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Abstract

A typical way to update map road layers is to compare recent aerial images with existing map data, detect new roads and add them
as cartographic entities to the road layer. This method cannot be fully automated because computer vision algorithms are still not
sufficiently robust and reliable. More importantly, maps require final checking by a human due to the legal implications of errors. In
this paper we introduce a road tracking system based on human–computer interactions (HCI) and Bayesian filtering. Bayesian filters,
specifically, extended Kalman filters and particle filters, are used in conjunction with human inputs to estimate road axis points and
update the tracking algorithms. Experimental results show that this approach is efficient and reliable and that it produces substantial
savings over the traditional manual map revision approach. The main contribution of the paper is to propose a general and practical
system that optimizes the performance of road tracking when both human and computer resources are involved.
© 2006 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights
reserved.
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1. Introduction

Map revision is traditionally a manual task especially
when maps are updated on the basis of aerial images and
existing map data. This is a time consuming and
expensive task. For this reason, maps are typically out of
date. For example, it has been reported that, for a
number of reasons, the revision lag-time for topographic
maps from the United States Geological Survey (USGS)
is more than 23 years (Groat, 2003).
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Road detection and tracking based on computer
vision has been one approach to speeding up this
process. It requires knowledge about the road database
as well as image-related knowledge (Crevier and
Lepage, 1997) including the road context, previous
processing results, rules, and constraints (Baltsavias,
1997). Many road tracking methods make assumptions
about road characteristics (Wang and Newkirk, 1988;
Vosselman and Knecht, 1995; Mayer and Steger, 1998;
Katartzis et al., 2001; Bentabet et al., 2003; Zlotnick and
Carnine, 1993; Mckeown et al., 1998; Klang, 1998;
Tupin et al., 2002), including:

• roads are elongated,
• road surfaces are usually homogeneous,
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• there is adequate contrast between road and adjacent
areas.

One problem with these systems is that such
assumptions are pre-defined and fixed whereas image
road features vary considerably. For example:

• roads may not be elongated at crossings, bridges, and
ramps,

• road surfaces may be built from various materials
that cause radiometric changes,

• ground objects such as trees, houses, vehicles and
shadows may occlude the road surface and may
strongly influence the road appearance,

• road surfaces may not have adequate contrast with
adjacent areas because of road texture, lighting
conditions, and weather conditions,

• the resolution of aerial images can have a significant
impact on computer vision algorithms.

Such properties cannot be completely predicted and
they constitute the main source of problems with fully
automated systems.

One solution to this problem is to adopt a semi-
automatic approach that retains the ‘‘the human in the
loop” where computer vision algorithms are used to
assist humans performing these tasks (Myers et al.,
2000; Pavlovic et al., 1997). In this approach, dynamic
knowledge can be transferred to computers, not only
when necessary, but also to guide the computer.

Several semi-automatic road tracking systems have
been proposed in the past. McKeown and Denlinger
(1988) introduced a semi-automatic road tracker based
on road profile correlation and road edge following. The
tracker was initialized by the user to obtain starting
values for position, direction and width of the road. Road
axis points were then predicted by a road trajectory and
correlation model. Vosselman and Knecht (1995)
proposed a road tracker based on a single-observation
Kalman filter. Human input was used to initialize the
state of the Kalman filter and to extract a template road
profile. The Kalman filter then recursively updated its
state to predict the road axis points using feedback from
matching the template profiles to the observed profiles.
Baumgartner et al. (2002) developed a prototype system
based on the above method. An interaction interface was
designed to coordinate human actions with computer
predictions. More recent semi-automatic approaches
include the least squares template matching methods
(Gruen and Li, 1997) for road centerline extraction by
Hu et al. (2004) and Kim et al. (2004), both requiring
seed-point input from humans to generate 2D template.
Another semi-automatic system was introduced by
Xiong and Sperling (2004), who presented a semi-
automatic tool that enabled the user to visually check and
correct mistakes of the clustering results in performing
road network matching.

These semi-automatic systems only allow humans to
initiate the tracking process and/or to perform final
editing. This makes the road tracking process difficult to
control and leaves the combination of human and
computer resources suboptimal. Typically, the tracking
process is only guided by the most recent human input.

In this paper, we present an approach that uses a
semi-automatic road tracking system based on human–
computer interaction and Bayesian filtering (Arulampa-
lam et al., 2002). Two models of Bayesian filters,
extended Kalman filters and particle filters, are used to
estimate the current state of the system based on past and
current observations. When the Bayesian filters fail, a
human operator observes the reason of the failure and
initializes another filter. Observation profiles are
generated from 2D features of the road texture making
the tracker more robust. Optimal profile matches are
determined from the current state of the Bayesian filters
and the multiple observations. The human operator
interacts with the road tracker not only at the beginning
but throughout the tracking process. User input not only
sets the initial state of the Bayesian filters but also
reflects knowledge of road profiles. Consequently, the
road tracker is more flexible in dealing with different
kinds of road situations including obstructions by
vehicles, bridges, road surfaces changes and more.

The main contribution of the paper is not to develop a
new automatic road tracking method, but to propose a
general and robust system that effectively combines
existing technology with task demands and human
performance (Harvey et al., 2004). It is a practical
solution to applications in remote sensing and image
exploitation, where many automatic algorithms have
been developed, but most of them have been unusable in
reality (Glatz, 1997).

