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Visual Learning of Patterns and Obijects

Walter F. Bischof and Terry Caelli

Abstract—We discuss automatic rule generation techniques for distorted and similar, unseen examples. The third problem,
learning relational properties of two-dimensional (2-D) visual pat- efficiency, refers to the problem of optimizing search and

terns and three-dimensional (3-D) objects from training samples  aching procedures for both, pattern learning and pattern
where the observed feature values are continuous. In particular, recognition

we explore a conditional rule generation method that defines .
patterns (or objects) in terms of ordered lists of bounds on unary ~ The type of pattern representation most frequently used
(pattern part) and binary (part relation) features. The technique, in vision has been theelational structure(RS) [3]. In this
termed conditional rule generation (CRG), was developed to approach, complex patterns are described as being composed
integrate relational structure representations of patterns and the ¢ o otituent parts. Pattern descriptions involve enumeration

generalization characteristics of evidenced-based systems (EBS). .
We show how this technique can be used for recognition of of (unary) features of pattern parts and (binary) features of

complex patterns and of objects in scenes. Further, we show the €lations between parts. In the case of an image, for example,
extent to which the learned rules can identify patterns and objects the pattern parts might correspond to segmented image regions,

that have undergone nonrigid distortions. the unary features might include area, average brightness
or orientation of the regions, and the binary features might
I. INTRODUCTION include distance, relative orientation or length of common

J?oundaries between pairs of image regions. These part and

NE major problem in the development of systems f X ) . .
visual pattern and object recognition is the developmeﬂf‘rt relation features can be linked together into a relational

of representations and search procedures that allow efficiSfiture with parts corresponding to graph vertices and part
instantiation of known models in new image data. Many threke!ations corresponding to graph edges, both being described
dimensional (3-D) object recognition systems use databadk? Set of features [3], [4]. RS representations are limited
techniques that are designed to index efficiently model fe’3- several respects. Ff|rst, genera}l:z?tlor_ls In term_?r Ofl new
tures in structures such as hash tables, trees, or constr¥ifitS O" nonrigid transformations ol 00,' VIEWS are Q' icult to
satisfaction networks (see [1] for a review of such system&fPresent. Second, pattern recognition involves typically graph
Although such approaches have proven somewhat succes! afchlng with a computational co_mpIeX|ty that is exponential
in the recognition of models, patterns, or shapes, they laltkth® number of parts [3], [5]. Prior knowledge can be used
the generalization capabilities that typically distinguish pattem prune the search space [6], [7] but the F’as'c pro*_"?m
recognition from database systems. In two-dimensional (2_%mams. For the same reason, RS representations are (_jlfflcult
pattern recognition, on the other hand, classical methods hige2PP!y to the recognition of (possibly occluded) objects

been used to address the issue of generalization from sampfdapedded in complex scenes. Finally, little attention has been

These include parametric and nonparametric classifiers [2] aﬁaid to the design of optimal search procedures that use

more recently, neural networks. conjunctions of particular sets of feature values to define

The current paper is concerned with the application prqrtant characterizations of pafterns. ,
recent machine learning techniques to the solution of theEvidence-based systems (EBS's) have been introduced [8]
generalization problem and related issues. More specificall§), ©Vercome some problems of the RS approach. Both ap-
we study the application of machine learning techniques 6oach_es share common _characterlsucs: they V\_/ork within a
the learning of relational structures as required for visudHPervised learning (learning by example) paradigm and they
pattern and object recognition. These techniques can provf&@u're subprocesses for encoding, segmentation and feature

solutions to three problems: feature selection, generalizatiGiraction- In EBS, patterns and objects are encoded by rules

and efficiency. The first problem, feature selection, refers gf the form

the problem of how to select and/or order pattern features in if (conditions on feature values )
order to optimize the recognition process. The second problem, then (evidence weights for each class )
generalization, refers to the problem of generating “structural €lse (no inference at all ).

descriptions” that cover a set of training examples, as well asg jje conditions are usually defined in terms of bounds
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generalization. For a given feature (attribute) space parti-
tioning, rule or pattern generality is defined in terms of the
range of feature values associated with each partition, or, in
other words, the volume of the feature space hyper-rectangle
defined by the feature bounds of a rule. Consequently, pattern
generality also determines the degree of feature variability or
pattern distortion tolerated by each classification rule.

Regions in feature space are not necessarily class disjoint,
and so evidence weights are usually used to index the degree
to which samples within a region correspond to different
classes. Evidence weights are typically derived from the re
ative frequencies of different classes per region [8] or, mor
recently, by minimum entropy and associative neural network
techniques [9]. Some systems actually combine clustering (or
feature space partitioning) with weight estimation into a single
neural network architecture [10].

