

Since Black can surely make a winning-chain using 4 Black stones, the above process

takes about 2.8 million steps (44 · 1 · 42 · 1 · 40 · 1 · 38 · 1). So, in this way, even we

have an error-free guessing, solving Hex positions as in Figure 5.5 quickly becomes

intractable as the number of empty cells increases.

We saw in Chapter 4 that with algorithms similar to AlphaZero, formidable

playing strength can be obtained. However, these players remain heuristic: there

is no theoretical guarantee that their move prediction will converge to provably

optimal play. By contrast, if we believe that an AlphaZero player has converged to

optimal play, verifying in the state-space that it can indeed lead to a solution-graph

could still take unbearably long time. This observation calls for state compression

techniques.

Instead of representing the solution-object in state-space graph, Figure 5.6 shows

how to decompose the solution to Figure 5.5 into a conjunction of 9 subproblems.

The idea is to aggregate White moves and Black responses into 9 different categories.

This means now what we are interested in is not a move predictor but a family of set

function predictors. The argument for each function fi is a set of White moves Si.

The output of fi is a single Black move. The requirement is that all the arguments of

these mappings in union shall be the set of all legal White moves. Denote any family

of mappings satisfying this property a decomposition. A decomposition prediction

108



Figure 5.6: Decomposition-based solution to the Hex position in Figure 5.5. Solution
to the original problem can be represented by a conjunction of 9 subproblems; each
of them can be decomposed further using a similar scheme. Since it is known that
Black can win using 4 black stones, the solution-graph found by such decomposition
contains at most 94 = 6561 nodes.

can be emulated by a move predictor. This idea is described in Algorithm 5, where α

is a given move predictor — for example, suppose it has been obtained by running

AlphaZero on the game of Hex. Its utility in Algorithm 5 is that, for any given

position s and player to-play P , it returns a best move for P (or it gives a vector of

scores for each move thus the best move can be selected). The idea is that for each

P move, we use α to obtain the best P̄ response. Then, we aggregate those P moves

that share the same P̄ response into a single group whose key is the corresponding

P̄ move. Now the problem boils down to finding a set of P̄ keys whose groups in

union shall cover all P moves in s.

We now describe a solving algorithm for searching a feasible decomposition-

based solution-graph. The procedure is depicted in Algorithm 6. After predicting

a decomposition, the do function is used to carry out the decomposition. That is,

it tries to play a set of P moves T and response P̄ move k; the requirement is that

playing a set T of P moves must not overturn the game to a P win — again, this

can be checked by referring to move predictor α. In the worst case, each T would

contain a single P move, such that the solution-graph found by decomposition would

109



Algorithm 5: Decomposition prediction by move predictor α

1 Function Predict-Decomposition(s, P , α):
// s: game position; P: player to play; α: move predictor

/* For each move, record the best response. */

2 Let A be the set of moves available at s for P
3 d← {} /* a dictionary */

4 for a ∈ A do
5 s′ ← play(s, a,P) /* play a at s */

6 x← α(s′, P̄ ) /* P̄ means opponent of P */

7 d[x]← d[x] ∪ {a}
8 end

/* Each value in d is a subset of P moves. */

9 U ← A
10 F ← {} /* a dictionary */

11 A′ ← sorted(d .keys())
12 for a ∈ A′ do
13 U ← U\d[a]
14 F [a]← d[a]
15 if U = ∅ then break

16 end
17 return F

18 End of Function

be exactly the same size as conventional state-space search. However, as Figure 5.6

indicates, in Hex, the size of space reduction can be huge as in many cases letting

the losing player to play multiple moves simultaneously does not alter the game

result. Formally, suppose in state-space, there is a solution-graph with size Ω(bd/2),

using decomposition-based representation, it is guaranteed that a solution-graph of

size Ω(cd/2) (c ≤ b) exits. In Hex, c can be much smaller than b, as in Figure 5.6.

In the literature, there have been similar work trying to establish proof for different

games using strategy space search, e.g., [199, 213, 216]. The distinctive feature of

our algorithm outlined here is that it does not rely on human expert knowledge, but

uses a move predictor as a guide.

The unspecified utility functions in Algorithm 6 are explained as follows: winner(s,

player) checks if s is a terminal position and returns its winner given player to

play; play(s, x, player) plays cell x (or set of cells if x is a set) with color of

player at position s; value(s′′, P, α) uses α to query the estimated position value s′′

with P to play. We do not empirically evaluate the merit of Algorithm 6 but give

a proof on its correctness. We assume the Hex position to solve is noted as s; the

110



Algorithm 6: Automatic search for a decomposition-based solution

Input : s: Hex position to solve; P : player to play for s; α a move predictor
Result: If true, s is a P̄ win, otherwise unknown

1 Function SolveByDecompose(s, P , α):
2 if winner(s, P )! = Unknown then

// For successful decomposition, winner must be P̄
3 return winner(s, P ) = P̄

4 end
5 F ← Predict-Decomposition(s, P, α)
6 r ← true
7 for f ∈ F do
8 k, V ← key(f), values(f)
9 T ← do(s, k, P̄ , V, P ) /* carryout one-step decomposition */

10 for s′ ∈ T do
11 r ← r ∧ SolveByDecompose(s′, P, α)
12 end
13 if r = false then return false

14 end
15 return true

16 End of Function
17 Function do(s, k, P̄ , V , P , α):
18 T ← ∅
19 s′ ← play(s, k, P̄ )
20 X ← ∅
21 for v ∈ V do
22 s′′ ← play(s′, v, P )
23 if value(s′′, P, α) = P̄ then
24 X ← X ∪ {v}
25 end
26 else
27 t← play(s′, X, P )
28 T ← T ∪ {t}
29 X ← ∅
30 end

31 end
32 t← play(s′, X, P )
33 T ← T ∪ {t}
34 return T

35 End of Function

111



player to play is P , and there is a winning strategy for P̄ : the opponent of P .

Definition 1. Given a Hex position s, suppose the set of empty cells is noted as

M(s), a decomposition branch f is defined as a set function: 2M(s) →M(s).

Definition 2. For s, a decomposition is thus a collection mappings f1, f2, . . . , fn,

where ∪ni argument(fi) = M(s). That is, a decomposition is a feasible solution to

a set-covering problem where the union set is M(s), and the argument of each fi

represents a subset. A decomposition splits the second-player winning strategy into

a set of Hex positions where each position is reached by referring to f : fill the cells

of argument(fi) with P stones and output(fi) using P̄ stones.

Observation 2. If SolveByDecompose in Algorithm 6 returns true, the solution-

graph that it identifies sufficiently represents a second playing winning strategy for

Hex position s.

Proof. The only condition that SolveByDecompose in Algorithm 6 can return true is

that every node by a decomposition branch is true, i.e., the solution-graph is a pure

AND graph. Since we assume the terminal checking function winner(s, player) is

correct, it follows that all nodes in the solution graph should be correctly true, and

thus the root node is correctly true. Since we have guaranteed in Algorithm 5 that

a decomposition has covered all P moves in the given Hex position, the identified

solution-graph must be a feasible solution to the root node.

Algorithm 5 is critical to the success for Algorithm 6. While for Algorithm 5, α

is critical. If α is an oracle, Algorithm 5 always identifies a correct decomposition.

In practice, α can be approximated by training a player before solving by decom-

position, for example, by AlphaZero. It is worth noting that the for loop in line 4

of Algorithm 5 is parallel. In practice, this property can be used for faster compu-

tation of a decomposition. As the developments of super strong players with deep

neural networks scale well with board sizes (given sufficient computation resource),

searching for a decomposition represented solution using strong player as guidance

might be a promising direction for solving large board size Hex positions.

112



Chapter 6

Conclusions and Future Work

This thesis gives a number of contributions to the computational and algorithmic

approaches to Hex. New search and learning algorithms which uses the advancement

in deep neural networks have been developed and applied to the game. State-of-

the-art solving and playing programs have been created due to these algorithmic

innovations.

Many challenges remain. This research sheds light on some important future

working directions on the game of Hex. The transformation brought by AlphaGo

and its successors has led some AI researchers to opine that future research in two-

player alternate-turn zero-sum perfect-information games is inconsequential [39].

However, AlphaGo [180], AlphaGo Zero [184] and AlphaZero [182] are essentially

heuristic algorithms without theoretical guarantee on success. They contain a num-

ber of important hyperparameters and how they affect the overall performance is

only meagerly understood. Public re-implementations such as Leela Zero [148] and

OpenELF Go [201] are towards the investigation of this phenomenon.

One fundamental difference that distinguishes Hex from other classic board

games is its conspicuous mathematical structure [80], which has enabled much re-

search on Hex to be presented in an exact rather than heuristic manner. Some

examples are the proof that there is no draw [137], the identification of dead, dom-

inated and inferior cells [81, 87], and the computation of connection strategies [7].

The accumulation of these mathematical knowledge, combined with sophisticated

search, has allowed computer programs to solve Hex openings on board sizes up to

10×10, whose state spaces are already far beyond the limit of any simple brutal-force

search. For example, the number of states for 9×9 and 10×10 Hex are respectively

1037 and 1046. See Table 2.1.

113



Table 6.1: Status of solved Hex board sizes. For 10×10, only 2 openings are solved.
For other smaller board sizes, all openings have been solved.

