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Abstract—Several aspects of systems for learning pattern or object recognition rules are discussed.
First, how are recognition rules developed and to what extent is structural pattern information
embedded into these recognition rules. Second, how are these rules applied to the recognition
of complex patterns such as objects embedded in scenes and how is evidence from different
rules combined into a single evidence vector. Third, how can learned rules be improved through
performance evaluation and feedback to rule generation stages.

1. INTRODUCTION

In traditional Pattern Recognition, patterns are often represented as vectors of
characteristic features which are chosen to optimize representational uniqueness
of patterns belonging to different classes. Pattern classi� cation is achieved by
partitioning feature space into regions associated with different pattern classes. This
approach works well for simple and complete patterns presented in isolation, but is
inadequate for complex patterns or for objects embedded in complex scenes.

Alternatively, patterns can be decomposed into constituent parts and described
in terms of (unary) features of parts and (binary) features of part relations. These
part and part relation features can be linked together into relational structures that
de� ne patterns uniquely. Pattern classi� cation is achieved using relational graph
matching where a sample pattern is matched to a model pattern by searching for
a sample-model mapping that maximizes some objective similarity function. The
relational graph matching approach has several drawbacks. First, relational graph
matching has an exponential computational complexity and is therefore not feasible
for typical object recognition applications. Second, pattern generalization is dif� cult
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to represent and pattern classes have often been represented by enumeration of all
instances. Third, matching of partial patterns cannot be dealt with in a satisfactory
manner.

In the following, we present several methods for learning and generalizing rela-
tional structure descriptions of objects that overcome some of the problems outlined
above. We consider three issues regarding the learning of object recognition rules:

(i) Rule generation: How are object recognition rules learned?

(ii) Rule application: How are the rules applied to the recognition of objects?

(iii) Rule evaluation: How is performance in rule application evaluated in order to
generate re� ned recognition rules?

2. RULE LEARNING

We are considering several rule-learning systems that differ with respect to the
extent that they use structural pattern information for rule generation. In all cases,
rules are de� ned by regions in unary and/or binary feature spaces. In attribute-
indexed systems, rules are of the form

if attribute1 2 bounds1 and attribute2 2 bounds2 : : :

then pattern is likely to belong to class c;

whereas in part-indexed systems, rules are of the form

if part i has these attributes
and the relation between part i and part j has these attributes
and part j has these attributes and : : :

then part i is likely to belong to class c,

The difference between the two systems is illustrated by the two patterns in Fig. 1.
Attribute-indexed systems refer to an unstructured set of unary and binary attributes

Figure 1. Two patterns that are indistinguishablewithout correct indexing between unary and binary
features, i.e. without part-indexing.
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and thus are not able to discriminate between the two patterns. Part-indexed
systems, on the other hand, are able to discriminate between the two because they
refer to particular part combinations and their attributes.

2.1. Conditional rule generation

The fundamental idea of Conditional Rule Generation (CRG, Bischof and Caelli,
1994) is to generate classi� cation rules for patterns or pattern fragments that
include structural pattern information to the extent that is required for classifying
correctly a set of training patterns. CRG analyzes unary and binary features of
connected pattern components and creates a tree of hierarchically organized rules
for classifying new patterns. Generation of a rule tree proceeds in the following
manner (see Fig. 2):

First, the unary features of all parts of all patterns are collected into a unary feature
space U in which each point represents a single pattern part. The feature space U is
partitioned into a number of clusters Ui . Some of these clusters may be unique with
respect to class membership and provide a classi� cation rule: If a pattern contains
a part pr whose unary features u.pr / satisfy the bounds of a unique cluster Ui then
the pattern can be assigned a unique classi� cation. The non-unique clusters contain
parts from multiple pattern classes and have to be analyzed further. For every part
of a non-unique cluster we collect the binary features of this part with all other
parts in the pattern to form a (conditional) binary feature space UBi . The binary

Figure 2. Cluster tree generated by the CRG method. Grey clusters are resolved(i.e. contain elements
of a single pattern class). Unresolved clusters (e.g. U1 and U2) are expanded to the binary feature
spaces (e.g. UB1 and UB2), from where clustering and expansion continues until either all rules are
resolved or the predetermined maximum rule length is reached.
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feature space is clustered into a number of clusters UBij . Again, some clusters may
be unique and provide a classi� cation rule: If a pattern contains a part pr whose
unary features satisfy the bounds of cluster Ui , and there is an other part ps , such
that the binary features b.pr ; ps/ of the pair hpr ; psi satisfy the bounds of a unique
cluster UBij then the pattern can be assigned a unique classi� cation. For non-unique
clusters, the unary features of the second part ps are used to construct another unary
feature space UBUij that is again clustered to produce clusters UBUijk .