Although these types of evidence-based systems allow gefy: 1. Two patterns that have isomorphic unaiy (= vertex color)
eralizations from samples, they only attain implicit learningnd binary 8 = distance) feature states but differ with respect to their
of the relational structures. Pattern encoding is achieved us ﬁéﬁ'compat'b"'“es- That is, the sequencesliyf— B;; — U; — - differ

. een the two patterns (from [21]).
unary rules (rules related to part features) and binary rules

(rules related to part relational features) that are both activated ) _ _
to evidence patterns or objects. However, structural pattéri@Wever, the problem of learning and constructing union

encoding is typically incomplete in EBS. This is so becausdd discrimination tree_s for _structur_al descriptions ha§ been
EBS-generated rules are not necessarily label-compatible, jagldressed only sporadically in the literature, such as in [16]
the feature conditions in the EBS rules do not contain lab&tdthin the framework of inductive learning of symbolic struc-
to index specific pattern parts and their relations in order fgral descriptions or in [17] within the framework of proba-
guarantee compatibility of unary and binary feature statedlistic inductive prediction of sequential patterns.
This leads to problems when patterns are defined uniquely by Summary, graph matching methods solve the label-
the enumeration of specifiabeledunary and binary feature COmpatibility problem but do not address adequately the
states of the fori; — B,; — U,. This is illustrated in Fig. 1 fu'ndame'ntal issue of generalization, i.e., the ab.lllty tp recog-
where two patterns are shown that have isomorphic und?&?e equivalences betwgen patFerns that are pot |dent|cal'. Also,
and binary feature states (i.e., color and distance valudd§y do not fully exploit learning to determine the optimal
but are not identical. This shows that the existence of sugRarch path amongst unary and binary feature states to evaluate
correspondences does not guarantee identity in structure unff&sexistence of specific patterns. In 3-D object recognition, in
the unary and binary feature labels are compatible. Rulg@ticular, itis often necessary to classify objects as belonging
satisfying this “label compatibility” property of rules mustl© @ specific object type even though_lndlwdual samples of
evidence objects or patterns uniquely, i.e., lists of unary afif class may be nonrigid transformations of other members
binary feature states must evidersgecific joint occurrences Of the same class. Evidence-based systems, on the other
of parts and relationsThe problem then is how to generatd!@nd: provide a means for pattern generalization, but do not
rules having this property. adequately add_ress thg label-compatibility problem. .

As already stated, a labeled and attributed graph is the sim!n the following sections, we focus on the analysis of a
plest representation for visual patterns that takes into accotfifhnique for the learning of structural relatiossnditional
the label-compatibility of unary and binary features. Grapgh!l® generation(CRG). The CRG method searches for the
matching techniques are used to solve the recognition probl@gfurrence of unary andfor binary feature states between
where a sample pattern structure (for example, new data f§nected components of the training patterns and generates
classification) is matched to a model structure by searching f¢€S Of hierarchically organized rules for classifying new
a label assignment that maximizes some objective similarfRZtters. It so enables induction (generalization) on labeled
function [3]. Pattern classes are represented by sets of instarfidd attributed graphs as well as generating optimal decision
and classification is thus achieved by searching through gﬁes for the identification of specific RS. The aim of this paper
model graphs to determine the one producing the best mat!éht.o a_nalyze how thg ,CRG method can be applied to problgms
This representation and graph matching approach, in the foW?{OIV'ng the recognition of 2-D patterns and 3-D objects in
of interpretation trees and feature indexing, has been fHamplex visual scenes.
preferred architecture for object recognition [7], [1].

Different approaches to improving the efficiency of the Il CONDITIONAL RULE GENERATION
matching processes have been proposed, such as constrail@RG is designed for the encoding and learning of complex
based decision trees [6], “precompiled” tree generation [1}atterns or objects that are assumed to consist of multiple
heuristic search techniques [12], dynamic programming [13jarts. In object recognition, image regions are assumed to
relaxation labeling [14], or hierarchical model fitting [15].be segmented consistently into multiple regions or parts. The
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Fig. 2. Cluster tree generated by the conditional rule generation (CRG) procedure. Grey squares denote cluster that are unique with respencttierslaigs m
(i.e., clusters withd; = 0); white squares denote nonunique clusters. The unresolved unary cléstesdl; )—with element from more than one class—are
expanded to the binary feature spateB8; andU B.. Expansion and clustering continues until either all clusters are unique with respect to class membership
or the @ priori chosen) maximum tree depth is reached. In the latter case, the cluster tree is refined through reclustering or cluster splitting.