2. System overview

2.1. Application background

One of the main paper products of the United States
Geological Survey (USGS) is the 7.5-minute quadrangle
topographic map series (Groat, 2003) which consists of
about 55,000 map sheets. The revision of this map series
is the Raster Graph Revision (RGR) program which is a
tedious and time consuming manual process. The RGR
program uses existing map sheets as primary input and



Fig. 1. Map revision environment. Previous map layers are aligned with latest digital image data.
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creates new maps as primary output. The existing maps
are displayed on a computer screen togetherwith the latest
digital orthophoto quads (DOQs) of the area to bemapped
(see Fig. 1). The cartographer thenmakes a visual compa-
rison of the map and the DOQs. When an inconsistency is
found between a feature on the map and the DOQ the
cartographer modifies the map to match the DOQ.

The DOQs are orthogonally rectified images pro-
duced from aerial photos taken at height of 20,000 ft,
with an approximate scale of 1:40,000 and a ground
resolution of 1 m. An example of a road scene in a DOQ
is shown in Fig. 2.
Fig. 2. An image sample of size 663 by
2.2. Prototype road tracking system

The road tracking system consists of 5 components
(see Fig. 3):

(1) Human. The human is the center of control and
the source of knowledge.

(2) Computer. The computer performs perceptual
tasks to replace the human where performance is
known to be reliable. It uses vision algorithms for
image preprocessing, feature extraction, and
tracking.
423 pixels extracted from a DOQ.



Fig. 3. Block diagram of road tracking system. This system is composed of five components. 1. human; 2. computer vision algorithms to process
images and track roads; 3. an interface to track and parse human actions; 4. a database to store knowledge, and 5. evaluation algorithms for feedback
purposes, so that the computer can quantitatively evaluate human input and its own performance, and the human can evaluate the performance of
computer.
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(3) Human–computer interface. The choice of the
interface has a significant effect on what can be
attained. The computer records and parses user's
actions in the RGR system through the interface.

(4) Knowledge transfer scheme. The computer selects
and optimizes vision algorithm parameters based
on their ability to predict human behavior
throughout the tracking process.

(5) Performance evaluation. Performance evaluation
is a three-way process in HCI. First, evaluation of
human inputs enables the computer to eliminate
input noise and decide whether to accept or reject
the input. Second, the computer evaluates its own
performance and allows the human to gain control
over the whole process. Third, the user evaluates
the performance of the computer and decides on
what to do next.

The road tracking process starts with an initial human
input of a road segment, which indicates the road
centerline. From this input, the computer learns relevant
road information, such as starting location, direction,
width, reference profile, and step size. This information
is then used to set the initial state model and related
parameters of the automatic road tracker. The computer
also preprocesses the image to facilitate extraction of
road features. The extracted features are compared with
knowledge learned from the human operator through
profile matching. The computer tracks the road axis
points using a Bayesian filter. During tracking, the
computer continuously updates road knowledge while,
at the same time, evaluating the tracking results. When it
detects a possible tracking problem or a tracking failure,
it returns control back to the human. The human
observes the road changes, diagnoses the failure reason
and indicates the correct tracking direction by inputting
a new road segment. The new input enables prompt and
reliable correction of the state model of the tracker. The
new segment can either be input at the current location
to resume tracking or can be input at the location where
the tracking error happened. In this way errors can be
identified and corrected in real time without interrupting
the tracking process.

This system architecture enables two knowledge ac-
cumulation processes. First, reference profiles extracted
from human inputs are stored and the road tracker
gradually accumulates knowledge on these reference
profiles. These profiles represent different road situa-
tions that the tracker has seen. This knowledge passing
process makes the tracker increasingly robust. Second,
the computer also accumulates knowledge by itself:
During tracking, it continues to update the matched
reference profiles with the latest tracking results. This
enables the tracker to adapt to gradual road changes so
that human inputs can be reduced.

The tracking performance is continuously evaluated.
When there is lack of confidence over several con-
secutive positions, the tracker returns control to the
human and waits for the next input. The evaluation of
new input is based on cross-correlation, i.e. new profiles
are defined in terms of their lack of correlation with past
ones. In this way, knowledge redundancy is avoided,
and the knowledge base does not expand too quickly,
thus keeping tracking performance high.
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This intelligent tutor/decision maker and apprentice/
assistant architecture provides a useful communication
path between the human operator and the computer. The
computer can learn quickly from humans, and it works
more and more independently as tracking goes on.

2.3. Human–computer interface

To enable adequate human–computer interactions we
need to track and understand user actions in a software
environment. In the USGS map revision system, a
simple drawing operation can be implemented by either
clicking a tool icon followed by clicking on maps using
the mouse, or by entering a key-in command. Each tool
in the tool bar corresponds to one cartographic symbol
and may encompass a sequence of key-in commands in
the execution. Each key-in is considered an event.
Events from both inside or outside the system are
processed by an input handler and are sent to an input
queue. Then a task ID is assigned to each event.

We implemented embedded software to keep track of
the states of the event queue and extract detailed
information of each event (see Table 1).

We capture and record the time-stamped system-level
event sequence, which contains both inter-action and
intra-action information. To group the events into mean-
ingful user actions, we analyze and parse the events
using natural language processing methods. These
include a semantic lexicon for storing action informa-
tion and a parser for analyzing syntactic and semantic
action information. The event sequence is fed into the
parser and is segmented into complete actions. A comp-
lete description on the human–computer interface is
reported in Zhou et al., 2004.

