
Memory-Augmented Monte Carlo Tree Search

Chenjun Xiao, Jincheng Mei and Martin Müller
Computing Science, University of Alberta

Edmonton, Canada
{chenjun,jmei2,mmueller}@ualberta.ca

Abstract

This paper proposes and evaluates Memory-Augmented
Monte Carlo Tree Search (M-MCTS), which provides
a new approach to exploit generalization in online real-
time search. The key idea of M-MCTS is to incorpo-
rate MCTS with a memory structure, where each entry
contains information of a particular state. This memory
is used to generate an approximate value estimation by
combining the estimations of similar states. We show
that the memory based value approximation is better
than the vanilla Monte Carlo estimation with high prob-
ability under mild conditions. We evaluate M-MCTS
in the game of Go. Experimental results show that M-
MCTS outperforms the original MCTS with the same
number of simulations.

Introduction
The key idea of Monte Carlo Tree Search (MCTS) is to
construct a search tree of states evaluated by fast Monte
Carlo simulations (Coulom 2006). Starting from a given
game state, many thousands of games are simulated by
randomized self-play until an outcome is observed. The
state value is then estimated as the mean outcome of the
simulations. Meanwhile, a search tree is maintained to
guide the direction of simulation, for which bandit algo-
rithms can be employed to balance exploration and ex-
ploitation (Kocsis and Szepesvári 2006). However, with
large state spaces, the accuracy of value estimation can-
not be effectively guaranteed, since the mean value es-
timation is likely to have high variance under relatively
limited search time. Inaccurate estimation can mislead
building the search tree and severely degrade the perfor-
mance of the program.

Recently, several machine learning approaches have
been proposed to deal with this drawback of MCTS. For
example, deep neural networks are employed to learn
domain knowledge and approximate a state value func-
tion. They are integrated with MCTS to provide heuris-

Copyright c© 2018, Association for the Advancement of Arti-
ficial Intelligence (www.aaai.org). All rights reserved.

tics which can improve the search sample efficiency in
practice (Silver et al. 2016; Tian and Zhu 2015).

The successes of the machine learning methods can
be mostly contributed to the power of generalization,
i.e., similar states share information. Generalized do-
main knowledge is usually represented by function ap-
proximation, such as a deep neural network, which is
trained offline from an expert move dataset or self-
generated simulations (Silver et al. 2016).

Compared with the amount of research done on dis-
covering generalization from an offline learning proce-
dure, not too much attention has focused on exploit-
ing the benefits of generalization during the online real-
time search. The current paper proposes and evaluates
a Memory-Augmented MCTS algorithm to provide an
alternative approach that takes advantage of online gen-
eralization. We design a memory, where each entry con-
tains information about a particular state, as the basis
to construct an online value approximation. We demon-
strate that this memory-based framework is useful for
improving the performance of MCTS in both theory and
practice, using an experiment in the game of Go.

The remainder of the paper is organized as follows:
After preliminaries introduced in Section 2, we theo-
retically analyze the memory framework in Section 3.
The proposed Memory-Augmented MCTS algorithm is
presented in Section 4. Related work and experimental
results are shown in Section 5 and 6, respectively. In
Section 7, we come to our conclusion and future work.

Preliminaries
The Setting
Let S be the set of all possible states of a search prob-
lem. For s ∈ S, let V̂ (s) = 1

Ns

∑Ns
t=1Rs,t denote the

value estimation of state s from simulations, whereRs,t
is the outcome of a simulation, and Ns is the number
of simulations starting from state s. The true value of
a state s is denoted by V ∗(s). The main idea of our
Memory-Augmented MCTS algorithm is to approxi-
mate value estimations with the help of a memory, each

entry of which contains the feature representation and
simulation statistics of a particular state. The approx-
imate value estimation is performed as follows: given
a memory M and a state x, we find the M most sim-
ilar states Mx ⊂ M according to a distance metric
d(·, x), and compute a memory-based value estimation
V̂M(x) =

∑M
i=1 wi(x)V̂ (i), s.t.

∑M
i=1 wi(x) = 1.