resulting parts are described by (unary) features such as are&lore formally, each training pattern is assumed to be
average brightness, or eccentricity. Relations between partsnposed of a number of parts (pattern components). Each
are described by (binary) features, such as distance betweart p,.,» = 1,---, N is described by a set of unary features
centers, relative orientation, or length of common boundariegyp, ), and pairs of partgp,,p;) are described by a set of
As described in more detail below, rules in CRG are defindinary featureg_f(p,,,ps). Below, S(p,) denotes the pattern to
as clusters in conditional feature spaces which correspondwthich a partp, belongs, andd; refers to the information or
either unary or binary features of the training data. The clustesisister entropy statistic:
are generated to satisfy two conditions: they should maximize
the covering of samples from one class, and they should Hi==Y g In g 1)
minimize the inclusion of samples from other classes (see k
also [18]). In our approach, such rules are generated througRere ¢;,, defines the probability that an element of cluster
decision tree expansion and cluster refinement as descrilg,@qbngs to clasg.
below. First, the unary features of all parts of all patterns are
collected into a unary feature spac®. = {i(p.),r =
1,---,N}. This feature space is partitioned into a number
of clusterslU;. Some clusters (e.gl/; in Fig. 2) are unique

In the following, we present the technique for generatingith respect to class membership (with entropy = 0)
cluster trees, first in an informal way and then more formalland provide a simple classification rule for some patterns:
Cluster tree generation begins by collecting the unary featufea pattern contains a payi. whose unary features satisfy
vectors of all parts, of all views, and of all objects into ¢he bounds of a unique clustér; then the patternS(p,)
unary feature space. This feature space is partitioned int@an be assigned a unique classification. The nonunique clus-
number of clusters. Some clusters may contain elements dees contain parts from multiple pattern classes and have to
single pattern class and may thus provide classification rules analyzed further. For every part of a nonunigue cluster
for some pattern parts. The other clusters have to be analyzgd(e.g., U in Fig. 2) we collect the binary features of
further. For each parp of a nonunique cluster we collectthis part with all other parts to form a (conditional) bi-
all binary feature vectors of the relation betwgeand other nary feature spacel/B; — {Z(p,,, ps) | #p-) € U; and
pattern parts into a binary feature space. This feature spatfe,.) = S(ps)}. This binary feature space is clustered into
can be analyzed analogous to the unary feature space. &haumber of clusterd/B;;. Again, some clusters may be
analysis continues by analyzing unary and binary featureswfique (e.g./B; in Fig. 2) and provide classification rules
longer and longer sequences (chains) of pattern parts untilfal some patterns: if a pattern contains a past whose
pattern parts can be classified uniquely. unary features satisfy the bounds of clustér and there is

A. Cluster Tree Generation



910 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 27, NO. 6, DECEMBER 1997

an other partp;, such that the binary features of the pair TABLE |
(p:,ps) satisfy the bounds of a unique clustérB;; then CLUSTER TREE GENERATION
the patternS(p,.) can be assigned a unique classification.level(root) —0

For each nonunique clustéfB;;, the unary features of the push(root,quene)

second partp, are used to construct another unary featurewhile (queue not empty)

=

space:UBU;; = {u(ps) | b(pr,ps) € UBy;}, which is ¢ := pop(queue)
clustered into clusteré/ BU;, ;. Again, unique clusters pro- if level(c) = maxlevel then
vide classification rules for some patterns (eldBU;2; in split(c)

else
f := ConditionalFeaturcSpace(c)
clist := cluster(f)

Fig. 2), the other clusters require further analysis, either by
repeated conditional clustering involving additional parts at

levels UBUB,UBUBU, etc. or through cluster refinement, foreach cluster ¢ € clist

as described below. if unresolved(c’) then
Every element of a cluster in the cluster tree corresponds to level(c’) := level(c)+1

asequence;—B;; —U; — By, - - - of unary and binary features push(c’,queue)

associated with a noncyclic chain (path) of pattern parts. CRG end‘;(rﬁel;ich

thus produces classification rules for (small) pattern fragments ;
. . . endif
and their associated unary and binary features whereas EBS ;. hile
and rulegraphs produce classification rules for sets of unary
and binary features. In the current implementation, we analyze
all chain permutations, i.e., all permutations of sequencesConditionalFeatureSpace(c)
Pi = Dj = PisPi — Dk — PjsDj — Pi — Pk,--+ This is re-  ifc = root then
quired in order to guarantee classification of arbitrary partial type(f) := U .
patterns elements(f) := {d(p,),r =1,.N}

. . . else
Feature space clustering can be obtained using parametric type(c)=U then

or nonparametric clustering [2]. Alternatively, one can omit type(f) := B

clustering altogether and rely completely on the cluster re- elements(f) := {B(p, q) | @(p) € ¢ and (p,q) in a chain}
finement methods described in the following section. In the  else

current implementation of CRG, cluster trees are generated in type(f) == U .