Board size status year method computation time

6×6 solved, all 2000 DFS [204] seconds
7×7 solved, all 2003 DFS [82] minutes
8×8 solved, all 2008 DFS [89] hours
9×9 solved, all 2013 parallel FDFPN [149] months

10×10 solved, 2 2013 parallel FDFPN [149] months

However, mathematical knowledge accumulation becomes more difficult as it re-

quires to invoke more complicated reasoning. On the other side, algorithms that

learn with deep neural networks have shown great capacity of acquiring heuristic

knowledge from data. These two kinds of knowledge are different and arguably

complementary: given the seemingly intractable problem, the mathematical knowl-

edge states what we can at least identify, while the later represents what we can

be guessed at most after seeing a number of noised observations. Both have their

merit and limitation. For example, the continual identification of inferior cells [28,

82, 87, 89] and the development of H-search [7, 88, 151] since the 2000s have led

to feasible computer solutions for board sizes from 6×6 to 10×10. See Table 6.1

for a summarization. However, it is unlikely that 11×11 Hex can be solved if no

overwhelmingly larger amount of pruning due to inferior cells analysis or H-search is

introduced, i.e., although the pruning they brought is often exponential, the state-

space complexity grows at a faster rate 1. Although can be quite accurate in practice,

the predictions from well-trained deep neural networks do not enable any instant

pruning except for leading to a preferential search. Yet, guessing guided look-ahead

search in a state-space graph faces another challenge: the solution graph itself could

be intractably large which implies that even an error-free guessing technique is em-

ployed, verification could still be infeasible. This observation highlights the use of

state-abstraction method in informed guess-based forward search. In Hex, strategy

decomposition is such a method. Given that advancement in machine learning has

enabled more accurate heuristic guidance, together with existing exact knowledge

computation techniques, we conjecture that a promising future direction for solving

Hex is to search decomposition-based solutions. This is arguably how humans solve

1For a state-space of bd, the effect of these pruning is a constant reduction of b and d, but as
board size increases, both b and d increase

114



Hex positions [214].

In summary, Hex is a game that has interested mathematicians and computer

scientists since its invention; its graph-theoretical, combinatorial, game theoretic,

and artificial intelligence aspects are perpetual incentives to attract future research.

Despite grand successes, deep learning techniques have been questioned by the lack

of reasoning [50]; as a domain where reasoning is ubiquitous and of utmost impor-

tance, Hex could be a valuable domain for pushing machine learning research to

incorporate reasoning techniques.

115



References

[1] Selim G Akl and Monroe M Newborn. “The principal continuation and the
killer heuristic.” In: Proceedings of the 1977 annual conference. ACM. 1977,
pp. 466–473. 25

[2] L Victor Allis, Maarten van der Meulen, and H Jaap Van Den Herik. “Proof-
number search.” In: Artificial Intelligence 66.1 (1994), pp. 91–124. 24, 138, 141

[3] L. Victor Allis, H. Jaap van den Herik, and M. P. H. Huntjens. “GoMoku
Solved by New Search Techniques.” In: Computational Intelligence 12 (1996),
pp. 7–23. 5

[4] LV Allis. “Searching for solutions in games and artificial intelligence.” PhD
thesis. Universiteit Maastricht, 1994. 3, 26, 139

[5] Vadim V Anshelevich. “Hexy wins Hex tournament.” In: ICGA Journal 23.3
(2000), pp. 181–184. 37, 41

[6] Vadim V Anshelevich. “The game of Hex: An automatic theorem proving
approach to game programming.” In: AAAI/IAAI. 2000, pp. 189–194. 37, 41

[7] Vadim V Anshelevich. “A hierarchical approach to computer Hex.” In: Arti-
ficial Intelligence 134.1 (2002), pp. 101–120. 37, 38, 41, 113, 114

[8] Thomas Anthony, Zheng Tian, and David Barber. “Thinking Fast and Slow
with Deep Learning and Tree Search.” In: arXiv preprint arXiv:1705.08439
(2017). 73

[9] Thomas Anthony et al. “Policy gradient search: Online planning and expert
iteration without search trees.” In: arXiv preprint arXiv:1904.03646 (2019). 94, 95

[10] David L Applegate et al. The traveling salesman problem: a computational
study. Princeton university press, 2006. 5

[11] Broderick Arneson, Ryan B Hayward, and Philip Henderson. “Monte Carlo
tree search in Hex.” In: IEEE Transactions on Computational Intelligence
and AI in Games 2.4 (2010), pp. 251–258. 32, 41, 49, 52, 101

[12] Broderick Arneson, Ryan B Hayward, and Philip Henderson. “Solving Hex:
beyond humans.” In: International Conference on Computers and Games.
Springer. 2010, pp. 1–10. 36

[13] Broderick Arneson, Ryan Hayward, and Philip Henderson. “Wolve wins Hex
tournament.” In: ICGA Journal 32.1 (2008), pp. 49–53. 41, 49, 101

[14] Devansh Arpit et al. “A closer look at memorization in deep networks.”
In: Proceedings of the 34th International Conference on Machine Learning-
Volume 70. JMLR. org. 2017, pp. 233–242. 106

116



[15] Argimiro A Arratia-Quesada and Iain A Stewart. “Generalized Hex and logi-
cal characterizations of polynomial space.” In: Information processing letters
63.3 (1997), pp. 147–152. 35

[16] A Bagchi and A Mahanti. “Admissible heuristic search in AND/OR graphs.”
In: Theoretical Computer Science 24.2 (1983), pp. 207–219. 136

[17] Don F Beal. “A generalised quiescence search algorithm.” In: Artificial In-
telligence 43.1 (1990), pp. 85–98. 25

[18] Anatole Beck, Michael N Bleicher, and Donald Warren Crowe. Excursions
Into Mathematics: Millennium Edn. Universities Press, 2000. 36

[19] Michael Z Bell. “Why expert systems fail.” In: Journal of the Operational
Research Society 36.7 (1985), pp. 613–619. 6

[20] Richard Bellman. “A Markovian decision process.” In: Journal of Mathemat-
ics and Mechanics (1957), pp. 679–684. 21, 28

[21] Yoshua Bengio. “Learning deep architectures for AI.” In: Foundations and
trends in Machine Learning 2.1 (2009), pp. 1–127. 30

[22] Yoshua Bengio, Aaron Courville, and Pascal Vincent. “Representation learn-
ing: A review and new perspectives.” In: IEEE transactions on pattern anal-
ysis and machine intelligence 35.8 (2013), pp. 1798–1828. 30

[23] Claude Berge. “Some remarks about a Hex problem.” In: The Mathematical
Gardner. Springer, 1981, pp. 25–27. 35

[24] Elwyn R Berlekamp, John Horton Conway, and Richard K Guy. Winning
ways for your mathematical plays. Vol. 3. AK Peters Natick, 2003. 2, 36

[25] Dimitri P Bertsekas. Dynamic programming and optimal control. Vol. 1. 2.
Athena scientific Belmont, MA, 1995. 22

[26] Dimitri P Bertsekas. “Approximate policy iteration: A survey and some
new methods.” In: Journal of Control Theory and Applications 9.3 (2011),
pp. 310–335. 73

[27] Dimitri P. Bertsekas and John N. Tsitsiklis. Neuro-Dynamic Programming.
1st. Athena Scientific, 1996. isbn: 1886529108. 28, 31, 56, 58

[28] Yngvi Björnsson et al. “Dead cell analysis in Hex and the Shannon game.”
In: Graph Theory in Paris. Springer, 2006, pp. 45–59. 35, 114

[29] Blai Bonet and Héctor Geffner. “Planning as heuristic search.” In: Artificial
Intelligence 129.1-2 (2001), pp. 5–33. 5

[30] Édouard Bonnet, Florian Jamain, and Abdallah Saffidine. “On the complex-
ity of connection games.” In: Theoretical Computer Science 644 (2016). Re-
cent Advances in Computer Games, pp. 2–28. 3

[31] Léon Bottou. “Online Algorithms and Stochastic Approximations.” In: On-
line Learning and Neural Networks. Ed. by David Saad. revised, oct 2012.
Cambridge, UK: Cambridge University Press, 1998. url: http://leon.

bottou.org/papers/bottou-98x. 31

[32] Bruno Bouzy and Tristan Cazenave. “Computer Go: an AI oriented survey.”
In: Artificial Intelligence 132.1 (2001), pp. 39–103. 26

117

http://leon.bottou.org/papers/bottou-98x
http://leon.bottou.org/papers/bottou-98x


[33] Dennis M Breuker. “Memory versus search in games.” PhD thesis. 1998. 26

[34] Dennis Michel Breuker, Joseph Willem Hubertus Marie Uiterwijk, and Hen-
drik Jacob Herik. ”The PN2-search algorithm”. Universiteit Maastricht, De-
partment of Computer Science, 1999. 26

[35] Cameron Browne. Hex strategy - making the right connections. Jan. 2000.
isbn: 978-1-56881-117-8. 23, 33

[36] Cameron B Browne et al. “A survey of Monte Carlo tree search methods.”
In: IEEE Transactions on Computational Intelligence and AI in games 4.1
(2012), pp. 1–43. 32

[37] Arthur E Bryson. “A gradient method for optimizing multi-stage allocation
processes.” In: Proc. Harvard Univ. Symposium on digital computers and
their applications. Vol. 72. 1961. 30

[38] Garikai Campbell. “On optimal play in the game of Hex.” In: INTEGERS:
Electronic Journal of Combinatorial Number Theory 4.2 (2004), pp. 1–23. 34

[39] Murray Campbell. “Mastering board games.” In: Science 362.6419 (2018),
pp. 1118–1118. 113

[40] Murray Campbell, A Joseph Hoane, and Feng-hsiung Hsu. “Deep Blue.” In:
Artificial intelligence 134.1-2 (2002), pp. 57–83. 26, 40

[41] Edward C Capen, Robert V Clapp, William M Campbell, et al. “Competitive
bidding in high-risk situations.” In: Journal of petroleum technology 23.06
(1971), pp. 641–653. 61

[42] Chin-Liang Chang and James R. Slagle. “An admissible and optimal algo-
rithm for searching AND/OR graphs.” In: Artificial Intelligence 2.2 (1971),
pp. 117–128. 135, 138

[43] Guillaume MJ-B Chaslot, Mark HM Winands, and H Jaap van Den Herik.
“Parallel Monte-Carlo tree search.” In: International Conference on Comput-
ers and Games. Springer. 2008, pp. 60–71. 67

[44] Christopher Clark and Amos Storkey. “Training deep convolutional neural
networks to play Go.” In: International Conference on Machine Learning.
2015, pp. 1766–1774. 33, 44–46

[45] Anne Condon. “On Algorithms for Simple Stochastic Games.” In: Advances
in computational complexity theory. 1990, pp. 51–72. 28, 59