LetXs,t = |Rs,t−V ∗(s)| be the sampling error from
the tth simulation of state s. In the analysis of the most
popular MCTS algorithm UCT (Kocsis and Szepesvári
2006), Xs,t is assumed to be σ2-subgaussian, so the
sampling error has zero mean and its variance is up-
per bounded by σ2 (Boucheron, Lugosi, and Massart
2013). We also adopt the same assumption in our anal-
ysis. We denote the value estimation error of state s by
δs = |V̂ (s) − V ∗(s)|, and the true value difference
between states s and x by εs,x = |V ∗(s) − V ∗(x)|.
Using the property of subgaussian variables, δs is σ2

Ns
-

subgaussian (Boucheron, Lugosi, and Massart 2013).
Let εM = maxi∈Mx

εi,x, we assume that our mem-
ory addressing scheme is able to control εM within the
range [0, ε]. The following lemma states the concentra-
tion property of subgaussian variables.
Lemma 1. (Boucheron, Lugosi, and Massart 2013) If
X is σ2-subgaussian, then P (X ≥ ε) ≤ exp(− ε2

2σ2).

Monte Carlo Tree Search
MCTS builds a tree to evaluate states with fast simula-
tions (Coulom 2006). Each node in the tree corresponds
to a specific state s ∈ S, and contains simulation statis-
tics V̂ (s) and N(s). At each iteration of the algorithm,
one simulation starts from an initial state s0, and pro-
ceeds in two stages: in-tree and rollout. When a state st
is already represented in the current search tree, a tree
policy is used to select an action to go to the next state.
The most popular choice of the tree policy is to use ban-
dit algorithms such as UCB1 (Kocsis and Szepesvári
2006). For states outside the tree, a roll-out policy is
used to simulate a game until the end, where a trajec-
tory of visited states T = {s0, s1, . . . , sT } and a final
returnR are obtained. The statistics of s ∈ T in the tree
are updated according to:

N(s)← N(s) + 1

V̂ (s)← V̂ (s) +
R− V̂ (s)

N(s)

In addition the search tree is grown. In the simplest
scheme, the first visited node that is not yet in the tree
is added to it.

Entropy Regularized Policy Optimization
We denote the probability simplex by ∆ = {w : w ≥
0,1 · w = 1}, and denote the entropy function by
H(w) = −w · logw. For any vector q ∈ Rn, the

entropy-regularized optimization problem is to find the
solution of

max
w∈∆
{w · q + τH(w)} (1)

where τ > 0 is the temperature parameter. This prob-
lem has recently drawn much attention in the rein-
forcement learning community (Nachum et al. 2017;
Haarnoja et al. 2017; Ziebart 2010). One nice prop-
erty of this problem is that given the vector q, it has
a closed form solution. Define the scalar value function
Fτ (the ”softmax”) by Fτ (q) = τ log(

∑M
i=1 e

qi/τ), and
the vector-valued function fτ (q) (the ”soft indmax”) by
fτ (q) = eq/τ∑M

i=1 e
qi/τ

= e(q−Fτ (q))/τ , where the expo-
nentiation is component-wise. Note that fτ maps any
real valued vector into a probability distribution. The
next lemma states the connection between Fτ , fτ and
the entropy regularized optimization problem.
Lemma 2. (Nachum et al. 2017; Haarnoja et al. 2017;
Ziebart 2010)

Fτ (q) = max
w∈∆
{w · q + τH(w)}

=fτ (q) · q + τH(fτ (q))

Value Approximation with Memory
In our approach, the memory is used to provide an ap-
proximate value function V̂M(x) =

∑M
i=1 wi(x)V̂ (i),

where
∑M
i=1 wi(x) = 1 are the weights and M is a pa-

rameter defining the neighbouring states in the memory
according to some distance metric d(·, x). One question
naturally arises, is this memory-based value approxima-
tion better than the vanilla mean outcome estimation? In
this section we attempt to answer this question by show-
ing that |V̂M(x) − V ∗(x)| ≤ δx for state x with high
probability under a mild condition. We first show a triv-
ial bound for Pr(|V̂M(x)− V ∗(x)| ≤ δx), then provide
an improved bound with entropy regularized policy.