a depth-first manner up to a priori chosen) maximum level clements(f) := {i(q) | b(p,q) € ¢}

of expansion (see Table I). Clusters that remain unresolved ‘?ndif

at that level are split in a way described in the following ¢2dif

section. return(f)

way to refine clusters (for example, clustetBls,3,) is to
recluster the associated feature spdd@3ls3) into a larger

All nonunique (unresolved) clusters at a given level of theumber of clusters. However, classification rules associated
cluster-tree (e.q., clustef$ BUz2, UBUs3, andUBUs,s, in with other cluster§l/ BUss; and UBUsss) are lost and have
Fig. 2) have to be analyzed further to construct unique decisitm be recomputed. Alternatively, given that each cluster is
rules. One way of doing this is to simply expand the clusté&ounded by a hyper-rectangle in feature space, refinement of a
tree, analyzing unary and binary attributes of additional parttister can be achieved by splitting this rectangle along some
to generate rules of thUBUBUB...} form. However, boundary. This ensures that other sibling clusters remain un-
if the features used are insufficient, it may be impossibbffected. With respect to the level at which cluster refinement
to obtain completely “resolved” branches in the cluster treis performed, instead of splitting an unresolved leaf cluster
Alternatively, the derived clusters in the tree can be refindd/ BU,3,) one could split any cluster in the chain of parent
or broken into smaller clusters, using more discriminatingusters (U Bas or Us).
feature bounds, as described below. Both approaches hav€onsider splitting the elements of an unresolved cluéter
their respective disadvantages. Cluster refinement leadsatong a (unary or binary) feature dimensiéh The elements
an increasingly complex feature-space partitioning and thak C' are first sorted by their feature (attribute) valfié),
may reduce the generality of classification rules. Clusteaind then all possible cut poinis midway between successive
tree expansion, on the other hand, successively reduces fdaure values in the sorted sequence are evaluated. For each
possibility of classifying pattern fragments, or, in the case eft point7’, the elements of” are partitioned into two sets,
3-D object recognition, classifying objects from partial viewsP, = {c|f(¢) < T} with n; elements and® = {¢|f(c) > T}
In the end, a compromise has to be established between bwith n, elements. We define the partition entrofy-(7) as
approaches.

In cluster refinement, two issues must be addressed, the Hp(T) =nH(P) +noH(P,). (2)
refinement method and the level at which cluster refinement
should be performed. Consider the cluster tree shown in FigTBe cut point7 that minimizesHp(TF) is considered the
with nonunique cluster§ BUs12, U BUs 3, andlU/ BUszo. One  best point for splitting cluste€ along feature dimensio#’

B. Cluster Refinement
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(see also [19]). The best split of clustéris considered the vectors have to beombinednto a single overall classification
one along the feature dimensidn that minimizesHp(Tr). of the pattern. The problem of evidence combination is very
As noted above, rather than splitting an unresolved leaf clustdosely related to the concept of “stacked generalization”
Cr,, one can split any cluster; in the parent chain of’;,. [20] with some added difficulties that are discussed below.
For each cluste€’;, the optimal spliti’s is computed, and the Dependent on a number of factors there are several possible
clusterC; that minimizesTr is considered the optimal level approaches to evidence combination.

for refining the cluster tree. Clusters aboge may contain  First, different rules can be devised dependent on whether
elements of classes other than those that are unresolggl. in information about training patterns is completely preserved or
Hence, in computingd p for those clusters, we consider onlynot. In the rulegraph approach [21], for example, information
elements of classes that are unresolved’in about training patterns is completely preserved and the clas-

Two further properties of the splitting procedure are imposification of a sample pattern is based, in the end, on finding
tant, since they affect the type of rules generated by CRe best match of the sample graph to the stored training or
First, if a nonterminal cluster of the cluster tree is split, thenodel graphs. Here, evidence rules are simply used to prune
feature spaces conditional upon that cluster are recomputkd search tree. In EBS [22], on the other hand, pattern infor-
since the elements of the feature space have changed. Secoradion that is not preserved in the classification rules is lost.
in the case of a tie, i.e., if two or more clusters have the sarBecond, evidence combination schemes become typically more
minimal partition entropyH(T’), the cluster higher in the elaborate as one progresses from the recognition of single,
cluster tree is split. Together, this leads to CRG having a cleaymplete patterns to single, incomplete (partially occluded)
preference for shallow cluster trees and for short rules, whighgtterns to complex scenes containing multiple, incomplete
in turn, leads to efficient rule evaluation. patterns. Third, evidence combination rules can either be given

In the generation of a cluster tree, every new feature spaxepriori as in [20] or they can be learned as in [22]. In
(the initial unary feature spack, or any of the conditional the present paper, we discuss the use of CRG for the case
feature spaced/B,;,UBU,;, etc.) can be partitioned usingof complex scenes with multiple patterns, where information
standard cluster methods [9] to obtain an initial rule seabout training patterns is not completely preserved and where
Alternatively, one can refrain from feature space clustering aegtidence combination rules are givarpriori.
rely completely on the splitting procedure introduced above.
The latter approach was used in all applications reported
below.