Besides providing analysis of human performance,
the interface provides the operator with tools for eval-
uating the performance of the road tracker. As intro-
duced in later sections, confidence values are generated
from the proposed Bayesian filters that allow the
performance of the model to be compared directly to
the user performance through the realtime tracker
interface.
Table 1
Data structure for system-level event

Event ID ID of the event
Event name The key-in command
Event type Is it a key in, coordinate, or reset?
Event time The time when the event is captured
Event source Where does the event come from
x coordinate x coordinate of the mouse clicking
y coordinate y coordinate of the mouse clicking
3. Preprocessing

The preprocessing module consists of three compo-
nents: image smoothing, road width estimation, and
extraction of an initial reference-profile. In the smooth-
ing step, the input image is convolved with a 5×5
Gaussian filter

G ¼ exp −
x2 þ y2

2r2

� �
ð1Þ

where r ¼ ffiffiffi
2

p
pixels. This filter was used to set the

analysis scale and to reduce high-frequency noise.

3.1. Road width estimation

3.1.1. Method
Road width determines whether road profiles can be

correctly extracted or not. In previous semi-automatic
road trackers, the road width was typically entered by
the human operator at the beginning of the tracking
(McKeown and Denlinger, 1988; Baumgartner et al.,
2002), or was estimated automatically in the profile
matching step (Vosselman and Knecht, 1995), whereas
in our system, the road width is estimated automatically
at the beginning of the tracking. A road segment is
entered by the human operator with two consecutive
mouse clicks with the axis joining the points defining
the road center line. We assume that the roadsides are
straight and parallel lines on both sides of the road axis.
Road width can be estimated by calculating the distance
between the roadsides. Further, knowledge about road
characteristics also helps determining road edges
because road width varies as a function of road class.

To detect the road edges, a method based on
gradient profiles has been developed. This edge
detector first estimates the true upper and lower
bound of the road width, with the USGS road width
definitions serving as a reference (USGS, 1996). At
each axis point a profile is extracted perpendicular to
the axis. The length of the profile is bounded by the
road width limits defined by USGS. The gradient of
the profile along the profile direction is calculated and
one point is selected on both sides of the axis point
where the largest maximum gradient is found. If
several equal largest local maxima are found, the first
two local maxima are used. The distance between
the two points is considered as the road width at
this axis point. For a road axis segment, we obtain
a probability density function p(x)

pðxiÞ ¼ number of times xi appears; 1V iV n ð2Þ



Fig. 4. Road edge detection results. (a) Cropped image from DOQ with human input (white blocks). (b) Result of Canny edge detector: note the
presence of multiple road edges. (c) Result of gradient profile based detector: only one pair of road edges is detected.
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where xi is the road width value extracted above. n
depends on the road width limit from USGS and the
complexity of the road conditions. Because the image
resolution is 1 m, xi corresponds to road width of
approximate xi meters. Searching for an x* where

pðxTÞ ¼ arg max
x

pðxiÞ 1 V i V n ð3Þ

yields a dominant road width that appears most of the
time. Then new road bounds are calculated using the
functions

lb ¼ xT−e and ub ¼ xT þ e ð4Þ

where lb is the new lower bound, ub is the new upper
bound, and e=4 is an empirical value that proved to be
suitable for our application. Using the new bounds, the
edge detector determines the new road width at each
axis point and computes the average as the final road
width for profile matching.

3.1.2. Discussion
Fig. 4 shows road edges detected by the Canny edge

detector (Canny, 1986) and our own gradient-based
detector. Since the Gaussian filter has already been
applied to the image, the implementation of the Canny
edge detector starts from calculating the x- and y-
gradient. Then the magnitude and direction of the
gradient is calculated at each pixel. To perform the non-
maximum suppression, we used 0.1 and 0.3 as the low
and high threshold to determine the strong edges. Notice
that the Canny edge detector does not take advantage of
the known road direction and the road width limits,
multiple edges may be detected, which causes trouble in
finding the true road edges. Thus, our gradient profile
based edge detector performs better than the Canny
operator, at least in this specific application.

The mean value of the estimated road width was
10.8 pixels, with a standard deviation of 4.3 pixels. In
93.8% of the cases, the estimated road width varied
between 6 and 18 pixels, depending on the real road
widths, the road conditions, and the locations of human
inputs. The estimation of road width can be affected by
several factors. First, pavement markings in multi-lane
roads, rather than the true road edges, may generate the
maximum gradient value. In our application, the aerial
images had a resolution of one meter per pixel. Thus,
pavement markings were either not wide enough to be
displayed or appeared to be less salient after the
smoothing step. Second, off-road areas and the road
can be made of the same material, or have the same
radiometric properties. For example, both the road and
the sidewalk could be concrete. In this case, the
maximum gradient is not found at the road edge. Our
gradient based method either takes the first point at both
sides of the road axis as the road edges, or takes the edge
of sidewalk as the road edge. In both situations, the road
width is bounded by the limits defined by the USGS, so
that it does not deviate far from the ground truth.

The reason for estimating the road width automati-
cally was to allow the operator to focus on the road axis
points and road directions, consistent with the operation
of plotting roads in real-world map revision systems.
However, it should be pointed out that tools with manual
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input are more accurate, though more time consuming,
for estimating road widths, as used, for example in the
ROADMAP system developed by Harvey et al. (2004).

