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Abstract

In Monte Carlo Tree Search, simulations play a crucial role since they replace
the evaluation function used in classical game tree search and guide the develop-
ment of the game tree. Despite their importance, not too much is known about the
details of how they work. This paper starts a more in-depth study of simulations,
using the game of Go, and in particular the program Fuego, as an example. Play-
out policies are investigated in terms of the number of blunders they make, and in
terms of how many points they lose over the course of a simulation. The result is a
deeper understanding of the different components of the Fuego playout policy, as
well as an analysis of the shortcomings of current methods for evaluating playouts.

1 Introduction
While Monte Carlo Tree Search (MCTS) methods are extremely successful and popu-
lar, their fundamentals have not been understood and tested well. In MCTS, statistics
over the winrate of randomized simulations or “rollouts” are used as a state evaluation.
One unstated but “obvious” assumption is that the quality of the simulation policy is
closely related to the performance of the resulting search.

How to measure such quality? So far, three main studies have addressed this ques-
tion. Gelly and Silver [7] note that a playout policy which is stronger when used as a
standalone player does not neccessarily work better when used as a simulation policy
in an MCTS player. Silver and Tesauro’s experiments with small-board Go [11] indi-
cate that it is more important that a simulation policy is unbiased (or balanced) rather
than strong. Huang, Coulom and Lin [8] develop this idea further and create a practical
training algorithm for full-scale Go.

This paper aims to re-open the study of simulation policies for MCTS, using the
game of Go, and in particular the program Fuego [6], as a test case. Section 2 introduces
notation, hypotheses, and research questions. Section 3 describes the methods used
in this investigation, Section 4 presents the data obtained, and Section 5 outlines the
conclusions drawn. Section 6 suggests future work to extend these results.
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2 Some Hypotheses about Playout Policies
The following notation will be used throughout this paper: P denotes a playout policy.
MCTS(P) is an MCTS player using policy P in its playouts. In the experiments,
specific policies and MCTS players will be introduced.

A blunder can be defined as a game-result-reversing mistake. A simulation starting
in position p gives the game-theoretically correct result if it plays an even number of
blunders. For example, if neither player blunders, then the result of the game at the end
of the simulation is the same as the game-theoretic result obtained with best play by
both sides from p. If there is exactly one blunder in the simulation, then at some stage
the player who was winning at p makes a crucial mistake, and is losing from that point
until the end of the simulation.

The first two of the following hypotheses are investigated in this work:

1. The strength of a playout for an MCTS engine correlates strongly with whether
it preserves the win/loss of the starting position. The correlation between eval-
uation before and after the playout is the most important factor in quality of
playout. In Section 5.2, we report an experiment that approximately counts the
number of blunders in many policies Pi, and checks if it correlates with the play-
ing strength of MCTS(Pi). Interestingly, the result is negative. We give a partial
explanation.

2. The size of errors made during simulation matters. Approach: for each position,
find out the score by a series of searches with varying komi. Then compare the
estimated score before and after each move. Such an experiment is performed in
Section 5.3, with promising results.

3. Considering simulation balance, having no systematic bias is much more im-
portant than low error. This hypothesis is addressed by the work on simulation
balancing [8,11]. The quality of a playout can be described by bias and variance.
Bias is the most important factor; after that, less variance is better.

3 Methodology
All experiments were conducted using Fuego SVN revision 1585, with some modifi-
cations outlined below, on a 9× 9 board. When using MCTS, Fuego was configured to
ignore the clock and to perform up to 5000 simulations per search. The opening book
was switched off.

Detailed Fuego configuration files, the source code patches required to reproduce
these experiments, and the raw data produced by this investigation are available for
download from the Fuego wiki at http://sourceforge.net/apps/trac/
fuego/wiki/SimulationPolicies.

3.1 Playout policies in Fuego
The playout policy used by Fuego to simulate games a leaf node of the MCTS tree is
structured into several subpolicies which are applied in a top-down manner: the move
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Table 1: Policy variations used in this investigation.
F Default policy R Pure random policy

Subtractive policies Additive policies
no ac F - AtariCapture only ac R + AtariCapture
no ad F - AtariDefense only ad R + AtariDefense
no bp F - BiasedPatternMove only bp R + BiasedPatternMove
no patt F - PatternMove only patt R + PatternMove
no ll F - LowLib only ll R + LowLib
no cap F - Capture only cap R + Capture
no fe F - FalseEyeToCapture

to play is chosen from the set of moves returned by the first subpolicy that proposes
a non-empty set of moves. This choice is made uniformly at random, except in the
case of the BiasedPatternMove subpolicy which weights moves according to machine-
learned probabilities [5]. The final selected move may also be adjusted by one or more
move correctors which are designed to replace certain “obviously” suboptimal moves.
For specific details of Fuego’s playout policy and how it works together with other
MCTS components in Fuego, please refer to [5, 6].