The rules generated by CRG are sufficient for classifying In this section, we illustrate learning of 2-D patterns using
new pattern or pattern fragments, provided that they atfee CRG method and the recognition of these patterns em-
sufficiently similar to patterns presented during training arfebdded in more complex scenes using the generated rules.
provided that the patterns contain enough parts to instantidtee first example, line triples, consists of four classes of
rules. However, cluster trees and associated classificatfgatterns with four training examples each [see Fig. 3(a)].
rules can also be used for partial rule instantiation. A rukeach pattern is described by the unary features “length” and
of length m (for example, aUBUBU-rule) is said to be “orientation,” and the binary features “distance of line centers”
partially instantiated by any shortéir< m) sequence of unary and “intersection angle” between adjacent parts, i.e., part pairs
and binary features (for example, (ABU-sequence). From whose center-to-center distances do not exceed a(lifgit. ).
the cluster tree shown in Fig. 2, it is clear that a partidlhe line patterns are simplified versions of patterns found in
instantiation of rules (for example, to théB-level) can lead to geomagnetic data that are used to infer the presence of certain
unique classification of certain pattern fragments (for exampl®gtals or minerals.
those matched by thiés or [/ By, rules, but it may alseeduce CRG was run with maximum rule length settmalevel =
classification uncertainty associated with other nodes in thdi.e., rules up to the form o/ BUBU are being generated),
cluster tree (for examplel/B,3). From the empirical class and it produced 35 rules, threlg-rules, 18 UB-rules, two
frequencies of all training patterns associated with a nodeBU-rules, and 12/ BU B-rules.
of the cluster tree (for exampld/B,3), one can derive an At recognition time, a montage of patterns was presented
expected classification vector, @videncevector. For example, [see Fig. 3(b)], and the patterns were identified and classified
if clusterU BU»33 (in Fig. 2) contains five elements of class 1as described below, producing the classification result shown
three elements of class 2, and no other elements, the assocititédg. 3(d). Pattern identification and classification is achieved
evidence vector would b&(UBU,33) = [0.625 0.375--+]. using the following steps.

The evidence vector is used to predict the classification vectorl) Unary features are extracted for all scene parts (lines),
of any part, or sequence of parts, that instantiates the associated and binary features are extracted for all adjacent scene
rule. parts, i.e., pairs whose center distance does not exceed
the distance used in trainin{d,,.x). The adjacency
graph is shown in Fig. 3(c), where dots indicate the posi-

CRG generates rules for the classification of chains of tion of the line centers, and adjacent pattern parts (lines)
pattern parts. In the application of these rules to a pattern, with a center-center distanek< d,,. are connected.
one obtains therefore multiple evidence vectors, typically one2) Given the adjacency graph, all noncyclic paths up to
for each chain and each instantiation of a rule. These evidence a certain lengthl are extracted, wheré < mazlevel.

I1l. DETECTING 2-D PATTERNS IN SCENES

C. Evidence Combination
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states, a chain may or may not instantiate one (or more)
classification rule. In the former case, rule instantiation
class 1 may be partial (with a nonunique evidence vedis)),
or complete (withH[E(S)] = 0). As discussed above,

the evidence vector for each rule instantiation is derived
1 from the empirical class frequencies of the training

class 2 examples.

/
T 4) The evidence vectors of all chains

<pi7pj17 e 7pn1>7 <p17p12 P 7pTL2>7 e Starting
/></ at a common parp; must be combined to obtain a

class 3 classification for par;.