[46] Anne Condon. “The complexity of stochastic games.” In: Information and
Computation 96.2 (1992), pp. 203–224. 28, 29

[47] Rémi Coulom. “Efficient selectivity and backup operators in Monte-Carlo
tree search.” In: International Conference on Computers and Games. Springer.
2006, pp. 72–83. 32

[48] Rémi Coulom. “Computing Elo ratings of move patterns in the game of Go.”
In: Computer Games Workshop. 2007. 53

[49] Joseph C Culberson and Jonathan Schaeffer. “Searching with pattern databases.”
In: Conference of the Canadian Society for Computational Studies of Intelli-
gence. Springer. 1996, pp. 402–416. 5

118



[50] Adnan Darwiche. “Human-level Intelligence or Animal-like Abilities?” In:
Commun. ACM 61.10 (2018), pp. 56–67. issn: 0001-0782. 115

[51] Jia Deng et al. “Imagenet: A large-scale hierarchical image database.” In:
2009 IEEE conference on computer vision and pattern recognition. Ieee. 2009,
pp. 248–255. 30

[52] Christian Donninger. “Null move and deep search.” In: ICGA Journal 16.3
(1993), pp. 137–143. 25

[53] James E Doran and Donald Michie. “Experiments with the graph traverser
program.” In: Proceedings of the Royal Society of London. Series A. Mathe-
matical and Physical Sciences 294.1437 (1966), pp. 235–259. 4

[54] Stuart Dreyfus. “The numerical solution of variational problems.” In: Journal
of Mathematical Analysis and Applications 5.1 (1962), pp. 30–45. 30

[55] Stuart Dreyfus. “The computational solution of optimal control problems
with time lag.” In: IEEE Transactions on Automatic Control 18.4 (1973),
pp. 383–385. 30

[56] Arpad E Elo. The rating of chessplayers, past and present. Arco Pub., 1978. 42

[57] Markus Enzenberger and Martin Müller. “A lock-free multithreaded Monte-
Carlo tree search algorithm.” In: Advances in Computer Games. Springer.
2009, pp. 14–20. 67

[58] Markus Enzenberger et al. “Fuego—an open-source framework for board
games and Go engine based on Monte Carlo tree search.” In: IEEE Transac-
tions on Computational Intelligence and AI in Games 2.4 (2010), pp. 259–
270. 32, 33, 52, 81

[59] Jonathan St BT Evans and Keith E Stanovich. “Dual-process theories of
higher cognition: Advancing the debate.” In: Perspectives on psychological
science 8.3 (2013), pp. 223–241. 73

[60] Shimon Even and Robert Endre Tarjan. “A combinatorial problem which is
complete in polynomial space.” In: Journal of the ACM (JACM) 23.4 (1976),
pp. 710–719. 33, 35

[61] Kunihiko Fukushima. “Neural network model for a mechanism of pattern
recognition unaffected by shift in position-Neocognitron.” In: IEICE Techni-
cal Report, A 62.10 (1979), pp. 658–665. 30

[62] David Gale. “The game of Hex and the Brouwer fixed-point theorem.” In:
The American Mathematical Monthly 86.10 (1979), pp. 818–827. 2

[63] C. Gao, R. Hayward, and M. Müller. “Move Prediction using Deep Convo-
lutional Neural Networks in Hex.” In: IEEE Transactions on Games PP.99
(2017), pp. 1–1. 11, 44

[64] Chao Gao, Martin Mueller, and Ryan Hayward. “Adversarial policy gradient
for alternating Markov games.” In: International Conference on Learning
Representations. 2018. 11, 44, 73

[65] Chao Gao, Martin Müller, and Ryan Hayward. “Focused Depth-first Proof
Number Search using Convolutional Neural Networks for the Game of Hex.”
In: Proceedings of the Twenty-Sixth International Joint Conference on Arti-
ficial Intelligence, IJCAI-17. 2017, pp. 3668–3674. 11

119



[66] Chao Gao, Martin Müller, and Ryan Hayward. “Three-Head Neural Network
Architecture for Monte Carlo Tree Search.” In: IJCAI. 2018, pp. 3762–3768. 11, 66

[67] Chao Gao, Kei Takada, and Ryan Hayward. “Hex 2018: MoHex3HNN over
DeepEzo.” In: ICGA JOURNAL 41.1 (2019), pp. 39–42. 11, 66, 90

[68] Chao Gao et al. “An iterative pseudo-gap enumeration approach for the
Multidimensional Multiple-choice Knapsack Problem.” In: European Journal
of Operational Research 260.1 (2017), pp. 1–11. 11

[69] Chao Gao et al. “A transferable neural network for Hex.” In: ICGA Journal
40.3 (2018), pp. 224–233. 11, 66

[70] Chao Gao et al. “On Hard Exploration for Reinforcement Learning: a Case
Study in Pommerman.” In: The 15th AAAI Conference on Artificial Intelli-
gence and Interactive Digital EntertainmentT. 2019. 11

[71] Martin Gardner. “Mathematical Games: Concerning the game of Hex, which
may be played on the tiles of the bathroom floor.” In: Scientific American
197.1 (1957), pp. 145–150. 2

[72] Martin Gardner. “The Scientific American book of mathematical puzzles and
diversions.” In: (1959). 36

[73] Sylvain Gelly and David Silver. “Combining online and offline knowledge
in UCT.” In: Proceedings of the 24th international conference on Machine
learning. ACM. 2007, pp. 273–280. 32, 42

[74] Sylvain Gelly and David Silver. “Monte-Carlo tree search and rapid action
value estimation in computer Go.” In: Artificial Intelligence 175.11 (2011),
pp. 1856–1875. 32, 52

[75] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT
press, 2016. 9, 72

[76] Eric A Hansen and Shlomo Zilberstein. “LAO*: A heuristic search algorithm
that finds solutions with loops.” In: Artificial Intelligence 129.1-2 (2001),
pp. 35–62. 26

[77] Peter E Hart, Nils J Nilsson, and Bertram Raphael. “A formal basis for the
heuristic determination of minimum cost paths.” In: IEEE transactions on
Systems Science and Cybernetics 4.2 (1968), pp. 100–107. 4, 136

[78] Frederick Hayes-Roth, Donald A. Waterman, and Douglas B. Lenat. Building
Expert Systems. Boston, MA, USA: Addison-Wesley Longman Publishing
Co., Inc., 1983. isbn: 0-201-10686-8. 6

[79] Ryan Hayward. “Six wins Hex tournament.” In: ICGA Journal 29.3 (2006),
pp. 163–165. 41

[80] Ryan B Hayward and Bjarne Toft. Hex: The Full Story. CRC Press, 2019. 2, 113

[81] Ryan B Hayward and Jack Van Rijswijck. “Hex and combinatorics.” In:
Discrete Mathematics 306.19-20 (2006), pp. 2515–2528. 35, 113

[82] Ryan Hayward et al. “Solving 7x7 Hex: Virtual connections and game-state
reduction.” In: Advances in Computer Games. Springer, 2004, pp. 261–278. 5, 42, 98, 114

[83] Ryan Hayward et al. “Mohex wins 2015 Hex 11× 11 and Hex 13× 13 tour-
naments.” In: ICGA Journal 39.1 (2017), pp. 60–64. 42

120



[84] Kaiming He et al. “Deep residual learning for image recognition.” In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition.
2016, pp. 770–778. 31, 44, 55, 78

[85] Kaiming He et al. “Identity mappings in deep residual networks.” In: Euro-
pean Conference on Computer Vision. Springer. 2016, pp. 630–645. 55, 78

[86] Piet Hein. “Vil de laere Polygon.” In: Article in Politiken newspaper 26
(1942). 2

[87] Philip Thomas Henderson. “Playing and solving the game of Hex.” PhD
thesis. University of Alberta, 2010. 35, 36, 38–42, 51, 63, 98, 100, 104, 113, 114

[88] Philip Henderson, Broderick Arneson, and Ryan B Hayward. “Hex, braids,
the crossing rule, and XH-search.” In: Advances in Computer Games. Springer.
2009, pp. 88–98. 114

[89] Philip Henderson, Broderick Arneson, and Ryan B Hayward. “Solving 8x8
Hex.” In: Proc. IJCAI. Vol. 9. Citeseer. 2009, pp. 505–510. 42, 86, 98, 114

[90] Philip Henderson and Ryan B Hayward. “Captured-reversible moves and star
decomposition domination in Hex.” In: Integers: Annual 2013 (2014), p. 75. 36

[91] Philip Henderson and Ryan B Hayward. “A handicap strategy for Hex.” In:
Games of No Chance 4 63 (2015), p. 129. 36

[92] H Jaap van den Herik and Mark HM Winands. “Proof-number search and its
variants.” In: Oppositional Concepts in Computational Intelligence. Springer,
2008, pp. 91–118. 139

[93] Kurt Hornik. “Approximation capabilities of multilayer feedforward networks.”
In: Neural networks 4.2 (1991), pp. 251–257. 31

[94] Ronald A Howard. “DYNAMIC PROGRAMMING AND MARKOV PRO-
CESSES.” In: (1960). 28, 29

[95] Gao Huang et al. “Deep networks with stochastic depth.” In: European Con-
ference on Computer Vision. Springer. 2016, pp. 646–661. 55

[96] Shih-Chieh Huang et al. “MoHex 2.0: a pattern-based MCTS Hex player.” In:
International Conference on Computers and Games. Springer. 2013, pp. 60–
71. 32, 42, 47, 53, 81, 87, 101

[97] Sergey Ioffe and Christian Szegedy. “Batch normalization: Accelerating deep
network training by reducing internal covariate shift.” In: International Con-
ference on Machine Learning. 2015, pp. 448–456. 55, 78

[98] Max Jaderberg et al. “Reinforcement learning with unsupervised auxiliary
tasks.” In: arXiv preprint (2016). 106

[99] Tommy R Jensen and Bjarne Toft. Graph coloring problems. Vol. 39. John
Wiley & Sons, 2011. 35