3.2. Profile extraction

An initial reference profile is extracted as a vector of
greylevels from the road segment entered by the human
operator. Later, new profiles are extracted from new
human inputs and placed into a profile list for further use.

To improve robustness of the system, we use two-
dimensional road features, i.e. in addition to searching
along a line perpendicular to the road direction, we also
search a line along the road direction. Profiles are
extracted in both directions and combined. The parallel
profile is useful since greylevel values vary little along
the road direction, whereas this is not the case in off-
road areas. Thus the risk of off-road tracking is reduced
and, in turn, tracking errors are reduced. As will be
described later in Section 4.2, the observation profiles
are also 2D features.

From each human input, we obtain a profile sequence
that contains the road surface texture information which
may include occluding objects. For a sequence of road
profiles P=[ p1, p2,…, pn], profile extraction proceeds
as follows. First, an average profile is calculated. Then
each profile in the sequence is cross-correlated with the
average profile. Whenever the correlation coefficient is
below a threshold (set to 0.8), the profile is removed
from the sequence. In this way, all axis points are
evaluated and road profiles extracted from noisy axis
points, for example, where cars and trucks are presented,
are removed. The algorithm iterates through all the
profiles until a new profile sequence is generated, and
the average profile of the new sequence is taken as the
final road segment profile.

The effectiveness of this noise removal method is
affected by road conditions. When occlusions are
sparse, the method is quite effective. However, in the
case of more populated roads, e.g. roads with a traffic
jam, or roads under the shadow of trees, noisy reference
profiles may be generated. In these cases, the perfor-
mance of the system drops.

4. Road tracking

If we consider the road tracking process as a time
series, it can be modelled by a state-space approach
involving state evolution and noisy measurements. The
state evolution of the tracking process can be defined as

xk ¼ fkðxk−1; vk−1Þ kaℕ ð5Þ
where xk is the state vector at time k, vk is the process
noise, and fk is a function of xk−1 and vk−1.

Given an observation sequence z1:k, the tracker
recursively estimates xk using the prior probability
density function p(xk|xk−1) and the posterior probability
density function p(xk|z1:k). The relationship between
observations and states is defined by

zk ¼ hkðxk ; nkÞ kaℕ ð6Þ

where nk is the measurement noise.
Depending on the properties of the state evolution,

the observations, and the posterior density, the tracking
problem can be solved with different approaches, such
as Kalman filters, hidden Markov models, extended
Kalman filters and particle filters (Kalman, 1960;
Rabiner, 1989; Welch and Bishop, 1995; Arulampalam
et al., 2002). In the following subsections, we introduce
two solutions to the tracking problem, extended Kalman
filtering and particle filtering.

4.1. State model

Road axis points are tracked using recursive esti-
mation following Vosselman and Knecht (1995), who
proposed the following state model:

x ¼
x
y
h
h V

2
664

3
775 ð7Þ

where x and y are the coordinates of road axis points, θ
is the direction of the road, and θ′ is the change in road
direction. The state model is updated by the following
non-linear function

xk ¼

xk−1 þ scos hk−1 þ s
h Vk−1
2

� �

yk−1 þ ssin hk−1 þ s
h Vk−1
2

� �
hk−1 þ sh Vk−1

h Vk−1

2
6666664

3
7777775

ð8Þ

Differences between this simplified process and the
true road shape are interpreted as process noise vk,
whose covariance matrix is Qk.

In Eq. (8), τ is the interval between time k−1 and k,
determining the distance the road tracker traverses in
each step. Initially it is set to the length of the road width
and it is affected by three parameters. The first parameter
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is a “jump-over” factor corresponding to the internal
evaluation of the road tracker (see Section 4.5). The
second parameter corresponds to the prediction scale
(see Section 4.6). The third parameter corresponds to the
curvature of the road. When the road curvature is high, a
smaller τ is used to avoid off-road tracking.

4.2. Observation model

Observations are obtained by matching the reference
profiles to the observed profiles, the latter being extracted
in 2D at the position estimated by the state models. To
minimize disturbances due to background objects on the
road and due to road surfaces changes, a heuristic multi-
ple-observations method is used to search the neighbor-
hood of the estimated points for better matches. Euclidean
distances between the matching and observed profiles are
calculated, and the position with the minimum distance is
selected as the optimal observation in an iteration. The
observations zk are thus calculated as

zk ¼ xk−sksinðhk þ akÞ
yk þ skcosðhk þ akÞ
� �

; ð9Þ

where sk is a shift from the estimated road axis point and
αk is a small change to the estimated road direction.

4.3. Extended Kalman filtering

We have defined a tracking system based on non-
linear state and observation models. Extended Kalman
filtering has been widely used to solve such nonlinear
time series (Brown and Hwang, 1992; Welch and
Bishop, 1995) where the posterior density is assumed to
be approximately Gaussian.