We have studied two ways of combining the evidence
vectors, a winner-take-all (WTA) solution and a relaxation
labeling solution. Implementation of the WTA solution is
4 class 4 straightforward. The evidence vectors of all chains starting

at p; are averaged to giv@av(pi), and the most likely class
label is used to classify pag;.
@ The WTA solution does not take into account that, for
a chainS = (p;,p;,---,pn), the average evidence vectors
Eav(pi), Eav(p), - -, Eav(pn) may be very different and pos-
/ sibly incompatible. If they are very different, it is plausible
to assume that the cha is “crossing” boundaries between
different patterns/objects. In this case, the chain and its ev-
idence vectors should be disregarded for the identification
/\ and classification of scene parts. Accordingly, compatibilities
between evidence vectors are taken into account using a
relaxation labeling (RL) procedure. Here, the weight of an
evidence vectorﬁ(pi) of a partp;, depends on the similarity
(b) (c) (compatibility) OfE(pi) to the evidence vectors of neighboring
parts. Further, constraints on evidence vectors are propagated

X
XN N

throughout the pattern using a standard relaxation labeling
lass 1 technique [23]. More precisely, the RL solution is given by
777777777777 class
N e class 2 Ep)y=a| > E'(@)C(pipn) 3)
< ‘ class 3 S=pi-Pn)
) ,,,,,,,,,, class 4 where Et(pi) corresponds to the evidence vector gf at
iteration ¢, with E°(p;) = FE..(p;). C(pi,p,) corresponds

to the compatibility between parts;, and p,,, and ¢ is the
(d) logistic function
Fig. 3. (a) Four classes of patterns with four training patterns (views) each.

Each pattern is composed of three lines. Lines are described by the unary

features “line length” and “orientation,” and pairs of lines are described tﬁlh ibility f . . fi . f th |
the binary features “distance of line centers” and ‘“intersection angle.” (H)1€ compatibility function is defined in terms of the scalar

Montage of (slightly distorted) line triples. (c) In the adjacency graph for thproduct between the evidence vectors of partandp,,
montage, dots indicate the position of the line center and adjacent lines (with

a center distance below a given limit) are connected. (d) Result of the pattern 7 = C(pi7pn) = E(pz) . E(pn) (5)
classification using the rules generated by CRG. Class labels for each line

are shown on the right. For identical evidence vecto(p;) and E(p,), C(p;,pn) =
1, and for incompatible evidence vectors, for examﬁ(@i) =
These paths, termechains constitute the basic units [1,0,0] and E(p,.) = [0,1,0], C(p;, pn) = O.
for pattern classification. A chain is denoted By— Compatibility of evidence vectors is a weak constraint for
(pi,pj,- -+, pn) Where eaclp; denotes a pattern part. Forupdating the evidence vectors of each part and it may even
some chains, all parts belong to a single learned patteh@ve an adverse effect if the adjacency graph is complete. This
but other chains are likely to cross the “boundaryis due to the following. As mentioned before, the evidence
between different patterns. vectors of all chains(p;,p;,, -, pn. ) PirPjar 1 Pra)y
3) Each such chainS = (p;,p,,---,pn) is classified starting at partp; are combined to obtain a classification

through parallel instantiation of the rules generated duier part p,. Some of these chains may involve completely
ing training. Depending on the unary and binary featufeinrelated” parts, i.e., parts belonging to different patterns,