[100] Norman P. Jouppi and Yang et al. “In-Datacenter Performance Analysis of
a Tensor Processing Unit.” In: Proceedings of the 44th Annual International
Symposium on Computer Architecture. ISCA ’17. ACM, 2017, pp. 1–12. isbn:
978-1-4503-4892-8. 33, 56

[101] Sham M Kakade. “A natural policy gradient.” In: Advances in neural infor-
mation processing systems. 2002, pp. 1531–1538. 58

121



[102] Takada Kei. “A Study on Learning Algorithms of Value and Policy Functions
in Hex.” PhD thesis. Hokkaido University, 2019. 90

[103] Henry J Kelley. “Gradient theory of optimal flight paths.” In: Ars Journal
30.10 (1960), pp. 947–954. 30

[104] Diederik Kingma and Jimmy Ba. “Adam: A method for stochastic optimiza-
tion.” In: International Conference on Learning Representations. 2014. 48, 62, 78, 103

[105] Akihiro Kishimoto. “Dealing with Infinite Loops, Underestimation, and Over-
estimation of Depth-first Proof-number Search.” In: Proceedings of the Twenty-
Fourth AAAI Conference on Artificial Intelligence. AAAI Press, 2010, pp. 108–
113. 26, 141

[106] Akihiro Kishimoto and Radu Marinescu. “Recursive Best-First AND/OR
Search for Optimization in Graphical Models.” In: UAI. 2014, pp. 400–409. 141

[107] Akihiro Kishimoto and Martin Müller. “About the completeness of depth-
first proof-number search.” In: International Conference on Computers and
Games. Springer. 2008, pp. 146–156. 26

[108] Akihiro Kishimoto et al. “Game-tree search using proof numbers: The first
twenty years.” In: ICGA Journal 35.3 (2012), pp. 131–156. 139, 141

[109] Donald E Knuth and Ronald W Moore. “An analysis of alpha-beta pruning.”
In: Artificial intelligence 6.4 (1975), pp. 293–326. 8, 25

[110] Jens Kober, J Andrew Bagnell, and Jan Peters. “Reinforcement learning in
robotics: A survey.” In: The International Journal of Robotics Research 32.11
(2013), pp. 1238–1274. 56

[111] Levente Kocsis and Csaba Szepesvári. “Bandit based Monte-Carlo planning.”
In: European conference on machine learning. Springer. 2006, pp. 282–293. 32

[112] Richard E Korf. “Finding optimal solutions to Rubik’s cube using pattern
databases.” In: AAAI/IAAI. 1997, pp. 700–705. 5, 9

[113] Richard E Korf and David Maxwell Chickering. “Best-first minimax search.”
In: Artificial intelligence 84.1-2 (1996), pp. 299–337. 25

[114] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classi-
fication with deep convolutional neural networks.” In: Advances in neural
information processing systems. 2012, pp. 1097–1105. 30, 44, 100

[115] Li-Cheng Lan et al. “Multiple Policy Value Monte Carlo Tree Search.” In:
IJCAI. 2019. 96

[116] Ailsa H. Land and Alison G. Doig. “An Automatic Method for Solving Dis-
crete Programming Problems.” In: 50 Years of Integer Programming. 2010.

5

[117] Tor Lattimore and Csaba Szepesvári. “Bandit algorithms.” In: preprint (2018).
23

[118] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning.” In: Na-
ture 521.7553 (2015), pp. 436–444. 30

[119] Yann LeCun et al. “Gradient-based learning applied to document recogni-
tion.” In: Proceedings of the IEEE 86.11 (1998), pp. 2278–2324. 30, 100

122



[120] Timothy P Lillicrap et al. “Continuous control with deep reinforcement learn-
ing.” In: ICLR. 2016. 32, 56

[121] Long-H Lin. “Self-improving reactive agents based on reinforcement learning,
planning and teaching.” In: Machine learning 8.3/4 (1992), pp. 69–97. 56

[122] Seppo Linnainmaa. “The representation of the cumulative rounding error of
an algorithm as a Taylor expansion of the local rounding errors.” In: Master’s
Thesis (in Finnish), Univ. Helsinki (1970), pp. 6–7. 30

[123] Michael Lederman Littman. “Algorithms for sequential decision making.”
PhD thesis. Brown University Providence, RI, 1996. 19, 22, 23, 28, 29

[124] Maciej Celuch. https://www.hexwiki.net/index.php/Maciej_Celuch.
Accessed: 2019-08-24. 89, 90

[125] Chris J Maddison et al. “Move evaluation in Go using deep convolutional
neural networks.” In: International Conference on Learning Representations.
2015. 33, 44–46, 49, 52, 100

[126] Alberto Martelli and Ugo Montanari. “Additive AND/OR Graphs.” In: IJ-
CAI. Vol. 73. 1973, pp. 1–11. 136

[127] Alberto Martelli and Ugo Montanari. “Optimizing decision trees through
heuristically guided search.” In: Communications of the ACM 21.12 (1978),
pp. 1025–1039. 136

[128] Abadi et al. Martin. TensorFlow: Large-Scale Machine Learning on Hetero-
geneous Systems. Software available from tensorflow.org. 2015. url: http:
//tensorflow.org/. 48, 61

[129] David Allen McAllester. “Conspiracy numbers for min-max search.” In: Ar-
tificial Intelligence 35.3 (1988), pp. 287–310. 26

[130] Drew McDermott et al. “PDDL-the planning domain definition language.”
In: (1998). 5

[131] Thomas M. Mitchell. Machine Learning. 1st ed. New York, NY, USA: McGraw-
Hill, Inc., 1997. 6

[132] Volodymyr Mnih et al. “Human-level control through deep reinforcement
learning.” In: Nature 518.7540 (2015), pp. 529–533. 32, 51, 56

[133] Volodymyr Mnih et al. “Asynchronous methods for deep reinforcement learn-
ing.” In: International Conference on Machine Learning. 2016, pp. 1928–
1937. 32, 56

[134] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of
machine learning. MIT press, 2018. 6

[135] Martin Müller. “Computer Go.” In: Artificial Intelligence 134.1-2 (2002),
pp. 145–179. 25

[136] Ayumu Nagai. “Df-pn algorithm for searching AND/OR trees and its appli-
cations.” PhD thesis. PhD thesis, Department of Information Science, Uni-
versity of Tokyo, 2002. 26, 141

[137] John F Nash. Some games and machines for playing them. Tech. rep. Rand
Corporation, 1952. 2, 113

123

https://www.hexwiki.net/index.php/Maciej_Celuch
http://tensorflow.org/
http://tensorflow.org/


[138] Dana S Nau. “Pathology on Game Trees: A Summary of Results.” In: AAAI.
1980, pp. 102–104. 26

[139] Dana S Nau. “An investigation of the causes of pathology in games.” In:
Artificial Intelligence 19.3 (1982), pp. 257–278. 26

[140] Dana S Nau. “Pathology on game trees revisited, and an alternative to min-
imaxing.” In: Artificial intelligence 21.1-2 (1983), pp. 221–244. 26

[141] Allen Newell, John C Shaw, and Herbert A Simon. “Report on a general
problem solving program.” In: IFIP congress. Vol. 256. Pittsburgh, PA. 1959,
p. 64. 4, 20, 21

[142] Nils J Nilsson. Problem-Solving in Artificial Intelligence. McGraw-Hill, 1971. 135

[143] Nils J Nilsson. Principles of artificial intelligence. Morgan Kaufmann, 1980. 5, 6, 136

[144] Kyoung-Su Oh and Keechul Jung. “GPU implementation of neural net-
works.” In: Pattern Recognition 37.6 (2004), pp. 1311–1314. 30

[145] Manfred Padberg and Giovanni Rinaldi. “A branch-and-cut algorithm for the
resolution of large-scale symmetric traveling salesman problems.” In: SIAM
review 33.1 (1991), pp. 60–100. 5

[146] Sinno Jialin Pan and Qiang Yang. “A survey on transfer learning.” In: IEEE
Transactions on knowledge and data engineering 22.10 (2010), pp. 1345–1359. 32

[147] Gian-Carlo Pascutto. [Computer-go] Zero performance. http://computer-
go.org/pipermail/computer-go/2017-October/010307.html. Accessed:
2019-08-18. 71

[148] Gian-Carlo Pascutto. Leela Zero. https : / / github . com / leela - zero /

leela-zero. Accessed: 2019-08-18. 72, 113

[149] Jakub Pawlewicz and Ryan B Hayward. “Scalable parallel DFPN search.” In:
International Conference on Computers and Games. Springer. 2013, pp. 138–
150. 18, 42, 101, 114

[150] Jakub Pawlewicz and Ryan B Hayward. “Sibling conspiracy number search.”
In: Eighth Annual Symposium on Combinatorial Search. 2015. 42

[151] Jakub Pawlewicz et al. “Stronger Virtual Connections in Hex.” In: IEEE
Transactions on Computational Intelligence and AI in Games 7.2 (2015),
pp. 156–166. 38, 39, 42, 53, 63, 81, 86, 100, 103, 114

[152] Judea Pearl. “On the nature of pathology in game searching.” In: Artificial
Intelligence 20.4 (1983), pp. 427–453. 26

[153] Judea Pearl. “Heuristics: intelligent search strategies for computer problem
solving.” In: (1984). 4, 5, 9, 18–20, 24, 98, 132, 136, 141

[154] Gabriel Pereyra et al. “Regularizing neural networks by penalizing confident
output distributions.” In: ICLR 2017 workshop (2017). 55

[155] Jan Peters and J Andrew Bagnell. “Policy gradient methods.” In: Encyclo-
pedia of Machine Learning. Springer, 2011, pp. 774–776. 29, 56

[156] Aske Plaat et al. “Best-first fixed-depth minimax algorithms.” In: Artificial
Intelligence 87.1-2 (1996), pp. 255–293. 25

124

http://computer-go.org/pipermail/computer-go/2017-October/010307.html
http://computer-go.org/pipermail/computer-go/2017-October/010307.html
https://github.com/leela-zero/leela-zero
https://github.com/leela-zero/leela-zero