The tracking task is performed by estimating the optimal
state x̂ at each iteration. First, we compute Φ, which con-
tains the coefficients of the linearized time update equations

Uk ¼ dfkðxÞ
dx

jx¼ x̂k−1 : ð10Þ

The covariance matrix of the predicted state vector
becomes

Pkjk−1 ¼ UkPk−1jk−1UT
k þ Qk−1: ð11Þ

After the state update, the extended Kalman filter
continues the iteration by solving the following
measurement update equations:

Kk ¼ Pkjk−1AT ðAPkjk−1AT þ RkÞ−1 ð12Þ
x̂k ¼ Uk x̂k−1 þ Kkðzk−AUk x̂k−1Þ ð13Þ
Pkjk ¼ ðI−KkAÞPkjk−1 ð14Þ

In Eq. (12), A is the measurement matrix

A ¼ 1 0 0 0
0 1 0 0

� �
; ð15Þ

and R is the covariance matrix of the measurement noise

Rk ¼ r2 sin2ðhkÞ sinðhkÞcosðhkÞ
sinðhkÞcosðhkÞ cos2ðhkÞ

� �
; ð16Þ

where σ2 is the variance of the shift s in the observation
model.

The initial state of the Extended Kalman filter is set
to x̂0= [x0 y0 θ0 0]

T, where x0 and y0 are the coordinates
of the end point of the road segment input by human
operator, and θ0 indicates the direction of the road
segment. Starting from the initial state, the extended
Kalman filter tracks the road axis points iteratively until
x or y are outside the image boundaries or a stopping
condition has been met.

Vosselman and Knecht (1995) suggested that the
covariance matrix Qk of the process noise in road
tracking is mainly determined by the difference between
the constant road curvature assumption and the actual
curvature changes. They set the standard deviation of
the process noise in θk′ to 1/400 the radius of the road
and propagate it to the standard deviation of other state
variables. We followed this rule in determining the
process noise.

4.4. Particle filtering

Particle filtering, specifically the CONDENSATION
algorithm proposed in (Isard and Blake, 1998), has been
successfully used in modelling non-linear and non-
Gaussian processes (Arulampalam et al., 2002; Southall
and Taylor, 2001; Lee et al., 2002). The filter approxi-
mates the posterior density p(xk|zk) by the particle set
{sk

i , wk
i , i=1,…,N} in each time step k, where wk

i is a
weight used to characterize the probability of the par-
ticle sk

i .
Given the particle set {sk−1

i , wk−1
i , i=1,…,N} at time

k−1, the iteration k of the particle filter can be
summarized as follows:

(1) Construct cumulative density functions {ck−1
i }

on the current particle set. Sample N particles
{xk−1

j , j=1,…,N} according to the cumulative
density function. The sampling of the jth particle
xk−1
j is done by generating a uniform random
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number u j on [0, 1] and searching for the first
particle sk−1

i with ck−1
i ≥u j.

(2) Update each particle by Eq. (8) to generate new
particles {xk

j , j=1,…,N}. In the state update, the
road curvature parameter θ′ is influenced by a
zero mean Gaussian random variable with unit
variance.

(3) Calculate new weights for each particle based on
how well they fit the observation zk. The weights
are normalized and are proportional to the
likelihood p(zk|xk

j ). In this way, a new particle
set {sk

i , wk
i , i=1,…,N} is constructed.

The estimated state at time k is then

EðxkÞ ¼
XN
i¼1

wi
ks

i
k : ð17Þ

In our application, we assume that the observation is
normally distributed with standard deviation r ¼ ffiffiffi

2
p

and so the likelihood of the observation is

p zjxj� �
~

1ffiffiffiffiffiffi
2p

p exp −
d2j
2r2

 !
; ð18Þ

where dj is the Euclidean distance between the position
of particle xj and the observation. The number of
particles is set to 20 times the road width in pixels. The
initial density of p(x0) is set to a uniform distribution,
which means each particle has the same initial
probability. The particle filter gradually adjusts the
weights of each particle during the evolution process.

4.5. Stopping criteria

A matching profile is extracted from the observation
model and cross-correlated with the reference profile. If
the correlation coefficient exceeds some thresholds (e.g.
0.8 in (Vosselman and Knecht, 1995)), the observation is
accepted; if the coefficient is below the threshold, and
some other conditions are met (e.g. a high contrast
between the profiles), the observation is rejected. In this
case, the Bayesian filters make another state update based
on the previous state, using a larger time interval τ, so that
the estimated position without accepted observation is
jumped over. When contiguous jumps occur (set to 5
jumps), the Bayesian filter recognizes this as a tracking
failure and returns control back to the human operator.

The jump-over strategy is particularly useful in dealing
with small occlusions on the road, for example, when cars
and longtrucks are present. In these cases, the profile
matching will not generate high correlation coefficient at
the predicted state. The jump over strategy uses an
incremented time interval to skip these road positions, so
that a state without occlusions can be reached.

In real applications, however, road characteristics are
more complex. Cross-correlation may not always
generate a meaningful profile match, which in turn
may lead to errors in the tracking process. For example,
a constant road profile may generate high coefficient
when cross-correlated with a profile extracted from an
off-road area with constant greylevel. Furthermore, the
Bayesian filters may often fail because the predicted
position may not contain an observation profile that
matches the reference profile. For example, when
occlusions are present on the road, the reference and
observation profiles may generate a small correlation
coefficient, and in turn reject the observation. The
system then requires substantial interactions with the
human operator, making the tracking process less
efficient and quite annoying for the user.