In this investigation, variations of the default Fuego policy were obtained by acti-
vating subsets of the available subpolicies, as summarized in Table 1. In addition to
the default policy (denoted F) and the purely random (except for filling eyes) policy
(denoted R), the policy variations are divided into the subtractive policies (obtained
by disabling one subpolicy from F) and the additive policies (obtained by adding one
subpolicy to R). The subtractive policies also include the “no fe” policy obtained by
disabling the FalseEyeToCapture move corrector in F . Note also that the “no patt”
policy excludes both unbiased and biased pattern moves.

The gogui-twogtp utility from the GoGui suite [4] was used to establish the relative
strengths of MCTS(P) for all P in Table 1, via self-play. Specifically, each subtractive
MCTS(P) was played against MCTS(F) 2000 times, and each additive MCTS(P) was
played against MCTS(R) 500 times.

3.2 Blunders and Balance
Following Silver and Tesauro [11], the playing strength of MCTS(P) can be related to
the imbalance of the playout policy P . In simple terms, a playout policy that tends to
preserve the winner of a game can be expected to produce good performance in MCTS,
even if the moves played during the policy’s simulation are weak.

To investigate this idea, each subtractive policy P (the additive policies proved too
weak) was played against itself over 100 games (again using gogui-twogtp). Every po-
sition in the game was evaluated using MCTS(F), yielding an estimate (UCT value)
of Black’s probability of winning the game assuming strong play from that point. Ig-
noring the first 10 moves, any policy move producing a swing in UCT value from over
0.75 to under 0.25 (or vice-versa for White) was flagged as a blunder. This approach
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Figure 1: Distribution of sampled positions.

to empirical approximation of a blunder is similar to the one taken in [11].

3.3 Sampling Positions from Real Games
In order to obtain positions representative of actual games, random samples were taken
from real 9x9 Go games played on CGOS [3]. Starting with the 57195 games from
June 2011:

• All games shorter than 20 moves were removed, leaving 56968 games.

• The remaining games were labeled in increasing order of CGOS sequence num-
ber: for example, game 1616263 is labeled 1, game 1616264 is labeled 2, etc.

• From the game labeled i having ni moves in total, the position after 10+(i mod
(ni − 19)) moves was saved as a sample. This excludes positions closer than 10
moves to either end of the game.

As shown in Figure 1, this sampling procedure produces a reasonable spread of
early-game, mid-game, and late-game positions, while also being easy to reproduce
using the publically available CGOS records.

3.4 Quantifying Policy Errors
Given a Go position including the player whose turn it is, a strong MCTS player such
as MCTS(F) can be used as an oracle to determine Black’s winning probability. As-
suming that the oracle supports variation of the komi value, a binary search can be used
to find the point at which Black’s chances of winning change from below 50% to above
50%. The fair komi value where this happens is then an estimate of the actual value of
the position to Black.
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Simple binary search for the fair komi value is potentially frustrated by the use
of an inexact oracle such as MCTS(F) since the estimates of winning probability are
subject to variation. In particular, these estimates are expected to be noisiest near the
fair komi value where the result of the game is most sensitive to the moves explored
by MCTS. Far away from the fair komi, MCTS is expected to rapidly converge to the
result that one player is guaranteed the win.

Generalized approaches to binary search given probabilistic or inaccurate evalua-
tion functions have been previously reported in the literature [2, 9, 10]. However, in
the present application, the MCTS oracle is well-behaved enough to allow a relatively
simple approach. Binary search is used to find not the fair komi, but rather those komi
values where Black’s winning percentage passes through 40% and 60%. Then, linear
interpolation is used to estimate the fair komi corresponding to a winning percentage
of 50%.

For each position in the CGOS sample set, an estimate of its value was obtained us-
ing the procedure outlined above. Then, every legal move from the position was played
and the value estimate for the resulting position computed: the change in position value
is an estimate for the value of the move itself. These move ratings were saved as an
“annotated” position file to allow for quickly rating any play from the position. Using
MCTS(F) with 5000 simulations as an oracle, a typical middle game position takes
about 5 minutes to annotate using this method. This functionality was added to the
Fuego code itself in order to simplify the processing of the sample set.

Using the annotated positions from the test set, the play of each policy variation
P was evaluated quantitatively. Since P is non-deterministic, new functionality was
added to Fuego to return a list of all possible policy moves, along with their relative
weighting, rather than a single randomly chosen move. This permitted the accurate
calculation of the expected value of the policy’s play from an annotated position.

In this setting, we redefine our approximation of a blunder as a move that changes
a winning position into a loss, and that loses more than some set number of points. A
threshold of 5 points was chosen based on a qualitative estimate of the precision of the
move values estimated by the fair komi method.