[157] Progress towards the OpenAI mission. https://www.slideshare.net/

AIFrontiers/ilya-sutskever-at-ai-frontiers-progress-towards-

the-openai-mission. Accessed: 2019-08-19. 71

[158] Martin L Puterman. Markov Decision Processes.: Discrete Stochastic Dy-
namic Programming. John Wiley & Sons, 2014. 21, 26, 27

[159] Rating Inflation - Its Causes and Possible Cures. https://en.wikipedia.
org/wiki/ChessBase. Accessed: 2019-08-11. 42

[160] A Ravindran, Don T Phillips, and James J Solberg. “Operations research:
principles and practice.” In: (1987). 5

[161] Ali Sharif Razavian et al. “CNN features off-the-shelf: an astounding baseline
for recognition.” In: Computer Vision and Pattern Recognition Workshops
(CVPRW), 2014 IEEE Conference on. IEEE. 2014, pp. 512–519. 32

[162] Stefan Reisch. “Hex ist PSPACE-vollständig.” In: Acta Informatica 15.2
(1981), pp. 167–191. 3, 33

[163] JA Robinson. “An overview of mechanical theorem proving.” In: Theoretical
Approaches to Non-Numerical Problem Solving. Springer, 1970, pp. 2–20. 38

[164] Igor Roizen and Judea Pearl. “A minimax algorithm better than alpha-beta?
Yes and no.” In: Artificial Intelligence 21.1-2 (1983), pp. 199–220. 25

[165] Christopher D Rosin. “Multi-armed bandits with episode context.” In: An-
nals of Mathematics and Artificial Intelligence 61.3 (2011), pp. 203–230. 53, 67

[166] David E Rumelhart, Geoffrey E Hinton, Ronald J Williams, et al. “Learn-
ing representations by back-propagating errors.” In: Cognitive modeling 5.3
(1988), p. 1. 30

[167] Sartaj Sahni. “Computationally related problems.” In: SIAM Journal on
Computing 3.4 (1974), pp. 262–279. 133, 136

[168] A. L. Samuel. “Some Studies in Machine Learning Using the Game of Check-
ers.” In: IBM J. Res. Dev. 3.3 (July 1959), pp. 210–229. issn: 0018-8646. doi:
10.1147/rd.33.0210. url: http://dx.doi.org/10.1147/rd.33.0210. 8

[169] Arthur L Samuel. “Some studies in machine learning using the game of check-
ers. II—Recent progress.” In: IBM Journal of research and development 11.6
(1967), pp. 601–617. 8

[170] Jonathan Schaeffer. “The history heuristic.” In: ICGA Journal 6.3 (1983),
pp. 16–19. 25

[171] Jonathan Schaeffer et al. “A world championship caliber checkers program.”
In: Artificial Intelligence 53.2-3 (1992), pp. 273–289. 26

[172] Jonathan Schaeffer et al. “Checkers is solved.” In: Science 317.5844 (2007),
pp. 1518–1522. 5

[173] Tom Schaul et al. “Prioritized experience replay.” In: ICLR. 2016. 32, 56

[174] Martin Schijf, L Victor Allis, and Jos WHM Uiterwijk. “Proof-number search
and transpositions.” In: ICGA Journal 17.2 (1994), pp. 63–74. 141

[175] Jürgen Schmidhuber. “Deep learning in neural networks: An overview.” In:
Neural networks 61 (2015), pp. 85–117. 9, 30

125

https://www.slideshare.net/AIFrontiers/ilya-sutskever-at-ai-frontiers-progress-towards-the-openai-mission
https://www.slideshare.net/AIFrontiers/ilya-sutskever-at-ai-frontiers-progress-towards-the-openai-mission
https://www.slideshare.net/AIFrontiers/ilya-sutskever-at-ai-frontiers-progress-towards-the-openai-mission
https://en.wikipedia.org/wiki/ChessBase
https://en.wikipedia.org/wiki/ChessBase
https://doi.org/10.1147/rd.33.0210
http://dx.doi.org/10.1147/rd.33.0210


[176] John Schulman et al. “Trust region policy optimization.” In: Proceedings of
the 32nd International Conference on Machine Learning (ICML-15). 2015,
pp. 1889–1897. 32, 56

[177] John Schulman et al. “Proximal policy optimization algorithms.” In: arXiv
preprint arXiv:1707.06347 (2017). 32, 56

[178] Claude E Shannon. “Computers and automata.” In: Proceedings of the IRE
41.10 (1953), pp. 1234–1241. 3, 40, 41

[179] Lloyd S Shapley. “Stochastic games.” In: Proceedings of the national academy
of sciences 39.10 (1953), pp. 1095–1100. 23

[180] David Silver et al. “Mastering the game of Go with deep neural networks and
tree search.” In: Nature 529.7587 (2016), pp. 484–489. 29, 32, 33, 44, 52, 53, 56, 57, 61, 63, 65, 66, 68, 74, 89, 100, 106, 113

[181] David Silver et al. “Mastering Chess and Shogi by Self-Play with a General
Reinforcement Learning Algorithm.” In: arXiv preprint arXiv:1712.01815
(2017). 33, 70

[182] David Silver et al. “A general reinforcement learning algorithm that mas-
ters chess, shogi, and Go through self-play.” In: Science 362.6419 (2018),
pp. 1140–1144. 70, 113

[183] David Silver et al. “Deterministic policy gradient algorithms.” In: Proceedings
of the 31st International Conference on Machine Learning (ICML-14). 2014,
pp. 387–395. 32, 56

[184] David Silver et al. “Mastering the game of Go without human knowledge.”
In: Nature 550.7676 (2017), pp. 354–359. 33, 65, 68, 73, 76, 79, 100, 106, 113

[185] Saurabh Singh, Derek Hoiem, and David Forsyth. “Swapout: Learning an en-
semble of deep architectures.” In: Advances in Neural Information Processing
Systems. 2016, pp. 28–36. 55

[186] James R Slagle. “A heuristic program that solves symbolic integration prob-
lems in freshman calculus.” In: Journal of the ACM (JACM) 10.4 (1963),
pp. 507–520. 4

[187] James E Smith and Robert L Winkler. “The optimizer’s curse: Skepticism
and postdecision surprise in decision analysis.” In: Management Science 52.3
(2006), pp. 311–322. 61

[188] Sylvain Sorin. A first course on zero-sum repeated games. Vol. 37. Springer
Science & Business Media, 2002. 23

[189] Nitish Srivastava et al. “Dropout: a simple way to prevent neural networks
from overfitting.” In: Journal of Machine Learning Research 15.1 (2014),
pp. 1929–1958. 55

[190] George C. Stockman. “A minimax algorithm better than alpha-beta?” In:
Artificial Intelligence 12.2 (1979), pp. 179–196. 25

[191] Richard S Sutton. “Integrated architectures for learning, planning, and react-
ing based on approximating dynamic programming.” In: Machine Learning
Proceedings 1990. Elsevier, 1990, pp. 216–224. 29

[192] Richard S Sutton and Andrew G Barto. Reinforcement learning: An intro-
duction. Second. Preliminary Draft, MIT press Cambridge, 2017. 9, 19, 29, 58

126



[193] Richard S Sutton et al. “Policy gradient methods for reinforcement learning
with function approximation.” In: Advances in neural information processing
systems. 2000, pp. 1057–1063. 29, 56, 58

[194] Christian Szegedy et al. “Rethinking the inception architecture for computer
vision.” In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 2016, pp. 2818–2826. 55

[195] Kei Takada, Hiroyuki Iizuka, and Masahito Yamamoto. “Reinforcement Learn-
ing to Create Value and Policy Functions using Minimax Tree Search in Hex.”
In: IEEE Transactions on Games (2019). 90

[196] Kei Takada et al. “Developing computer hex using global and local evaluation
based on board network characteristics.” In: Advances in Computer Games.
Springer. 2015, pp. 235–246. 42, 54

[197] Kei Takata, Hiroyuki Iizuka, and Masahito Yamaoto. “Computer Hex us-
ing Move Evaluation Method based on Convolutional Neural Network.” In:
IJCAI 2017 Computer Games Workshop. 2017. 54

[198] Gerald Tesauro. “Temporal difference learning and TD-Gammon.” In: Com-
munications of the ACM 38.3 (1995), pp. 58–68. 29, 31, 56, 57

[199] Thomas Thomsen. “Lambda-search in game trees—With application to Go.”
In: International Conference on Computers and Games. Springer. 2000, pp. 19–
38. 110

[200] Yuandong Tian and Yan Zhu. “Better computer Go player with neural net-
work and long-term prediction.” In: International Conference on Learning
Representations. 2015. 33, 44–46, 52

[201] Yuandong Tian et al. “ELF OpenGo: an analysis and open reimplementation
of AlphaZero.” In: ICML. 2019, pp. 6244–6253. 72, 89, 92, 113

[202] Jonathan Tompson et al. “Efficient object localization using convolutional
networks.” In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 2015, pp. 648–656. 55

[203] Toru Ueda et al. “Weak proof-number search.” In: International Conference
on Computers and Games. Springer. 2008, pp. 157–168. 141

[204] Jack Van Rijswijck. “Computer Hex: Are Bees Better Than Fruitflies?” MA
thesis. University of Alberta, 2002. 3, 41, 114

[205] Jack Van Rijswijck. “Search and evaluation in Hex.” In: Master of science,
University of Alberta (2002). 3, 40

[206] Jack Van Rijswijck. “Set colouring games.” PhD thesis. University of Alberta,
2006. 3, 34, 35

[207] Ziyu Wang et al. “Dueling network architectures for deep reinforcement learn-
ing.” In: ICML. 2016. 56

[208] Ziyu Wang et al. “Sample efficient actor-critic with experience replay.” In:
ICLR. 2017. 32, 56, 58

[209] Christopher JCH Watkins and Peter Dayan. “Q-learning.” In: Machine learn-
ing 8.3-4 (1992), pp. 279–292. 56

127



[210] Paul J Werbos. “Applications of advances in nonlinear sensitivity analysis.”
In: System modeling and optimization. Springer, 1982, pp. 762–770. 30