4.6. Improving efficiency

In previous algorithms (Vosselman and Knecht, 1995;
Baumgartner et al., 2002) each time a new reference profile
was extracted the old reference profile was discarded. In
our system all the reference profiles are retained and the
road tracker gradually accumulates knowledge on road
conditions. In profile matching, the latest profile is given
the highest priority. When matching fails, the Bayesian
filters search the list of reference profiles for a match. To
reflect the gradual change of the road texture, the reference
profile is updated by successful matches using a weighted
sum. We call this the multiple profiles method.

We developed an algorithm to search for the optimal
observation-reference profile combination. The search
space V=bX,Y,ΘN is defined by the current state xk,
where X, Y and Θ are bounded by a small neighborhood
of x, y and θ respectively. The search algorithm is
described below:

Algorithm: OPTPROFILE(P=p1, p2,…, pn, V )
for each vi∈V

extract profile pi′ at vi
c( pi′, p1)← cross-correlation coefficient of

pi′ and p1
end for
c*=max(c( pi′, p1))
if c*N0.9

update p1
return v*

else
for each pi′
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for each pj∈P, j≠1
c( pi′, pj)←cross-correlation

coefficient of pi′ and pj
end for

end for
c*=max(c( pi′, pj))
if c*N0.9

p*=pj corresponding to c*
switch p1 and p*

return v*
else

return rejection
end if

end if

In many tasks, humans use multi-scale attention to
focus on important features and to reduce the influence of
distractors (LaBerge, 1995). To simulate such behavior,
we adopted a step prediction scaling strategy to improve
the efficiency of road tracking. A prediction scale is added
to the state update model of the Bayesian filters, con-
tributing to the calculation of the time interval τ. The
initial prediction scale is set to 1.When a successfulmatch
happens the scale parameter is incremented by 1. When-
ever matching fails the prediction scale is reset to 1. In this
way, the time interval is adjusted automatically. If the road
is long, straight and homogenous in surface, the road
tracker can predict the next road axis point using a larger
scale and ignore many details on the road thus increasing
the speed of the tracking process.

5. Experimental results

5.1. Data collection

Eight students were required to plot roads manually
in the USGS map revision environment, which displays
the old map and the latest DOQ simultaneously on the
screen. Plotting was performed by selecting tools for
specific road classes, followed by mouse clicks on the
perceived road axis points in the image. Before per-
forming the actual annotation, each user was given 30min
to understand the road interpretation process as well as
Table 2
Statistics on human input

User1 User2 User3

Total number of inputs 510 415 419
Total time (in seconds) 2765 2784 1050
Average number of inputs per task 18.2 15.2 15.0
Average time per task (in seconds) 98.8 99.4 37.5
operations such as file input, road plotting, viewing
change, and error correction. They did so by working on a
real map for the Lake Jackson area in Florida. When they
felt confident in using the tools and road recognition, they
were assigned 28 tasks to plot roads on the map for the
Marietta area in Florida. The users were told that road
plotting should be as accurate as possible, i.e. the mouse
clicks should be on the true road axis points. Furthermore,
the road should be smooth, i.e. abrupt changes in
directions should be avoided and no zigzags should
occur. Although professional cartographers would be
expected to perform such tasks better than the students
used here, considering the simplicity of tasks, we believe
the performance of students was close to that of experts.
Indeed all users became familiar with the annotation
operations in less than 15 min.

The plotting tasks included a variety of scenes such as
trans-national highways, intra-state highways and roads for
local transportation. Further, these tasks contained different
road types such as straight roads, curves, ramps, crossings,
and bridges. They also included various road conditions
such as occlusions by vehicles, trees, or shadows.

Both spatial and temporal information on human in-
puts were recorded and parsed and only road tracking
inputs were kept. We obtained 8 data sets each containing
28 sequences of road axis coordinates tracked by users.
Table 2 shows some statistics on the human data. The total
time in the table includes the time that users spent on
image interpretation, plotting, and error correction. As
shown in the evaluation criteria, these were all taken into
account in the efficiency calculation.

The system also allowed us to simulate the human–
computer interactions using the recorded human data as
virtual users. The road trackers interacted with the
virtual users throughout the semi-automatic tracking
process. Finally, we compared the performance between
the simulated semi-automatic road tracking and the
complete manual tracking for each user.

5.2. Evaluation

Semi-automatic systems can be evaluated in many
ways. For a real-world application, it often includes user
User4 User5 User6 User7 User8

849 419 583 492 484
2481 1558 1966 1576 1552
30.3 15.0 20.8 17.6 17.3
88.6 55.6 70.2 56.3 55.4



Table 3
Comparison of road tracking results between particle filters and
extended Kalman filter

Input
saving (%)

Time
saving (%)

Distance
saving (%)

RMSE
(pixels)

Extended
Kalman filter

71.9 63.7 85.3 1.86

Particle filter
(average)

72.3 62.0 85.6 1.90

Particle filter
(best)

79.1 71.6 87.9 2.19
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experience evaluation as reported by Harvey et al.
(2004). Since our system is still in the simulation stage,
we focused on the engineering aspect of the evaluation
where the human factors components are only part of the
assessment criteria. The criteria used to evaluate this
system included the following:

• Correctness: Were there any tracking errors?
• Completeness:Were there anymissing road segments?
• Efficiency: How much could tracking save in terms
of human input, tracking distance, and plotting time?
Fig. 5. Comparison of tracking performances for the particle filters (PF1 an
performance of the particle filter over 10 Monte Carlo trials. PF2 shows the
performance is evaluated on the saving of number of human inputs (upper lef
of tracking distance (lower left graph), and the accuracy as the root mean squa
right graph).
• Accuracy: How much did tracking deviate from
manual inputs?