A Trivial Probability Bound
The first step is to upper bound |V̂M(x)−V ∗(x)| using
the triangle inequality:

|
M∑
i=1

wi(x)V̂ (i)− V ∗(x)|

≤
M∑
i=1

wi(x)|V̂ (i)− V ∗(x)|

≤
M∑
i=1

wi(x)(|V̂ (i)− V ∗(i)|+ |V ∗(i)− V ∗(x)|)

=

M∑
i=1

wi(x)(δi + εi,x)

(2)

2

Let δM = maxi∈Mxδi and εM = maxi∈Mxεi,x. Using
the fact that

∑M
i=1 wi(x) = 1, we can further take an

upper bound of (2) by
∑M
i=1 wi(x)(δi + εi,x) ≤ δM +

εM . This upper bound is very loose, since we do not
specify any particular choice of the weights w. With a
standard probability argument we can immediately get
the following:

Theorem 1. For states x satisfying αx = δx − ε > 0,
let nmin = mini∈Mx

Ni. Then with probability at least
1−β, our memory-based value function approximation
has less error than δx provided that:

nmin ≥
2σ2

α2
x

log(M/β) (3)

Condition (3), under which the high probability
bound can be guaranteed, is quite severe. It requires
that the minimum simulation numbers of all addressed
memory entries are sufficiently large. This trivial bound
is weak since the upper bound (2) depends on the worst
memory entry addressed, without specifying any choice
of the weights w. We show that the entropy regularized
policy optimization can help us to fix this problem.

Improved Probability Bound with Entropy
Regularized Policy
We now provide an improvement of the previous bound
by specifying the choice of the weights w using entropy
regularized optimization. Let c be a vector where ci =
δi+εi,x, 1 ≤ i ≤M . Our choice of w should minimize
the upper bound (2), which is equivalent to:

max
w∈∆
{w · (−c)} (4)

This linear optimization problem has solution wj = 1
for j = argmini(δi+ εi,x) and wk = 0 for k 6= j. How-
ever, in practice we do not know the accurate value of
δi and εi,x and applying this deterministic policy may
cause the problem of addressing the wrong entries. We
provide an approximation by solving the entropy regu-
larized version of this optimization problem:

max
w∈∆
{w · (−c) + τH(w)} (5)

As τ approaches zero, we recover the original problem
(4). According to Lemma 2, the closed form solution of
problem (5) is Fτ (−c) = τ log(

∑M
i=1 e

−ci/τ) by set-
ting w = fτ (−c). By equation (2), −fτ (−c) · (−c) =
−Fτ (−c) + τH(fτ (−c)) ≤ −Fτ (−c) + τ logM .
Therefore, to show Pr{(2) ≤ δ} ≥ 1 − β for some
small constant β, it suffices to show that Pr{−Fτ (−c)+
τ logM ≤ δ} ≥ 1− β.

Theorem 2. For states x satisfying αx = δx−ε > 0, let
n =

∑M
i=1Ni. By choosing the weight w = fτ (−c) =

e−c/τ/
∑M
i=1 e

−ci/τ , with probability at least 1−β our

memory-based value function approximation has less
error than δx provided that:

n ≥ 2σ2

(αx − τ logM)2
log(1/β) (6)

Proof. We show that under condition (6), it can be guar-
anteed that Pr (−Fτ (−c) + τ logM ≤ δx) ≥ 1− β.

Pr

(
−τ log(

M∑
i=1

exp(−ci/τ)) ≤ δx − τ logM

)

= Pr

(
M∑
i=1

exp(−ci/τ) ≥ exp(−(δx − τ logM)/τ)

)

≥ Pr

(
M∑
i=1

exp(−δi/τ) ≥ exp(−(δx − ε− τ logM)/τ)

)
≥ Pr(∃ i, exp(δi/τ) ≤ exp((δx − ε− τ logM)/τ)

= 1−
M∏
i=1

Pr (δi ≥ α− τ logM)

≥ 1−
M∏
i=1

exp(− (αx − τ logM)2Ni

2σ2
)

= 1− exp(− (αx − τ logM)2n

2σ2
)

The first inequality comes from our assumption that all
εi,x ≤ ε, and the last inequality comes from the con-
centration property of subgaussian variables (Lemma
1). All other inequalities can be obtained using standard
probability arguments. Equation (6) can be derived di-
rectly with standard algebra.