In the basic form of CRG, rules are generated using a pure splitting method,
i.e. simple rules with a predetermined maximum length are generated � rst, and
then are re� ned into more discriminating rules using an entropy-based splitting
procedures where the elements of a cluster are split along feature dimension such
that the normalized partition entropy HP .T / D .n1H .P1/ C n2H.P2//=.n1 C n2/

is minimized, where H is entropy. Rule splitting continues until all classi� cation
rules are unique. A completely resolved rule tree provides a set of deterministic
rules for classi� cation of patterns. Every rule in the classi� cation tree corresponds
to a sequence Ui ¡ Bij ¡ Uj ¡ Bjk ¡ ¢ ¢ ¢ of unary and binary features associated
with a chain of pattern parts and their relations. CRG thus produces classi� cation
rules for (small) pattern fragments based on unary and binary features.

2.2. Fuzzy conditional rule generation

Rule generation in CRG degrades rather quickly with noisy data because it is
controlled by a few general parameters such as maximum rule length, minimum
feature difference thresholds or minimum entropy thresholds for classi� cation rules.
These parameters are typically not suf� cient to avoid over-� tting to training data.
One way to overcome this problem (McCane and Caelli, 1997) involves replacing
the crisp decision boundaries of rule conditions by a fuzzy membership function ¹ij

such as

¹ij D
1

1 C

Á
d2

ij

´i

!1=.f ¡1/
; (1)

where dij is the distance between point j and cluster i, f is a fuzzyness factor
(1 < f 6 1) and ´i determines the width of the fuzzy cluster (see McCane and
Caelli (1997) for details). Fuzzy classi� cation rules are generated and re� ned as in
the case of crisp rules. Differences arise only at the level of rule application because
a chain of pattern parts can match multiple classi� cation rules. Hence measures
have to be taken to pursue several, say the best N , classi� cation alternatives rather
than all as in the case of crisp rules.

2.3. Relational evidence theory

In CRG, all rules are expanded and re� ned in a depth-� rst manner until all fragments
of all training patterns can be identi� ed correctly. If one wants to be able to
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recognize objects from almost any fragment, then this is an adequate way to
proceed. However, if one is simply interested in good recognition performance
for complete objects then these rules are clearly too speci� c and one may end up
with unnecessary over-� tting to training data. Intuitively, what has to be done is to
generate and re� ne recognition rules only to the extent that is required for correct
classi� cation of complete training patterns.

This is exactly what is being done in the Relational Evidence Approach (Pearce
and Caelli, 1997). Classi� cation rules are learned in an iterative scheme consisting
of the following stages:

(i) Least-generalization rules involving unary and binary features are generated
and re� ned in a step-wise best-� rst manner rather than in a depth-� rst manner
as in CRG.

(ii) After every generation/ re� nement step it is evaluated whether the current rule
set is suf� cient to uniquely differentiate all training patterns. If this is not the
case the rule set is improved with a single expansion/ re� nement step. Search
for an adequate set of rules is found using dynamic programming techniques
that rely on heuristic estimates of an upper bound of rule quality.

3. RULE APPLICATION

CRG generates classi� cation rules for (small) pattern fragments. When the
classi� cation rules are applied to some new pattern one obtains one or more
(classi� cation) evidence vectors for each pattern fragment, and the evidence vectors
have to be combined into a single evidence vector for the whole pattern. This is more
or less straightforward for single (isolated) patterns, but dif� culties arise in scenes
composed of multiple patterns where it is unclear whether a chain pi ¡pj ¡¢ ¢ ¢¡pn

of pattern parts belongs to the same pattern or whether it is ‘crossing the boundary’
between different patterns. We present a heuristic solution in the context of a
system that makes only weak and general assumptions about the structure of scene
and objects. It is based on the analysis of the relationships within and between
instantiated rules (Bischof and Caelli, 1997).