Correctness and completeness have the highest
priority in Cartography. When errors occur the human
operator has to search and correct these errors and this
may take longer than the time that was initially saved.
The same problem can occur if the update on a road is
incomplete. The most important advantage of the
proposed system over fully automatic ones is that the
human involvement guarantees correctness and com-
pleteness of road tracking. The human operator always
follows and interacts with the road tracker and whenever
an error happens the operator can correct it immediately
by initializing a new tracking iteration. The tracking
process does not stop until the user decides that all roads
have been plotted.

Consequently, in evaluating efficiency, savings in
human inputs, in plotting time and in tracking distance
have to be considered. The number of human inputs and
plotting time are related, so reducing the number of
human inputs also decreases plotting time. Given an
average time for a human input, which includes the time
d PF2) and the extended Kalman filter (EKF). PF1 shows the average
best performance of the particle filter over 10 Monte Carlo trials. The
t graph), the saving of total plotting time (upper right graph), the saving
re error of the tracking results against the human input road axis (lower



Fig. 6. The inf luence of number of particles on the performance of the
system on data extracted from user one.
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for observation, plotting and the switching time between
the two, we obtain an empirical function for calculating
the time cost of the road tracker:

tc ¼ tt þ knh: ð19Þ
where tc is the total time cost, tt is the tracking time used
by road tracker, nh is the number of human inputs
required during the tracking, and λ is an user-specific
variable, which is calculated as the average time for an
input

ki ¼ total time for user i
total number of inputs for user i

1V i V 8

ð20Þ

In real application, the λ could be different, depend-
ing on the usability of the human–computer interface
provided to the user. The savings in tracking distance is
Fig. 7. Road tracking from upper left to lower right. White dots are the detec
input.
defined as the percentage of roads tracked by computer.
Tracking accuracy is evaluated as the root mean square
error between the road tracker and human input.

5.3. Experimental results

We compared the performance of the particle filter
with the extended Kalman filter. Due to the factored
sampling involved in the particle filter the tracker may
perform differently for each Monte Carlo trial. For this
reason we evaluated the particle filter over 10 Monte
Carlo trials and we report both average and best
performance. Table 3 shows the performance compar-
ison for the road trackers based on particle filtering and
extended Kalman filtering. The proposed road tracking
system shows substantial efficiency improvement in
both non-linear filtering algorithms compared to a
human doing the tasks alone. More detailed perfor-
mance comparison for each user are shown in Fig. 5.

In the proposed road tracking application the system
states and observations are subject to noise from
different sources including those caused by the image
generation, disturbances on the road surface, road
curvature changes as well as other unknown sources.
The nonlinear state evolution process propagates the
noise into the state probability density function (pdf ).
For this reason it is better to construct a non-Gaussian
and multi-modal pdf, and the extended Kalman filter
and the particle filter are two sub-optimal methods to
solve such systems. The experimental results show that
the performance of the extended Kalman filter and the
average performance of particle filter are quite similar.
Due to the uncertainty in the state evolution of particle
filters, different pdf of the states can be approximated in
different Monte Carlo trials. When the approximation of
ted road axis points, white line segment shows the location of human



Fig. 8. Road tracking from upper left to lower right. White dots are the detected road axis points, white line segment shows the location of human
input. The number of human inputs is reduced by searching multiple reference profile lists, as described in the text.
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the state pdf is a better fit to the true pdf, the particle
filter out-performs the extended Kalman filter. This is
why the best performance of the particle filter is better
than that of the extended Kalman filter. We also noticed
the compensation on the accuracy in particle filter
tracking. This is caused by the error correction function
of the particle filters which tolerates more deviations in
tracking.

Notice in Table 3 that both Bayesian filters provide
approximately the same level of improvement. This
suggests that a combination of both filters may further
improve the performance of the tracking system. For
example, both filters could perform the tracking task
simultaneously using a two-filter competing strategy. A
Fig. 9. Road tracking from upper left to upper right. Black dots are the detected
The tracking fails when road direction changes dramatically.
dynamic programming approach could also be used to
coordinate the behavior of the trackers, using the
correlation traces to decide the optimal tracking path.
The correlations could also provide human operators with
realtime feedback on the ‘‘level of confidence” the system
has in the prediction step. This could assist the human
operator in monitoring the tracking and in making a
decisionwhether to allow the system to continue tracking.

As can be seen in Fig. 5, the Kalman and particle
filters perform differently for different users suggesting
that an adaptive, competitive filter selection strategy
should be included in the complete tracking model.

Some tracking results are shown in Figs. 7–12. In
Fig. 7, the road tracking starts from the upper left corner,
road axis points, blackline segment shows the location of human input.



Fig. 10. Road tracking from upper right to upper left. Black dots are the detected road axis points, blackline segment shows the location of human
input. The tracking fails when road profile changes at the road connection.
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with the white line segment showing the location of
human input. The following white dots are the road axis
points detected by the road tracker. When the texture of
the road surface changes, the road tracker failed to
predict the next position. Control was returned to the
user who entered another road segment as marked by a
short line segment. Step prediction scaling strategy
enables the road tracker to work faster. This can be seen
in the image, where larger step sizes are used when
consecutive predictions were successful.