The probability bound provided by Theorem 2 is
much better than the one in Theorem 1, since n is the
sum of simulation counts of all addressed memory en-
tries, which has to be greater than nmin.

Memory-Augmented MCTS
In the previous section, we prove that our memory-
based value function approximation is better than the
mean outcome evaluation used in MCTS with high
probability under mild conditions. The remaining ques-
tion is to design a practical algorithm and incorporate it
with MCTS. In particular, this first requires choosing an
approximation of the weight function w = fτ (−c).

Approximating w = fτ (−c)

Let φ : S → RD be a function to generate the feature
representation of a state. For two states s, x ∈ S, we ap-
proximate the difference between V ∗(s) and V ∗(x) by
a distance function d(s, x) which is set to be the nega-
tive cosine of the two states’ feature representations:

εs,x ≈ d(s, x) = − cos(φ(s), φ(x)) (7)

We apply two steps to create φ. First, take the out-
put of an inner layer of a deep convolutional neural

3

network and normalize it. We denote this process as
ζ : S → RL. In practice L will be very large which
is time-consuming when computing (7). We overcome
this problem by applying a feature hashing function
h : RL → RD (Weinberger et al. 2009), and the fea-
ture representation is computed by φ(s) = h(ζ(s)).
One nice property of feature hashing is that it can keep
the inner product unbiased. Since ζ(s) is normalized,
we have:

E[cos(φ(s), φ(x))] = cos(ζ(s), ζ(x))

δx is the term corresponding to the sampling error,
which is inversely proportional to the simulation num-
bers: δx ∝ 1/Nx. Combining with (7) and the fact that
ey is very close to y + 1 for small y we can get our
approximation of fτ (−c):

wi(x) =
Ni exp(−d(i, x)/τ)∑M
j=1Nj exp(−d(j, x)/τ)

(8)

By applying these approximations our model be-
comes a special case of kernel based methods, such
as Locally Weighted Regression and Kernel Regres-
sion (Friedman, Hastie, and Tibshirani 2001), where
the kernel function can be defined by ki(x) =

exp(−d(i, x)/τ)/
∑M
j=1 exp(−d(j, x)/τ). τ acts like

the smoothing factor in those kernel based methods.
Our model is also similar to the “attention” scheme used
in memory based neural networks (Graves et al. 2016;
Weston, Chopra, and Bordes 2015; Vinyals et al. 2016;
Pritzel et al. 2017).

Memory Operations
One memory M is maintained in our approach. Each
entry ofM corresponds to one particular state s ∈ S. It
contains the state’s feature representation φ(s) as well
as its simulation statistics V̂ (s) and N(s). There are
three operations to accessM: update, add and query.

Update If the simulation statistics of a state s have
been updated during MCTS, we also update its corre-
sponding values V̂ (s) and N(s) in the memory.

Add To include state s, we add a new memory en-
try {φ(s), V̂ (s), N(s)}. If s has already been stored in
the memory, we only update V̂ (s) and N(s) at the cor-
responding entry. If the maximum size of the memory
is reached, we replace the least recently queried or up-
dated memory entry with the new one.

Query The query operation computes a memory
based approximate value given a state x ∈ S. We first
find the top M similar states in M based on the dis-
tance function d(·, x). The approximated memory value
is then computed by V̂M(x) =

∑M
i=1 wi(x)V̂ (i) where

the weights are computed according to equation (8).

Figure 1: A brief illustration of M-MCTS. When a leaf
state s is searched, the feature representation φ(s) is
generated, which is then used to query the memory
based value approximation V̂M(s). V̂M(s) is used to
update s and all its ancestors according to equation (9),
as indicated by the red arrows in the figure.