4 Results

4.1 Playout Policies in Fuego
The statistics from policy self-play in Table 2 illustrate the relative effectiveness of the
various subpolicies. In particular, the PatternMove and AtariDefense subpolicies are
clearly rather effective based on the subtractive results. Also, the BiasedPatternMove
subpolicy stands out among the additive results. Of note is the fact that disabling the
AtariCapture subpolicy resulted in a slight but statistically significant advantage as
compared to the default configuration.
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Table 2: Relative strengths of MCTS(P) (2000 (left) / 500 (right) games, standard error
as reported by gogui-twogtp).

P Win % vs. MCTS(F) P Win % vs. MCTS(R)
F 49.5± 1.1 R 48.3± 2.2

no ac 51.6± 1.1 only ac 57.6± 2.2
no ad 18.2± 0.9 only ad 70.3± 2.0
no bp 46.4± 1.1 only bp 76.0± 1.9
no patt 25.9± 1.0 only patt 66.8± 2.1
no ll 47.5± 1.1 only ll 59.1± 2.2

no cap 50.4± 1.1 only cap 67.1± 2.1
no fe 49.9± 1.1

4.2 Blunders and Balance

Table 3: Blunder statistics for subtractive policy self-play (100 games).
P Blunder-free games Even-blunder games % of blunder moves
F 53 72 3.00

no ac 62 82 2.78
no ad 69 85 2.14
no bp 55 77 2.95
no patt 38 65 4.15
no ll 52 79 4.25

no cap 56 71 2.67
no fe 69 84 1.70

Blunder statistics from policy self-play are summarized in Table 3. In addition to the
raw percentage of blunder moves, both blunder-free games and games with an even
number of blunders were counted. If a policy tends to play an even (including zero)
number of blunders, then though these moves are objectively weak the policy can still
be effectively used in MCTS, since the blunders will cancel out and the policy will still
preserve the winner of a game.

4.3 Quantifying Policy Errors
Figure 2 shows that a linear approximation to the neighbourhood of the fair komi is
reasonably accurate, even for early-game positions. Figure 3 plots the fair komi esti-
mate vs. move number for the CGOS samples, confirming that the sample set includes
both one-sided and contested positions over a variety of game stages.
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Figure 2: MCTS oracle values vs. komi for early-game position (left: 1616349 after
10 moves) and mid-game position (right: 1616808 after 45 moves).

Figure 3: Fair komi estimate vs. move number in sampled positions. Darker regions
represent more samples.
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Table 4: Expected policy performance (per move, averaged over all CGOS samples).
P Blunder Chance (%) Expected Point Loss
F 4.14 4.52

no ac 4.19 4.55
no ad 4.67 4.81
no bp 4.51 4.73
no patt 6.55 5.57
no ll 4.10 4.47

no cap 4.20 4.62
no fe 4.14 4.53
R 9.95 7.48

only ac 9.42 7.12
only ad 8.22 6.46
only bp 4.77 4.97
only patt 5.82 5.55
only ll 8.40 6.75

only cap 8.63 6.61

Table 4 summarizes the data collected by evaluating policy moves on the annotated
CGOS samples. Recall that in this context, a blunder was defined as a move from a
winning position to a losing position that also loses at least 5 points (according to the
fair komi estimate).

5 Discussion and Conclusions

5.1 Playout Policies in Fuego
The results summarized in Table 2 were for the most part as expected, although the
small improvement obtained when disabling the AtariCapture subpolicy was interest-
ing. A possible explanation for this is that the AtariCapture subpolicy sometimes ea-
gerly suggests poor moves, while most or all of the good moves it finds would be
covered by subpolicies later in the chain (e.g. [Biased]PatternMove)—in this case dis-
abling the AtariCapture subpolicy could improve the accuracy of playouts. However,
doing this increases the average playout time, since AtariCapture is a much simpler
subpolicy than BiasedPatternMove, and is not effective in timed games.

5.2 Blunders and Balance
As shown in Figure 4, there was no appreciable correlation between the blunder stat-
stics obtained from self-play of policy P and the relative strength of MCTS(P) for
subtractive P . It appears that a more nuanced approach is needed to test the idea that
more balanced policies are more effective for MCTS. One obvious deficiency with
the present method is that the positions arising in pure policy self-play differ greatly
from the positions at the bottom of a typical MCTS tree. This could be addressed by
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Figure 4: Policy self-play statistics for subtractive policies P vs. relative strength of
MCTS(P) (100 playouts)

Figure 5: A nakade position leading to a series of “blunders”.

initiating policy self-play from “real-world” positions instead of an empty board. A
more critical issue, however, was the observed occurrence of long series of blunders in
which the policy repeatedly missed a crucial play for both sides (which is balanced be-
haviour). In these cases the parity of the number of blunders was essentially determined
by how many “distracting” moves were available on the board for each side.