®(z) = (1 + exp[—20(z — 0.5)]) . (4)
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yet they may instantiate some classification rule. To tlebsolute distance of region centers, minimum distance between
extent that this happens, classification of pgst may be the regions, distance of region centers normalized by the sum
adversely affected and even be incorrect. For these reasarishe region areas, and length of shared boundaries normalized
good classification performance for complex pattern montageg total boundary length.
(as shown in Fig. 3) are not a trivial result. For the simple For the training data, CRG analyzed 276 different chains of
patterns shown in Fig. 3, and the moderate connectivity pattern parts and produced 32 rules: niheules, fourl/ B-
the adjacency graphs of the montages, the relaxation methatks, 12U BU-rules, thred/ BU B-rules, and foul/ BU BU -
outlined here proved to be sufficient to obtain perfect pamiles. From the distribution of rule types, it is evident that CRG
labeling. For the montage of undistorted, noise-free traininged predominantly unary features for classification. Given the
patterns in Fig. 3(b), recognition performance was perfect. fact that CRG has a strong tendency to produce shallow cluster
order to test recognition performance for noisy patterns, wees and short rules (see Section 1I-A), and given the fact that
added Gaussian noise with a standard deviation of 1%, 2fte unary features are quite diagnostic (see Fig. 4), this result
and 5% of the feature ranges to each feature. For these nagsmot surprising. However, each unary and binary feature was
levels, performance dropped only moderately to an averagsed in at least some of the classification rules.
of 97%, 89%, and 80%, respectively. When the patterns inClassification performance was tested with several complex
Fig. 3(b) were separated from each other, thus eliminating tbenfigurations of block patterns, two of which are shown
possibility that chains of “unrelated” parts were classifiedn Fig. 5, together with the classification results. Classifica-
pattern classification performance remained high at 99.3%n proceeded as described in Section Ill, using the chain
correct for Gaussian noise with a standard deviation of 5% (@falysis and relaxation labeling solution. For both scenes,
the feature ranges) and dropped to 87% correct for Gausséinparts [11 in Fig. 5(a), 17 in Fig. 5(b)] were classified
noise with a standard deviation of 10%. These results cleadygrrectly with the exception of a single part from the class-
show that CRG is capable of finding adequate generalizatiohsonfiguration [see Fig. 5(c) and (d)]. The reasons for the
of the training patterns, and that it is capable of generatigcurrence of misclassifications were discussed in the previous
recognition rules that show a relatively high resilience teection.
pattern distortions. For comparison purposes, we have analyzed the block
Much stronger constraints than compatibility of evidencexample using classical decision trees [25]. For decision trees,
vectors can be derived from more specific structural informan implicit relational structure has to be imposed on the
tion of the training patterns, such as the label-compatibilitigglection process. In the first analysid,/# B-triple analysis,
between pattern parts, or from pose information in the caseeg¥fch image partP of the training and test images was
3-D object recognition. The usefulness of such information igescribed by 13 features. These features consisted of the five
however, pattern dependent and considered beyond the sogpery features of? (see above), the four binary features (see
of the present paper. above) of the relation betwedn and its closest neighbor, and
another four binary features of the relation betwéeand its
second-closest neighbor. For the class 1 cases which consisted
IV. OBJECT RECOGNITION USING INTENSITY DATA of two parts only, the feature values for the second binary
The blocks example presented in this section consists ¢¢lation were set to “unknown.” A decision tree was generated
various configurations of colored blocks. The configurationssing C4.5 with default parameters [25], and the resulting tree
are learned in isolation (see Fig. 4) and have to be identifisds used to classify all parts of the test scenes in Fig. 5. In
in more complex arrangements (see Fig. 5). The training setch of the two scenes, three parts were misclassified. The
consisted of five classes of block configurations, each wigood performance obtained with C4.5 is consistent with the
three training examples, and the test arrangements consisibgervation that the use of higher-order relational information
of up to 20 blocks. does not seem to be crucial for successful classification of this
Images of the training and test scenes were captured witita set.
a color camera. Preprocessing was fairly simple, consistingThe first comparison using C4.5 employed features of all
of a segmentatiorstage and deature extractionstage. Seg- U BB-triples (unary features and binary features of relations
mentation was achieved using a form of K-means clusterimgth two other parts) for classification. A second analysis,
(minimizing within-cluster variance in feature space) on posissing UBU-triples (with 14 features: the same five unary
tion (z,y) and color(r, g,b) attributes [24]. For the resulting features of all pairs of parts, as well as the same four binary
clusters, small clusters were merged with larger neighbfgatures of their relation) was performed, but the results are
clusters in order to eliminate spurious image regions. Given thmich worse. For the scene in Fig. 5(a), 33 out of 11BU-
rich image information, it is not surprising that the resultingriples or 30% were misclassified, and for the scene in Fig. 5(b)
image regions correspond fairly well to the individual blocd03 out of 272U BU-triples or 37.8% were misclassified.
faces. Given these high error rates, it is not surprising that part
In the feature extraction stage, the following unary featuretassification for the scenes in Fig. 5 was rather poor. For the
were extracted for each image region: size (in pixels), corseene in Fig. 5(a), 11 out of 17 parts were classified correctly,
pactnessperimeter? /arca), and the normalized color signalsand for the scene in Fig. 5(b), five out of 11 parts were
R/(R+G+B),G/(R+G+B),andB/(R+G+B). For pairs classified correctly. This performance could not be improved
of image regions the following binary features were computedsing the relaxation scheme described in Section Ill.
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Fig. 4. Images of five classes of toy block configurations with three views each. The image parts are described by the unary features size, eccentricity
and the three normalized color coordinates. Pairs of image parts are described by the binary features of midpoint distance, area-normalized midpoin
distance, minimum distance, and normalized shared boundary length.
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A general point is, however, more important. The CR@as generated manually. This example of forcing C4.5 to
method generates rules of (minimal) variable lengptimized function with RS and complex scene data emphasizes the very
for a given training set whereas the decision tree (C4.5Need for systems like CRG, for relational learning algorithms
fixesthe dimensionality of the feature space and rule lengti. general.