The two advantages of addressing the top M similar
states are: first, to restrict the maximum value difference
of addressed states with V ∗(x) within a range, which
is shown to be useful in our analysis; second, to make
queries in a very large memory scalable. We use an ap-
proximate nearest neighbours algorithm to perform the
queries based on SimHash (Charikar 2002).

Integrating Memory with MCTS
We are now ready to introduce our Memory-Augmented
MCTS (M-MCTS) algorithm. Figure (1) provides a
brief illustration. The main difference between the pro-
posed M-MCTS and regular MCTS is that, in each node
of a M-MCTS search tree, we store an extended set of
statistics:

{N(s), V̂ (s), NM(s), V̂M(s)}
Here, NM is the number of evaluations of the approx-
imated memory value V̂M(s). During in-tree search
of MCTS, instead of V̂ (s), we use (1 − λs)V̂ (s) +

λsV̂M(s) as the value of state s, which is used for in-
tree selection, for example in the UCB formula. λs is a
decay parameter to guarantee no bias asymptotically.

In original MCTS, a trajectory of visited states T =
{s0, s1, . . . , sT } is obtained at the end of each simula-
tion. The statistics of all states s ∈ T in the tree are
updated. In M-MCTS, we also update the in-memory
statistics by performing the update(s) operation ofM.
Furthermore, when a new state s is searched by MCTS,
we compute φ(s) and use the add(s) operation to in-
clude s in the memoryM.

The most natural way to obtain V̂M(s) and NM(s)
is to compute and update their value every time s is vis-
ited during the in-tree search stage. However, this direct
method is time-consuming, especially when the mem-
ory size is large. Instead, we only compute the memory

4

value at the leaf node and backpropagate the value to
its ancestors. Specifically, let sh ∈ T be the state just
added to the tree whose feature representation φ(sh)
has already been computed, and its memory approx-
imated value V̂M(sh) is computed by query(sh). Let
NM(sh) =

∑M
j=1 kj(sh)Nj , R = V̂M(sh) ∗NM(sh).

For state si ∈ {s0, . . . , sh}, we perform the following
updates, where η ≥ 1 is a decay parameter.

X ← max(NM(sh)/η|i−h|, 1)

NM(si)← NM(si) +X

V̂M(si)← V̂M(si) +
R− V̂M(si) ∗X

NM(si)

(9)

The reason for the decay parameter η is because the
memory-approximated value of a state is more similar
to its closer ancestors.

Related Work
The idea of utilizing information of similar states has
been previously studied in game solver. (Kawano 1996)
provided a technique where proofs of similar positions
are reused for proving another nodes in a game tree.
(Kishimoto and Müller 2004) applied this to provide an
efficient Graph History Interaction solution, for solving
the game of Checkers and Go.

Memory architectures for neural networks and re-
inforcement learning have been recently described in
Memory Networks (Weston, Chopra, and Bordes 2015),
Differentiable Neural Computers (Graves et al. 2016),
Matching Network (Vinyals et al. 2016) and Neural
Episodic Control (NEC) (Pritzel et al. 2017). The most
similar work with our M-MCTS algorithm is NEC,
which applies a memory framework to provide action
value function approximation in reinforcement learn-
ing. The memory architecture and addressing method
are similar to ours. In contrast to their work, we provide
theoretical analysis about how the memory can affect
value estimation. Furthermore, to our best knowledge,
this work is the first one to apply a memory architecture
in MCTS.

The role of generalization has been previously ex-
ploited in transposition tables (Childs, Brodeur, and
Kocsis 2008), Temporal-Difference search (TD search)
(Silver, Sutton, and Müller 2012), Rapid Action Value
Estimation (RAVE) (Gelly and Silver 2011), and mNN-
UCT (Srinivasan et al. 2015). A transposition table pro-
vides a simple form of generalization. All nodes in the
tree corresponding to the same state share the same sim-
ulation statistics. Our addressing scheme can closely re-
semble a transposition table by setting τ close to zero.
In M-MCTS with τ > 0 the memory can provide more
generalization, which we show to be beneficial both the-
oretically and practically.

TD search uses linear function approximation to
generalize between related states. This linear function

approximation is updated during the online real-time
search. However, with complex non-linear function ap-
proximation such as neural networks, such updates are
impossible to perform online. Since our memory based
method is non-parametric, it provides an alternative ap-
proach for generalization during real time search.