[211] Ronald J Williams. “Simple statistical gradient-following algorithms for con-
nectionist reinforcement learning.” In: Machine learning 8.3-4 (1992), pp. 229–
256. 29, 57, 58

[212] Mark HM Winands, Jos WHM Uiterwijk, and H Jaap van den Herik. “An
effective two-level proof-number search algorithm.” In: Theoretical Computer
Science 313.3 (2004), pp. 511–525. 26

[213] I-Chen Wu and Ping-Hung Lin. “Relevance-zone-oriented proof search for
connect6.” In: IEEE Transactions on computational intelligence and AI in
games 2.3 (2010), pp. 191–207. 110

[214] Jing Yang, Simon Liao, and Mirek Pawlak. “On a decomposition method for
finding winning strategy in Hex game.” In: Proceedings ADCOG: Internat.
Conf. Application and Development of Computer Games (ALW Sing, WH
Man and W. Wai, eds.), City University of Honkong. 2001, pp. 96–111. 4, 18, 115

[215] Jing Yang, Simon Liao, and Mirek Pawlak. “A New Solution for 7x7 Hex
Game.” In: to appear 106 (2002). 4, 18

[216] Kazuki Yoshizoe, Akihiro Kishimoto, and Martin Müller. “Lambda Depth-
First Proof Number Search and Its Application to Go.” In: IJCAI. 2007,
pp. 2404–2409. 26, 110

[217] Jason Yosinski et al. “How transferable are features in deep neural networks?”
In: Advances in neural information processing systems. 2014, pp. 3320–3328. 32

[218] Kenny Young, Gautham Vasan, and Ryan Hayward. “NeuroHex: A Deep
Q-learning Hex Agent.” In: Computer Games. Springer, 2016, pp. 3–18. 51, 57, 61

[219] Sergey Zagoruyko and Nikos Komodakis. “Wide residual networks.” In: arXiv
preprint arXiv:1605.07146 (2016). 55

[220] Chiyuan Zhang et al. “Understanding deep learning requires rethinking gen-
eralization.” In: International Conference on Learning Representations. 2017.

106

128



Appendix A

Additional Documentation

Extending benzene to contain neural networks results neurobenze, we document

the key changes and how to use them in below. We have also developed software

tool for visualizing the decomposition-based solution for solving e5 opening on 9×9

Hex. The pattern files are provided by Jing Yang.

A.1 Neurobenzene

Newly added commands:

• nn_ls: it lists all available neural net models in share/nn/.

• nn_load: it follows by a nn name to load.

• param_nn: it displays parameter setting for neural net.

• param_mohex use_playout_constant, default 0, indicating no playout is used

(otherwise, setting it to 1.0 will use sole playout result for leaf evaluation).

• param_mohex moveselect_ditherthreshold, default 0, indicating the thresh-

old for soft-selection if the number of stones on the board is less than the

threshold.

• mohex-self-play, it follows by two arguments n (number of games) and

filetosave (location to save played games).

• param_mohex root_dirichlet_prior, it follows by a float number α, indi-

cating the parameter for Dirichlet(α).

• param_dfpn use_nn, it follows by 0 or 1 indicating whether to use neural net

in DFPN solver.

129



Figure A.1: An example shows the evaluation of actions provided by neural net
model. For each cell, the upper number is the prior probability provided by policy
head, the lower number is the value provided by action-value head. Note that here
the value is with respect to the player to play after taking that action, thus a smaller
value indicating higher preference for the current board state. Here, both policy and
action-value are in favor of f6.

Newly added module:

• simplefeature3/: this directory contains a sub-project of using Python to

train neural networks.

• src/neuralnet/: this directory contains Tensorflow inference written in Ten-

sorflow C API.

• closedloop/: this directory contains all scripts for doing closed loop training

inside of neurobenzene.

A.2 Visualization for a Human Identified 9×9 Solution

Starting from initial state, Jing Yang’s handcrafted solution expresses how a board

state should be decomposed after every opponent move. For 9×9 Hex, the solution

provided by him contains around 700 patterns. We implemented an visualization

tool for expressing the perfect solution, allowing user to play any moves and see the

response move, how a larger pattern is decomposed into smaller ones.

130



Figure A.2: An example play by White. If it plays at D6, Black will respond at
E6 resulting to pattern 370. If White then plays at D8, then Black will respond at
B8, splitting pattern 370 into patterns 285 and 86. In each cell, the lower number
is pattern id, upper number is local move name inside of that pattern.

A.3 Published Dataset

Datasets for 8×8, 9×9 and 13×13 are available in https://drive.google.com/

drive/u/0/folders/18MdnvMItU7O2sEJDlbmk_ZzUhZG7yDK9. These data were pro-

duced by players MoHex 2.0 and Wolve in moderately strong setting.

131

https://drive.google.com/drive/u/0/folders/18MdnvMItU7O2sEJDlbmk_ZzUhZG7yDK9
https://drive.google.com/drive/u/0/folders/18MdnvMItU7O2sEJDlbmk_ZzUhZG7yDK9


A.4 From GBFS to AO* and PNS

At each iteration, a clever search selects the seemingly best node for expansion. Such

a feature is called best-first. Assuming that the problem to be solved is represented

by a single start node s and the task is to find a solution graph with minimum cost

defined by scheme Ψ, a General Best-first Search (GBFS) procedure for loop-free

AND/OR graphs is depicted in Algorithm 7. The expansion is driven by the small-

is-quick and face-value principles, i.e., it always selects the best (smallest) solution-

base to explore based on estimated values of candidate nodes (so called face-value).

Given that the heuristic estimation h is always optimistic, upon termination the

returned solution graph must be optimal [153] even though in some cases we are

merely interested in finding any solution rather than the optimum.

Algorithm 7: General Best-First Search for AND/OR graphs

Input: Start node s, selection function f1, f2, rules for generating successor
nodes, evaluation function h, cost scheme Ψ

Output: Solution graph G∗0
1 Function GBFS(s, f1, f2):
2 Let the explicit graph be G′ = {s}
3 while true do
4 G0 ← f1(G′) // G0 is solution-base

5 if G0 is solution graph then
6 G∗0 ← G0, then exit;
7 end
8 t← f2(G0) // t is selected frontier node

9 Generate all successors of t, append to G′

10 for t′ ∈ successor(t) do
11 Evaluate t′ by h
12 UpdateAncestors(t′,Ψ, G′)

13 end

14 end
15 return G∗0
16 Function UpdateAncestors(t′, Ψ, G′):
17 Update ancestor nodes of t′ in G′ according to the definition of Ψ

Algorithm 7 contains abstract functions f1, f2 and h, which are respectively

used for selecting the solution-base G0 in G′, a frontier node n and evaluating n.

A solution-base is a subgraph of G′ that may eventually be developed to a solution

for the implicit graph G. f1 selects the best solution-base from G′. The price made

for generality is that Algorithm 7 leaves three important functions, f1, f2 and h ,

unspecified. While the content of h relies on domain-knowledge, implementations

132



A

B

2

E

1

1

C

E

1

1
3

1

G

=⇒

A

B

2

1

C
3

1

G10

A

B

2

E

1

C

E

1

1

1

G20

A

B

E

1

1

C

E

1

1

1

G30

A

B

E

1

1

C

E

1

3

1

G40

Figure A.3: Leftmost is the full graph G; all the tip nodes are solvable terminal with
value 0; each edge has a positive cost. Four different solution graphs exist for G,
among which G3

0 is with the minimum total cost of 5. However, if the cost scheme
Ψ is defined as a recursive sum-cost, both G2

0 and G3
0 are with minimum cost of 6.

of f1 and f2 depend on definition of the cost scheme Ψ. See Appendix A.4 for a full

account on the impact of cost scheme for various instances of GBFS.

To see the impact of cost scheme in GBFS (as in Algorithm 7), consider a simple

toy AND/OR graph shown in Figure A.3 where all tip nodes are solvable terminal

assigned with value 0. In this problem, there are four solution graphs, noted as G1
0,

G2
0, G3

0 and G4
0. Each edge has a cost either 1, 2 or 3. If the objective is to find

a solution graph with the minimum summed edge cost, G3
0 will be is the optimal.

We then consider how the cost for each candidate solution is computed. In this

example, the cost for each solution graph is calculated by summing all edges within

the graph. A naive algorithm for finding the best solution subgraph is enumerating

all possible candidates and select the smallest one. If the AND/OR graph has d

OR nodes, and on average the branching degree for these OR nodes is b, then the

total number of candidate subgraphs will be O(bd), suggesting that such a f1 could

be computationally prohibitive. It has been shown that computing the graph with

minimum summed edge cost is NP-hard [167].

In essence, the computational difficulty comes from the fact that each candidate

subgraph needs to be evaluated separately, which is unavoidable in general since

each tip node could have multiple parents and whether they are going to or how

they will meet somewhere upward in the graph is unpredictable. In other words, for

arbitrary node, the cost rooted at this node depends not only upon its immediate

successors but also on the structure of all its descendants — neglecting which could

cause one edge cost being counted multiple times. However, the computation could

be largely simplified if we define the solution cost for arbitrary node n from only on

133



its immediate successors. A cost scheme Ψ is recursive if it satisfies the following

property:

h∗(n) =


Ψn′(c(n, n′) + h∗(n′)) if n is non-terminal AND node

minn′ (c(n, n′) + h∗(n′)) if n is non-terminal OR node

0 if n is solvable terminal

∞ if n is unsolvable terminal

(A.1)

where c(n, n′) ≥ 0 is the edge cost between n and its successor n′, cost(n) represents

the cost rooted at n. By such, the implementation of f1 becomes easy: starting from

s, at each OR node, it only needs to select the minimum child node; at each AND

node, all successors will be selected. There are, of course, many potential choices for

which specific function to use in this formula. One natural choice is the recursive

sum-cost shown in below:

h∗(n) =



∑
n′ (c(n, n′) + h∗(n′)) if n is non-terminal AND node

minn′ (c(n, n′) + h∗(n′)) if n is non-terminal OR node

0 if n is solvable terminal

∞ if n is unsolvable terminal

(A.2)

However, even the optimal cost at each node is defined recursively, these values

are unknown to the problem-solver simply because the explicit graph G is hidden

and fully expanding it is unachievable. Following the face-value principle, GBFS*

always selects upon G′ for a best solution-graph defined by the same recursive cost

scheme as depicted above, except that for each non-terminal tip node, an estimation

for the cost rooted is given by heuristic function h. Formally, denote f(n) as the

cost rooted at n for arbitrary n in G′:

f(n) =



Ψn′(c(n, n′) + f(n′)) n is non-tip AND node

minn′ (c(n, n′) + f(n′)) n is non-tip OR node

0 if n is solvable terminal

∞ if n is unsolvable terminal

h(n) n non-terminal tip node

(A.3)

To see how f1 selects the most promising subgraph G0 when the recursive sum-

cost is adopted, consider the example shown in Figure A.4. Each tip node was given

an estimated cost; every non-leaf node was computed from its successor values.