Figure 5 shows a typical example. After Black’s marked move (near the bottom
right corner), the nakade move at A is the only non-losing move for both sides. With-
out specialized nakade knowledge in the playouts to generate that play, it is random
whether Black will kill or White will make two eyes. In such situations it is difficult to
ascribe significant meaning to the statistic “chance of committing an even number of
blunders”. The possibility of many smaller, non-blunder moves adding up to a game-
reversing result also serves to frustrate the analysis focused on blunders. Predicting the
strength of an MCTS player based on its policy’s self-play behaviour is significantly
more difficult than simply examining result-reversing moves.
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Figure 6: Expected point loss of policy P vs. policy blunder rate (left) and vs. relative
strength of MCTS(P) (right).

5.3 Quantifying Policy Errors
Good estimates of the errors in move values estimated by the fair komi method are still
needed. Simply repeating the annotation of a given position reliably produced varia-
tions in move values of at most a few points, suggesting that MCTS(F) using 5000
simulations produces reasonably precise (if not accurate) values. Time permitting, in-
creasing the number of simulations could confirm and/or improve the current estimates.
Furthermore, using other MCTS engines as oracles would provide material for an in-
teresting comparative study; positions where estimates differ greatly could prove to be
interesting test cases.

Figure 6 depicts statistics collected by analysing policy behaviour on the CGOS
sample positions. First, a strong correlation between the expected point loss and the
policy blunder rate was evident. This correlation is intuitively appealing, as it affirms
that the occurrence of blunder moves (which were only a small portion of all the moves
examined) can be linked to the strength of a policy even in non-blunder situations.
Second, in comparing the expected point loss of policy P to the relative strength of
MCTS(P), a suggestive negative correlation emerged, particularly for the additive poli-
cies (note that relative strength was measured against MCTS(F) for subtractive P and
against MCTS(R) for additive P: refer to Sections 3.1 and 4.1). This data supports
the idea that the expected point loss of a policy P can be used as a predictor (though
imperfect) of the strength of MCTS(P). Of course, it is also evident that expected point
loss is far from the only factor.

The annotation and subsequent evaluation of policy moves on the CGOS sample
positions has produced a wealth of quantitative data, but it is not yet clear how to use
this data to improve policies for use in MCTS players such as Fuego. Among other
ideas meriting further investigation, using the detailed statistics to optimize the gross
structure of the playout procedure is particularly attractive. For example, at different
stages of the game the order of evaluating subpolicies may be varied (or the subpolicies
may be given different weights), guided by the expected point losses. More focused
uses could include identifying pathological behaviour in specific subpolicies, and de-
veloping filters to improve them.
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The annotated position files are well suited to the iterative development and/or test-
ing of policies as the time-consuming annotation only needs to be done once (except
to improve the accuracy of the annotations). They can also serve as fine-grained re-
gression tests for full MCTS players, though the problem of identifying “ideal” test
positions is not an easy one. Out of the 56968 sampled positions, MCTS(F) with
5000 simulations plays a blunder in 242 of them, which indicates that examining these
positions in closer detail may help to identify weaknesses in MCTS(F).

6 Future Work
Many of the fundamental questions about simulation policies remain unanswered. Here
is a long list of such topics for future work.

Quality metrics How to measure the quality of a playout policy, and of a single play-
out? Are there simple measures which correlate well with the observed playing
strength of MCTS(P)?

From analysis to policy design Can analysis be used to identify problems with poli-
cies and lead to improvements? Can one predict whether a change in policy will
lead to improved playing strength when used as part of an MCTS?

Effect of Randomization In practice, each policyP seems to require a “right” amount
of randomization, and the performance of MCTS(P) decreases outside the opti-
mum. Can we develop a theoretical understanding of why and how randomiza-
tion works, and how to choose the correct amount?

Local vs global error Is accurate full-board win/loss estimation more important than
detailed point evaluation? Can local errors in P cancel each other without af-
fecting the playing strength of MCTS(P)?

Pairs of policy moves Silver and Tesauro [11] addressed the idea of two-step imbal-
ance, which could be explored with our approach. The idea is to play two policy
moves, then use binary search to estimate the resulting two-step imbalance.

Evaluation using perfect knowledge Policies can be evaluated 100% correctly if a
domain-specific solver is available. Examples are Hex, where very strong gen-
eral endgame solvers are available [1], and in a more restricted sense Go, where
endgame puzzles with provably safe stones, which divide the board into small-
enough regions, can be solved exactly.

Policy vs. short search Instead of just evaluating the move proposed by the policy P
itself, it would be interesting to evaluate the move played by MCTS(P) with a
low number of simulations, and compare with P’s move.

Game phases Analyze the behavior of policies in different game phases, and design
more fine-grained policies for each phase.

Other programs and other games Try similar experiments with other programs such
as Pachi in Go, or even other games such as Hex.
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