The � rst stage involves direct activation of the rules in a parallel, iterative
deepening method. Starting from each scene part, all possible chains of parts are
generated and classi� ed using the CRG rules. The evidence vectors of all rules
instantiated by a chain S D hp1p2 : : : pni are averaged to obtain the evidence vector
EE.S/ of the chain S, and the set Sp of all chains that start at p is used to obtain an
initial evidence vector for part p:

EE.p/ D
1

#.Sp/

X

S2Sp

EE.S/; (2)

where #.S/ denotes the cardinality of the set S . Evidence combination based on
(2) does not take into account that some chains may not be contained completely
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within a single object but ‘cross’ boundaries between objects. These chains are
likely to be classi� ed in a arbitrary way, and to the extent that they can be detected
and eliminated, the part classi� cation based on (2) can be improved.

The compatibility measure adopted here involves a measure of the compatibility
of the evidence vectors of the constituent parts with the evidence vector of the chain.
More formally, this measure can be characterized by the following equation. For a
chain Si D hpi1; pi2; : : : ; pini:

Ewintra.Si/ D
1
n

nX

kD1

EE.pik/; (3)

where EE.pik/ refers to the evidence vector of part pik . Initially, this can be found
by averaging the evidence vectors of the chains which begin with part pik . This
compatibility measure can be used with a relaxation labeling scheme for updating
the part evidence vectors (McCane and Caelli, 1997):

EE.tC1/.p/ D 8

³
1
Z

X

S2Sp

Ew.t /
intra.S/ ­ EE.S/

´
; (4)

where 8 is the logistic function, Z a normalizing factor Z D
P

S2Sp
w

.t /
intra.S/,

and the binary operator ­ is de� ned as a component-wise vector multiplication
[a b]T ­[c d]T D [ac bc]T .

Figure 3. Two scene examples. Left: input images, Center: result of segmentation, Right:
interpretation results. Grey regions correspond to correctly labeled regions and hashed ones to
erroneous labelings. The classi� cation system was trained with 18 different objects, each presented
in isolation from 6 different viewpoints.
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For a given chain Si D hpi1; pi2; : : : ; pini of parts, the updating scheme (4) not
only takes into account the compatibility between evidence vectors of all parts pi

but also the compatibility between the average evidence vectors and the chain’s
evidence vector. Experiments show that classi� cation using (4) leads to very
satisfactory classi� cation performance, as is illustrated for two simple scenes in
Fig. 3.

4. RULE EVALUATION

The methods described in the previous sections all follow a simple linear scheme:
image segmentation ! feature extraction ! rule generation. The parameters con-
trolling the three stages are � xed a priori and are not modi� ed even if performance
of the generated rule set is inadequate. This de� ciency is addressed in rule evalua-
tion, where the performance of rule sets is tested and the results are used to provide
feedback to earlier stages.

In this approach, rule evaluation proceeds in the following way: Classi� cation
rules are generated with a training set of images and evaluated using a test set.
Feedback from performance analysis is used to improve all stages of the rule
generation system, from image segmentation over feature extraction / selection to
the rule generation stage. Using best-� rst search, parameters controlling each
of the stages (e.g. resolution level and segmentation threshold at the image
segmentation level, feature selection and combination at the feature extraction level,
rule length and entropy thresholds at the rule generation level) are optimized. Once
performance at one level has been optimized, control parameters are frozen and
optimization continues at the next stage. Results show that rule evaluation leads to
a signi� cant improvement in classi� cation performance.

5. CONCLUSIONS

Several closely related approaches to rule-based pattern and object recognition
were presented, and problems of rule generation, application and evalution were
discussed. All rule generation systems included structural pattern information
in rules to the extent that is required for classifying all training data. Inclusion
of structural pattern information necessitated special considerations regarding the
combination of and consistency analysis between rules when applied to scenes
containing multiple objects. It was shown that this can be achieved using general
rule combination heuristics. Finally, it was shown that classi� cation performance
can be improved when results from rule performance analysis are fed back to earlier
stages of the rule generation system.
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