Starting from s, a solution-base graph is identified by simply choosing a minimum

successor at each OR nodes. We recognize that the recursive sum-cost is not the

only cost scheme that will facilitate the computation of f1. Other recursive cost

134



A

f=17

B

f=16

D

f=6

G

f=5

K

1

L

2

H

f=7

L M

3

E

f=8

H I

f=9

M N

C

f=19

E F

f=9

I J

f=8

N

4

O

2
Explicit Graph G′

A

f=17

B

f=16

D

f=6

G

f=5

K

1

L

2

E

f=8

H

f=7

L M

3
f1 selected solution-base G0

Analogy to A*,
f value at node
A can be intepre-
tated as f = g + h,
where g is all edge
costs of G0, h rep-
resents all esti-
mated tip node
costs. However,
using the recursive-
sum cost here will
count some edge or
tip node cost more
than once.

Figure A.4: f1 selects solution-base from explicit graph G′. Every edge is with cost
0; each tip node has an estimation cost provided by function h. By definition of
the recursive sum-cost scheme, G0 is the minimum solution-base with cost 17 even
though we see the true summed edge cost is 15.

schemes include max, expected-sum and so on. In particular, the max-cost does not

suffer from the over counting problem because it does not try to accumulate the cost

from its descendants. The sum-cost, however, is free from over-counting only when

the underlying graph is a tree. The recursively defined cost scheme also makes

the UpdateAncestors procedure in Algorithm 7 straightforward — all influenced

ancestors just need to be updated in bottom-up manner by Equation (A.1).

The next question to answer is how f2 selects frontier nodes for expansion (except

in some special cases only one frontier exists in the solution base, e.g., in pure OR

graphs). As the pursuit is essentially a graph-represented solution, it seems that

the selection of frontier nodes is inconsequential, i.e., arbitrary non-terminal tip

node can be selected; or alternatively, all expandable tip nodes shall be expanded

simultaneously.

Indeed, the specific choice of f1, f2 and how to update ancestor nodes signify

the key differences between various realizations of GBFS*. Nilsson [142] studied the

use of sum- and max-cost when the underlying graph is an AND/OR tree. Chang

and Slagle [42] discussed the use of AND/OR graphs to represent the process of

problem-solving by reduction; the graph is directed and acyclic as cyclic reasoning

is apparently meaningless; they drew connections between Boolean functions and

135



AND/OR graphs and define the minimum cost solution as the summed edge cost in

the solution graph, but the function (i.e., f1 in GBFS*) to compute such a measure-

ment was not specified. However, following a similar fashion to OR graph search

A* [77], they showed that if the heuristic estimation is admissible and consistent,

the algorithm will be optimal. It was proved that computing a solution graph with

the minimum summed edge cost is NP-hard in AND/OR graphs [167]. Martelli

and Montanari [126, 127] defined an additive AND/OR graph which is essentially

AND/OR graphs equipped with the recursive sum-cost; they described detailed edge

marking and revising procedures for selecting the solution-base and at each expan-

sion, how to modify this solution-base when updating ancestors. The algorithm was

named as HS. Nilsson [143] defined AO* in a similar fashion and discussed the dif-

ferences between recursive sum- and max-cost schemes. HS can be viewed as AO*

with a minor optimization — it updates a node’s value only when the new value is

lower while AO* updates whenever there is a change. Given h is both admissible

and consistent, or the graph is a tree, HS behaves exactly the same as AO*, though

they may differ in other scenarios. Bagchi and Mahanti [16] proved that for AO*

to obtain optimal solutions, the requirement of heuristic function to be admissible

and consistent can be relaxed to only being admissible. Our exposition of GBFS* in

Algorithm 7 is adapted from Pearl [153], which includes AO*, A* all as its special

cases. As we are majorly interested in AND/OR not pure OR graphs, we reiterate

the details of AO* in Algorithm 8.

In Algorithm 8, the selection of a solution-base is achieved simply by following

all marked edges from start node s. Then, a non-terminal node is arbitrarily chosen

for expansion. After that, all influenced ancestors of the just expanded node will

be updated. The cost at arbitrary node t in G′ is noted by f(t). Each newly

created node is assessed by heuristic function h — it provides an estimated cost if

the node is non-terminal, otherwise it yields 0 or ∞ if the node is either solvable or

unsolvable terminal. The function f is used to store the accumulated estimation as

G′ grows. For tip nodes, values by f are always identical to those from h. Using h∗

to denote the optimal value at each node for the implicit graph G, we see that the

information provided by h can be thought as a rough first estimation on h∗, as G′

grows larger, f becomes a more and more finer estimation for h∗ until the optimal

value is achieved. AO* terminates with an optimal solution graph G∗0 if the heuristic

function h is admissible, i.e., h(t) ≤ h∗(t) for any node t in the search graph.

136



Algorithm 8: AO* algorithm

Input: Start node s, rules for generating successor nodes, evaluation
function h, cost scheme Ψ

Output: Solution graph G∗0
1 Function AO*(s, f1, f2):
2 Let the explicit graph be G′ = {s}
3 while true do
4 Start from s, compute a solution base graph G0 by tracing down

marked edges.
5 if G0 is solution graph then G∗0 ← G0, exit
6 Select any non-terminal tip node t of G′

7 Expand t, generate all successors of t
8 for tj ∈ successor(t) do
9 if tj ∈ G′ then continue

10 evaluate tj by h, let f(tj)← h(tj) if h(tj) = 0 then label tj as
solvable terminal

11 if h(tj) =∞ then label tj as unsolvable terminal

12 end
13 UpdateAncestors(t,Ψ, G′)

14 end
15 return G∗0
16 Function UpdateAncestors(t′, Ψ, G′):
17 Initialize S ← {t}
18 while S not empty do
19 Remove any node u from S such that no descendents of u in S if u

is OR node then
20 e← minuj∈successor(u) (c(u, uj) + f(uj)) Mark the edge for which

the minimum occurs
21 end
22 if u is AND node then
23 e← Ψuj ∈ successor(u)(c(u, uj) + f(uj)) Mark all edges between

u and its successor
24 end
25 if e = 0 then label u as solvable terminal
26 if e =∞ then label u as unsolvable terminal
27 if f(u) 6= e then
28 f(u)← e
29 Add all predecessors of u to S

30 end

31 end

137



However, one potential drawback of AO* in Algorithm 8 is that the selection of

tip node from G0 for expansion is ad hoc. Intuitively, at each step, AO* tries to

identify the most promising solution base by following information provided by h

and its accumulation f to compute G0; at each OR node, it selects the successor

with smallest f value, while at each AND node, all successors are selected. The

later selection mechanism is the culprit for the resultant outcome that more than

one frontier nodes exist in G0. Although earliest research suggests that all non-

terminal nodes in G0 shall be expanded simultaneously [42], this does not seem

to be practically feasible, as this expansion approach could quickly exhaust the

computer memory due to the exponential growth rate of the size of G′. On the

other hand, the ad-hoc strategy used in Algorithm 8 is naive as it does not consider

the relative merits of those tip nodes in G0 at all.

Take the example in Figure A.5 where all edges are with uniform cost 4. Follow-

ing AO*, given the current implicit graph G′, the left branch B shall be selected,

and either successors of B could be chosen for expansion. If D is expanded first,

it instantly reveals that the selection of B from start node is mistaken. However,

if E is expanded first, in the next iteration, AO* will continue to expand E before

switching to the true solution branch C. This example shows that a better decision

at AND nodes can indeed save our computation for finding the solution object, given

the heuristic nature of the decisions made at OR nodes.

The next question to answer is from what measurement shall we make the deci-

sion at AND nodes? Th example in Figure A.5 clearly shows that choosing the tip

node with the minimum f value is incorrect too. Intuitively, the true metric we wish

to have is a measurement on how likely a selected successor could refute our decision

at the parent OR nodes. In Figure A.5, we would want such a measurement lead us

to select D rather than E, as proving D is an infeasible successor immediately denies

our decision of selecting B at A — consequently it enables the search to switch for

C instantly without wasting further efforts.

Such a mechanism for making decisions at AND nodes is essentially symmetric

to how AO* implements function f1 at OR nodes. So, if we now equip a pair of

functions to AO* based on two heuristics — one for selecting in OR nodes while

the other for AND nodes — a top down selection scheme, which eventually selects a

single tip node for expansion, exists. There resulting algorithm was never elaborated

in the literature. However, a special variant called Proof Number Search (PNS) [2,

138



A

B

D

2

E

1

C

F

3

G

4

Current explict graph G′ A

B

D

∞

E

0

C

F

0

G

0

The full, implicit graph G

Figure A.5: An example shows the drawback of AO* in selecting frontier node for
expansion. If D is expanded first, E will never be expanded; however, if E is chosen
first, both D and E will be expanded before the search switches to correct branch C.
We assume all edges in the graph have a cost of 4, therefore the estimation provided
by h in G′ is admissible.