RAVE uses the all-moves-as-first heuristic based on
the intuition that the value of an action is independent
of when it is taken. Simulation results are not only up-
dated to one, but to all actions along the simulation path.
mNN-UCT applies kernel regression to approximate a
state value function, which has been shown equivalent
to our addressing scheme using our choice of approx-
imations in Section 4. However, we use the difference
between feature representations as the distance metric,
while mNN-UCT applies the distance between nodes in
the tree. Also, both RAVE and mNN-UCT do not pro-
vide any theoretical justifications.

Experiments
We evaluate M-MCTS in the ancient Chinese game of
Go (Müller 2002).

Implementation Details
Our implementation applies a deep convolutional neu-
ral network (DCNN) from (Clark and Storkey 2015),
which is trained for move prediction by professional
game records. It has 8 layers in total, including one con-
volutional layer with 64 7× 7 filters, two convolutional
layers with 64 5 × 5 filters, two layers with 48 5 × 5
filters, two layers with 32 5 × 5 filters, and one fully
connected layer. The network has about 44% predic-
tion accuracy on professional game records. The feature
vector φ(s) is first extracted from the output of Conv7
which is the last layer before the final fully connected
layer of the neural network. The dimension of this out-
put is 23104. A dimension reduction step using feature
hashing as described in Section 4 is then applied. The
feature hashing dimension is set to 4096, which gives
φ(s) ∈ R4096.

The hash code in our SimHash implementation has
16 bits. We use 8 hash tables, each of which corresponds
to a unique hash function. We also apply a multiple
probing strategy. Suppose that a feature vector φ(s) is
mapped to the hash bin bi at the ith hash table. Let the
hash code of bi be hi. To search the neighbours of φ(s)
in the ith table, we search those bins whose hash codes’
hamming distance to hi is less than a threshold, set to
1 in our implementation. The discount parameter η in
equation (9) to update memory approximated values is
set to 2.

Baseline
Our baseline is based on the open source Go program
Fuego (Enzenberger and Müller 2008 2017), but adds

5

1000 5000 10000

0.4

0.5

0.6

0.7

0.8
tau=0.05
tau=0.1
tau=1

(a) M=20

1000 5000 10000

0.4

0.5

0.6

0.7

0.8
tau=0.05
tau=0.1
tau=1

(b) M=50

1000 5000 10000

0.4

0.5

0.6

0.7

0.8
tau=0.05
tau=0.1
tau=1

(c) M=100

1000 5000 10000

0.4

0.5

0.6

0.7

0.8
memSize=1000
memSize=5000
memSize=10000

(d) Testing Memory Size

Figure 2: Experimental results. Figure (a)-(c) shows the results of testing different value of M . Figure (d) shows the
results of testing different size of memory. In all figures, x-axis is the number of simulations per move, y-axis means
the winning rate against the baseline.

DCNN to improve performance. We adopt the method
from (Gelly and Silver 2007) and use DCNN to initial-
ize simulation statistics. Suppose that DCNN is called
on the state s that has just been added to the tree.
For a move m, let pm be the move probability from
the network, and s′ the state transformed by taking
m on s. Let pmax be the maximum of the network’s
output move probabilities. We compute two statistics
V̂DCNN(s′) = 0.5 ∗ (1.0 + pm/pmax) and N̂DCNN(s) =
CNN STRENGTH ∗ pm/pmax. These two values are
used as the initial statistics when creating s′. We set
CNN STRENGTH to 200 in our experiment.

We implement DCNN in MCTS in a synchronized
way, where the search continues after the DCNN evalu-
ation is returned. To increase speed, we restrict DCNN
calls to the first 100 nodes visited during the search.
This baseline achieves a win rate of 97% against origi-
nal Fuego with 10,000 simulations per move. We im-
plement M-MCTS based on this baseline. The same
DCNN is used to extract features for the memory.