Fig. 8 shows how multiple reference profiles help the
tracking. Tracking starts at the upper left corner. When
the road changes from white to black, a match cannot be
found between the observation and the reference
Fig. 11. Road tracking from upper left to lower right. Black dots are the dete
input. This is an extreme case when trees occlude the road. Intensive human
profiles and human input is required as indicated by
the white line segment. When the road changes back to
white, no human input is necessary because the profile
for white road is already in the list of reference profiles.
The tracker searches the whole list for an optimal match.

The performance of the system is influenced by
several factors. First, human factors play an important
role. Human input is not always accurate; hence the road
tracker is influenced strongly in the preprocessing step
when initial parameters are set and road profiles
extracted. This is reflected in similar trends of different
filtering algorithms tracking in the same data sets. For
example, as shown in Fig. 5, the improvement of
efficiency of all trackers is the poorest for user 3 and
cted road axis points, blackline segment shows the location of human
inputs are required.



122 J. Zhou et al. / ISPRS Journal of Photogrammetry & Remote Sensing 61 (2006) 108–124
accuracy is the poorest for user 4. This suggests that our
system can also be used to model the inputs given by
different users. This, in turn, opens the possibility of
investigating user-adapted systems.

Second, the number of particles in particle filter
affects the performance of the system, as shown in Fig. 6.
When the number of particles is smaller than 20 times of
the road width, the performance of the system is quite
steady. However, when this number continues to
increase, the performance of the system drops quickly.
Though more particles allow for an improved approx-
imation of the posterior density of the state, the system
performance decreases due to the time spent on the
particle evolution and likelihood computations.

Third, complex road scene can cause tracking fail-
ures, requiring further human input. Figs. 7 and 8 show
cases of tracking failures that are caused by abrupt
changes of radiometric property of the road. Fig. 9
shows the case that tracking stops where road direction
changes abruptly. Figs. 10 and 11 show the tracking
failures caused by road profile changes due to road
connection and occlusions.

When junctions are encountered the road tracker
makes different judgements based on the road condition
and the status of the tracker, as shown in Fig. 12. At
junction 1, a matching observation could not be found.
But further along the direction of the road, a matching
observation profile was found. Thus, junction 1 was
jumped over by state updating with a large step size τ due
to the jump-over strategy (see Section 4.5) or the step
prediction scaling strategy (see Section 4.6). However, at
junction 2, no matching profile could be found. Thus, the
tracking process stopped and control was returned to the
human operator. Ultimately, in all difficult situations, it is
the humanwho has to decide how to proceedwith tracking.

Vosselman and Knecht (1995) pointed out that a bias
may be introduced to the road center estimation, when
reference road profiles are updated using successfully
matched observation profiles. Unbalanced greylevels of
road sides may lead to shift of the road center in the
reference road profile. In our system, this is avoided by
selecting, in each tracking step, an optimal observation
profile from multiple observation profiles, so that the
Fig. 12. Handling of road junctions. Blackdots are the detected road axis point
quality of the observation profiles can be improved
compared to single observations. The experiments show
that updating reference road profile is a compromise. It
slightly improves the efficiency of the road tracking,
while slightly lowering tracking accuracy. From an HCI
point of view, this is a necessary step, as it enables the
computer to contribute to knowledge accumulation. We
believe this step can be further improved using machine
learning approaches.

6. Conclusion

This paper introduced a human–computer interaction
system for robust and efficient road tracking. It attempts to
bridge the gap between human and computer in automatic
or semi-automatic systems.This approach has a potentially
significant impact on the daily work ofmap revision. It can
greatly reduce human effort in the road revision process.
At the same time, it guarantees correct and complete
results because the user is never removed from the process.

The proposed framework consists of several compo-
nents, the user, the human–computer interface, computer
vision algorithms, knowledge transfer schemes and
evaluation criteria. It can compensate for the deficiencies
of computer vision systems in performing tasks usually
done by humans. This framework also can be applied to
systems that require understanding of different levels of
interactions between human and computer.

The road tracking method is based on Bayesian filters
that match observation profiles to reference profiles.
Particle filters and extended Kalman filters are used to
predict road axis points by state update equations and
correct the predictions by measurement update equa-
tions. During the measurement update process, multi-
ple observations are obtained at the predicted position.
The tracker evaluates the tracking result using nor-
malized cross-correlation between road profiles at
previous and at the current position. When multiple
profiles are obtained from human input, the profile with
the highest cross-correlation coefficient is searched,
with the most recently used profile being given the
highest priority. The use of two-dimensional features,
multiple observation and multiple profile methods has
s. Junction 1 was jumped over, while the tracking stopped at junction 2.
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greatly improved the robustness of the road tracker.
Finally, when they were combined with step predic-
tion scaling method, tracking efficiency was further
increased.

To progress with making human–machine systems
more robust and useful we need to explore a number of
paths.

• The simulated system approximated the human–
computer interaction in a real-world system. To
further study the effectiveness and usability of the
system, we need to implement it on an industrial
platform, such as in the USGS map revision system.

• The combination of Kalman filters and Particle filters
should be studied, especially in developing user-
adapted systems.

• The system can bemore automated and its performance
be further improved if more knowledge resources can
be involved (for example, the buildings layer).

• The system framework was developed for USGS
map revision environment which uses aerial image as
the source of revision. It would be interesting to see
how this system can be applied to other types of
images, for example, to satellite images.
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