4, 92, 108] has been extensively used in solving games, though its connection to

AO* was seldom discussed. From this regard, we shall call the general version of

PNS as PNS*, i.e., PNS only counts the number of leaf nodes by proof and disproof

numbers, while PNS* works exactly under the same assumption as AO* except that

it employs a dual of heuristic functions, h and h̄, respectively for making decisions

on OR and AND nodes. More specifically, let < p(n), d(n) > denote the estimated

cost rooted at node n in G′, we have the following recursive relations:

p(n) =


h(n) n is non-terminal tip node

minnj∈successor(n) (c(n, nj) + p(nj)) n is OR node

Ψnj∈successor(n)(c(n, nj) + p(nj)) n is AND node

d(n) =


h̄(n) n is non-terminal tip node

minnj∈successor(n) (c(n, nj) + d(nj)) n is AND node

Ψnj∈successor(n)(c(n, nj) + d(nj)) n is OR node

(A.4)

When n is terminal:

p(n) =

{
0 n is solvable

∞ n is unsolvable
d(n) =

{
0 n is unsolvable

∞ n is solvable
(A.5)

Naturally, the optimal h∗(n) and h̄∗(n) are defined on the implicit graph in the

same fashion where all tip nodes are terminal. By these definitions, PNS* selects

a frontier node to expand by a top down manner: at each OR nodes, it selects a

successor nj with minimum p(nj) value; at each AND node, it selects a successor ni

with the minimum d(ni) value. The celebrated PNS algorithm is a special variant

of PNS* where c(n, nj) = 0 everywhere in Equation A.4. Figure A.6 is an example

139



A

B

D

2,1

E

1,2

C

F

3,3

G

4,1

In G′, f1 selects subgraph G0

A

B

D

2,1

E

1,2

In selected G0, f2 selects the tip node
A

B

D

∞, 0

E

0,∞

C

F

0,∞

G

0,∞

The full, implicit graph G

Figure A.6: The same as Figure A.5, edge costs are all 4. The difference is that
now each tip node has a pair of heuristic estimations, respectively representing the
estimated cost for being solvable and unsolvable. All tip nodes are with admissible
estimations from both h1 and h2. Here h2 successfully discriminates that D is
superior to E because h2(D) < h2(E). Indeed, as long as h2(D) ∈ [0, 4] ∧ h2(E) ∈
[0,∞], h2 will be admissible, hinting that the chance that an arbitrary admissible
h2 can successfully choose D is high. In respect to PNS, we call algorithm AO*
employing a pair of admissible heuristics PNS*.

showing the merit of PNS* in comparison to AO*. To further show the relation

between these two algorithms, we define the concept of dual graph in below.

Definition 3. Suppose arbitrary AND/OR graph is noted as G =< Va, Vo, E >,

where Va and Vo are respectively the set of AND and OR nodes, E is the set of edges.

The dual of G, denoted as Ḡ is defined as < V̄a, V̄o, E > where V̄a = Vo, V̄o = Va.

That is, Ḡ is obtained by reversing all AND nodes from G into OR nodes in Ḡ, all

OR nodes from G into AND nodes in Ḡ, all edges remain unchanged.

We then have the following observations:

Observation 3. For arbitrary node n in AND/OR graph G, p(n) and d(n) are

recursive cost schemes respectively defined on G and Ḡ. Let G0 ← f1(G), Ḡ0 ←
f1(Ḡ), then, at each iteration, the tip node selected by PNS* for expansion is the

unique intersecting tip node between G0 and Ḡ0.

Observation 4. Given the same tie-breaking and h from AO* is identical to the

one in PNS*, then for the same explicit graph G′, the frontier node selected by PNS*

must also be a tip node in the solution base G0 selected by AO*.

Observation 5. PNS* can be viewed a version of AO*, where f2(G0) is imple-

mented by selecting the unique tip node of the intersection between f1(G′) and f1(Ḡ′).

Conversely, AO* can also be viewed as a less informed variant of PNS* by treating

all edge cost as 0 in Ḡ′ and h̄ = 0 when applying f1(Ḡ′).

140



After seeing that PNS* be a more informed version of AO*, following the results

in A* [153], we conjecture that PNS* is more efficient than AO*:

Conjecture 1. PNS* dominates AO*, given that AO* uses heuristic function h,

and PNS* uses heuristics h and ĥ; they use the same recursive cost scheme Ψ; both

h and h̄ are admissible and consistent.

A.5 Computing True Proof/Disproof Number is NP-
hard

PNS is well-defined on AND/OR trees [2], but as described earlier, the space graph

of a two-player game is an AND/OR graph. Therefore, using the recursive sum-cost

may over-count some leaf node. This could be a problem in some domains, e.g .,

in Tsume-Shogi some easy to solve transposition node can be assigned huge proof

numbers, which prevents PNS from selecting that node without using long search

time [105, 136]. Algorithms with exponential complexity are known to find the true

proof and disproof numbers at each node in directed acyclic AND/OR graphs [174],

but they are impractical even for toy problems. Heuristic techniques address this

by replacing sum-cost with a variant of max-cost at each node [203], identifying

some specific cases and curing them individually [105, 136]. Such over-counting was

called overestimation in PNS [106, 108], but the theoretical complexity for dealing

with this problem has never been formally discussed. We now show that this task

is NP-hard.

Theorem 1. Deciding whether a SAT instance is satisfiable can be reduced to finding

the true proof (or disproof) number of an AND/OR graph.

Proof. Consider a SAT instance in conjunction normal form

P = ∧kiCi,

where each clause is a disjunction of literals, Ci = ∨jlj . Let x1, x2, . . . , xn be all

the variables, each literal lj is either xj or ¬xj . Construct an AND/OR graph as

follows.

1. Let the start node be an AND node, denoted by P .

2. P contains n+ k successors Ci and Xj , ∀i = 1, . . . , k, ∀j = 1, . . . , n. They are

all OR nodes.

141



P

C1 C2 C3 X1 X2 X3

Tx1 F x1 Tx2 F x2 Tx3 F x3

1 1 1 1 1 1

(x1∨x2∨x3)∧(¬x1∨¬x2∨¬x3)∧(¬x1∨x2)

Figure A.7: Deciding whether an SAT instance is satisfiable can be reduced to
finding the true proof number in an AND/OR graph. All tip nodes are terminal
with value 0. All edges are with cost 0, except those linking to terminal (which have
cost 1).

3. Each Xj contains two successors Txj and Fxj representing xj and ¬xj re-

spectively. The successors of each Ci are those literals that appear in that

clause.

4. Each Txj or Fxj is connected to a terminal node whose value is true or false.

5. All edges have cost 0 except those between Txj or Fxj and terminal nodes:

these edges have cost 1.

6. All leaf nodes are solvable terminal.

For such a graph, to satisfy the start node P , every clause must be satisfied and

each variable node Xj must be assigned to a value. The exact proof number for P is

n, because in the best case, to satisfy each Xj , only one of Txj and Fxj is needed.

Therefore, finding if an SAT instance is satisfiable can be transformed into finding

the true proof number of P in this AND/OR graph. For disproof number, just

replace all leaf nodes as unsolvable in the construction, then the true and minimum

disproof number of P must be n, which is equivalent to finding a solution for the

SAT.

The graph construction from SAT is with polynomial time; it follows that com-

puting proof or disproof number exactly in general AND/OR graph is NP-hard.

An example formula P = (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2) and its

constructed AND/OR graph is shown in Figure A.7.

142


	Introduction
	The Game of Hex as a Benchmark for AI
	Searching for Solutions with the Help of Knowledge
	Learning Heuristic Knowledge in Games
	Principles for Heuristic Search in Games

	Contributions and Organization of This Thesis

	General and Specific Techniques for Solving and Playing Games
	Strategy Representation
	Minimax Strategy and Solution Graphs
	Strategy Decomposition

	Search and Learning Formulations
	State and Problem Space Graphs
	Markov Decision Processes and Alternating Markov Games

	Techniques for Strategy Discovery
	Informed Best-first Search
	Reinforcement Learning
	Deep Neural Networks
	Combining Learning and Search: Monte Carlo Tree Search

	Hex Specific Research
	Complexity of Hex
	Graph Properties and Inferior Cell Analysis
	Bottom Up Connection Strategy Computation
	Iterative Knowledge Computation
	Automated Player and Solver


	Supervised Learning and Policy Gradient Reinforcement Learning in Hex
	Supervised Learning with Deep CNNs for Move Prediction
	Background
	Input Features
	Architecture
	Data for Learning
	Configuration
	Results
	Discussion

	Policy Gradient Reinforcement Learning
	Background
	The Policy Gradient in MDPs
	An Adversarial Policy Gradient Method for AMGs
	Experiment Results in Hex
	Setup
	Data and Supervised Learning for Initialization
	Results of Various Policy Gradient Algorithms
	Discussion


	Three-Head Neural Network Architecture for MCTS and Its Application to Hex
	Background: AlphaGo and Its Successors
	Sample Efficiency of AlphaGo Zero and AlphaZero
	Three-Head Neural Network Architecture for More Efficient MCTS
	PV-MCTS with Delayed Node Expansion
	Training 3HNN

	Results on 1313 Hex with a Fixed Dataset
	ResNet for Hex
	Setup
	Prediction Accuracy of 3HNN
	Evaluation in the Integration of PV-MCTS

	Transferring Knowledge Using 3HNN
	Setup
	Prediction Accuracy In Different Board Sizes
	Usefulness When Combined with Search
	Effect of Fine-tuning

	Closed Loop Training with 3HNN
	Training For 2018 Computer Olympiad
	Zero-style Learning

	Discussion

	Solving Hex with Deep Neural Networks
	Focused Proof Number Search for Solving Hex
	Focused Proof Number Search with Deep Neural Networks
	Results on 88 Hex
	Preparation of Data
	Policy and Value Neural Networks
	Empirical Comparison of DFPN, FDFPN and FDFPN-CNN
	Using Three-Head ResNet

	Solving by Strategy Decomposition

	Conclusions and Future Work
	References
	Appendix Additional Documentation
	Neurobenzene
	Visualization for a Human Identified 99 Solution
	Published Dataset
	From GBFS to AO* and PNS
	Computing True Proof/Disproof Number is NP-hard