Results
We first study how the parameters M and τ can af-
fect the performance of M-MCTS, since these two pa-
rameters together control the degree of generalization.
The parameter M is chosen from {20, 50, 100}, and
τ from {0.05, 0.1, 1}. The size of M is set to 10000.
We vary the number of simulations per move from
{1000, 5000, 10000}. Results are summarized in Fig-
ure 2(a)-(c). The best result we have is from the setting
{M = 50, τ = 0.1}, which achieves a 71% win rate
against the baseline with 10,000 simulations per move.
The standard error of each result is around 2.5%. For
M = 20 and M = 50, the performance of M-MCTS
scales well with the number of simulations per move
with τ = 1 and τ = 0.1. A small temperature τ = 0.05
cannot beat the baseline at all. We believe the reason is
that in this setting M-MCTS only focuses on the closest
neighbours for generalization, but does not do enough
exploration. For M = 100, M-MCTS does not perform
well in any setting of τ , since larger M increases the

chance of including less similar states.
We then investigate the impact of the size of M by

varying it from {1000, 5000, 10000}. M and τ are set
to 50 and 0.1 respectively. Results with different num-
ber of simulations per move are summarized in Figure
2(d). Intuitively, a large memory can provide better per-
formance, since more candidate states are included for
query. The results shown in Figure 2(d) confirm this in-
tuition: M-MCTS achieves the best performance with
|M| = 10000, while small memory size |M| = 1000
can even lead to negative effects for value estimation
in MCTS. We also compare M-MCTS with the base-
line with equal computational time per move. By set-
ting M = 50, τ = 0.1 and with 5 seconds per move,
M-MCTS achieves a 61% win rate against the baseline.

Conclusion and Future Work
In this paper, we present an efficient approach to ex-
ploit online generalization during real-time search. Our
method, Memory-Augmented Monte Carlo Tree Search
(M-MCTS), combines the original MCTS algorithm
with a memory framework, to provide a memory-based
online value approximation. We demonstrate that this
can improve the performance of MCTS in both theory
and practice. We plan to explore the following two po-
tential future directions. First, we would like to investi-
gate if we can obtain better generalization by combin-
ing an offline learned value approximation with our on-
line memory-based framework. Second, the feature rep-
resentation used in M-MCTS reuses a neural network
designed for move prediction. Instead, we plan to ex-
plore approaches that incorporate feature representation
learning with M-MCTS in an end-to-end fashion, simi-
lar to (Pritzel et al. 2017; Graves et al. 2016).

Acknowledgements
The authors wish to thank Andrew Jacobsen for pro-
viding source code of Fuego with the neural network,
and the anonymous referees for their valuable advice.
This research was supported by NSERC, the Natural
Sciences and Engineering Research Council of Canada.

6

References
Boucheron, S.; Lugosi, G.; and Massart, P. 2013. Con-
centration inequalities: A nonasymptotic theory of in-
dependence. Oxford University Press.
Charikar, M. S. 2002. Similarity estimation techniques
from rounding algorithms. In Proceedings of the thiry-
fourth annual ACM symposium on Theory of comput-
ing, 380–388. ACM.
Childs, B. E.; Brodeur, J. H.; and Kocsis, L. 2008.
Transpositions and move groups in Monte Carlo tree
search. In IEEE Symposium On Computational Intel-
ligence and Games, 2008., 389–395.
Clark, C., and Storkey, A. J. 2015. Training deep con-
volutional neural networks to play Go. In Bach, F. R.,
and Blei, D. M., eds., Proceedings of the 32nd Interna-
tional Conference on Machine Learning, ICML 2015,
Lille, France, 6-11 July 2015, volume 37 of JMLR Pro-
ceedings, 1766–1774. JMLR.org.
Coulom, R. 2006. Efficient selectivity and backup op-
erators in Monte-Carlo tree search. In van den Herik, J.;
Ciancarini, P.; and Donkers, H., eds., Proceedings of the
5th International Conference on Computer and Games,
volume 4630/2007 of Lecture Notes in Computer Sci-
ence, 72–83. Turin, Italy: Springer.
Enzenberger, M., and Müller, M. 2008-2017. Fuego.
http://fuego.sourceforge.net.
Friedman, J.; Hastie, T.; and Tibshirani, R. 2001. The
elements of statistical learning, volume 1. Springer se-
ries in statistics, Springer, Berlin.
Gelly, S., and Silver, D. 2007. Combining online and
offline knowledge in UCT. In ICML ’07: Proceedings
of the 24th international conference on Machine learn-
ing, 273–280. ACM.
Gelly, S., and Silver, D. 2011. Monte-Carlo Tree Search
and Rapid Action Value Estimation in computer Go. Ar-
tificial Intelligence 175(11):1856–1875.
Graves, A.; Wayne, G.; Reynolds, M.; Harley, T.; Dani-
helka, I.; Grabska-Barwińska, A.; Colmenarejo, S. G.;
Grefenstette, E.; Ramalho, T.; Agapiou, J.; et al. 2016.
Hybrid computing using a neural network with dynamic
external memory. Nature 538(7626):471–476.
Haarnoja, T.; Tang, H.; Abbeel, P.; and Levine, S. 2017.
Reinforcement learning with deep energy-based poli-
cies. In Proceedings of the 34nd International Confer-
ence on Machine Learning, ICML 2017, Sydney, Aus-
tralia, 6-11 August 2017.
Kawano, Y. 1996. Using similar positions to search
game trees. In Nowakowski, R. J., ed., Games of No
Chance, volume 29 of MSRI Publications, 193–202.
Cambridge University Press.
Kishimoto, A., and Müller, M. 2004. A general solution
to the graph history interaction problem. In Nineteenth

National Conference on Artificial Intelligence (AAAI
2004), 644–649.
Kocsis, L., and Szepesvári, C. 2006. Bandit based
Monte-Carlo planning. In Fürnkranz, J.; Scheffer, T.;
and Spiliopoulou, M., eds., Machine Learning: ECML
2006, volume 4212 of Lecture Notes in Computer Sci-
ence. Springer Berlin / Heidelberg. 282–293.
Müller, M. 2002. Computer Go. Artificial Intelligence
134(1–2):145–179.
Nachum, O.; Norouzi, M.; Xu, K.; and Schuurmans,
D. 2017. Bridging the gap between value and
policy based reinforcement learning. arXiv preprint
arXiv:1702.08892.
Pritzel, A.; Uria, B.; Srinivasan, S.; Puigdomènech, A.;
Vinyals, O.; Hassabis, D.; Wierstra, D.; and Blundell,
C. 2017. Neural episodic control. In Proceedings of the
34nd International Conference on Machine Learning,
ICML 2017, Sydney, Australia, 6-11 August 2017.
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.;
Sifre, L.; Van Den Driessche, G.; Schrittwieser, J.;
Antonoglou, I.; Panneershelvam, V.; Lanctot, M.; et al.
2016. Mastering the game of Go with deep neural net-
works and tree search. Nature 529(7587):484–489.
Silver, D.; Sutton, R.; and Müller, M. 2012. Temporal-
difference search in computer Go. Machine Learning
87(2):183–219.
Srinivasan, S.; Talvitie, E.; Bowling, M. H.; and
Szepesvári, C. 2015. Improving exploration in UCT
using local manifolds. In AAAI, 3386–3392.
Tian, Y., and Zhu, Y. 2015. Better computer Go player
with neural network and long-term prediction. In Inter-
national Conference on Learning Representations.
Vinyals, O.; Blundell, C.; Lillicrap, T.; Wierstra, D.;
et al. 2016. Matching networks for one shot learning.
In Advances in Neural Information Processing Systems,
3630–3638.
Weinberger, K.; Dasgupta, A.; Langford, J.; Smola, A.;
and Attenberg, J. 2009. Feature hashing for large scale
multitask learning. In Proceedings of the 26th Annual
International Conference on Machine Learning, 1113–
1120. ACM.
Weston, J.; Chopra, S.; and Bordes, A. 2015. Mem-
ory networks. In International Conference on Learning
Representations.
Ziebart, B. D. 2010. Modeling purposeful adaptive be-
havior with the principle of maximum causal entropy.
Ph.D.diss., Carnegie Mellon University.

7