Indeed, C4.5 does not use part-indexing and so the relationaRecently, Quinlan [27] and Muggleton and Buntine [28]
structure has to be encoded implicitly in the attributes extractB@ve investigated general methods for learrsggbolicrela-
from different parts and part relations. The choicel&BB- tional structures in the form of Horn clauses in the fpllowmg
triples for the block example lead to a C4.5 performan&$nse- In FOIL, [27] considers the problem of learing, from
that was essentially the same as that of CRG, but for ghgsitive examples _(closed _World) or pos_mve and negative
U BU-triples C4.5 performance was much worse. This Choicegamples, conjunctions of literals that satisfy

has to be done priori whereas it is adjusted dynamically Ce—1Ly, Ly

in the CRG method. Further, CRG is designed to exploit

structural information of patterns and dependencies betwagRere would correspond, in our case, to a class label. FOIL
feature states, whereas C4.5 analyzes a fixed set of featuresgbgfes such problems by expanding the literals—adding pred-
are assumed to be independent. In this sense, the applicalieites and their variables—to the right-hand-side to maximize
of C4.5 to the blocks data was somewhat misleading in tkige covering of positive instances and to minimize inclusion of
sense that the necessary and relevant structural informatiegative ones. In this framework, then, CRG is also concerned
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(@) (b)

(© (d)

Fig. 5. Two block scenes and their classifications. (a) Block scene consisting of 11 blocks corresponding to examples of classes 2, 3, and 4. (b) Block
scene consisting of 17 blocks corresponding to examples of all classes. (c) Classification result for block scene in (a) with region labelsingrtespond
classes. (d) Classification result for block scene in (b) with region labels corresponding to classes.

with generating similar class descriptions of the specific forms CRG shares with ID3/C4.5 [25], [26] and related techniques,
1 1 1 9 9 3 similar methods for the search and expansion of decision trees.
Cr —UNX), BY(X,Y), USY), B(Y, 2),U%(Z), - However, these latter techniques were not designed to generate
rules satisfying label compatibility between unary and binary
CM —UYNX),BHX,Y),U(Y), B3(Y, Z),U%(Z),- - predicates. CRG, on the other hand, is explicitly designed to
develop rules for unique identification of classes with respect

Cl to their “structural” (i.e., linked unary and binary feature)

m — Ul(X)7 Bl(X7 Y)? UQ(Y)7 BQ(K Z)? Ug(Z)7 e representa'“on
In decision trees, features or attributes are analyzed within
crm — UNX), BHX,Y),U*Y), BAY, 2),U%Z),---. a single feature space, independent of their relationships or

) o ) arities, and no preferential order is imposed on the features. In
However, CRG differs significantly from FOIL in the follow- ¢onirast, the CRG method generates conditional feature spaces
Ing ways. and defines a preferential ordering on attributes in the sense
1) Choice of unary/-rules and binaryB-rules as bounded that, for example, a split of &-feature is preferred over a
attribute (feature) states, is determined within continuo%“t of UBU-features. This preferential order leads to the

unary and binary feature spaces. generation of shallow cluster trees and short rules, as discussed
2) Ordering of literals must beatisfiedin the rule gener- i the previous sections.

ation. . i ) _Decision trees operate on a fixed chain length (for ex-
3) Search technique uses backtracking and recursive S%’Fﬁple theU BB- or UBU-triples in the block example)

ting. .._and thusforce, a priori, the choice of implicit relational
4) Resultant rules are not only Horn clauses but each I'te@riuctures to be analyzed. CRG, on the other hand, has

indexesbounded regions in the associated feature sp

(as shown in Fig. 2). Af&riable length chain expansion determined by the number

of parts and their relations that are required to uniquely
define patterns. Consequently, CRG is superior to classic deci-
V. DISCUSSION sion trees when classification relies on relational information
CRG develops structural descriptions of patterns in the foramd does so to different degrees for different patterns or
of decision trees on attribute bounds of ordered predicates wilasses. Under these circumstances one would be forced to use
labeled parts and part relations (see Fig. 2). It is thus usefulltigh-dimensional features spaces with classical decision trees,
compare it with other technigues from machine learning whickhereas CRG would generate minimal depth trees. Generating
attain similar ends symbolically. minimum depth trees is, however, of crucial importance given
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that the number of chains grows exponentially with chais deemed necessary for a structural description. However,
length. this may not really be a meaningful definition of structure.
In summary, one can say the classical decision trees &ather than producing a singular rule structure, a “structural
attribute-indexedn the sense that various levels in the tree delescription” is defined by aet of rulesthat CRG generates
fine different attributes and the nodes define different attribufiom a set of training patterns.
states. CRG adds another structural layer to the decision tree
structure, gpart-indexedtree of features spaces, each with its
own attribute-indexed decision tree. With this tree of decision
trees, CRG imposes both a limit on the number of attributeg) p. Fiynn and A. K. Jain, “Three-dimensional object recognition,”

that are being considered, and an ordering on the evaluation in Handbook of Pattern Recognition and Image Processing, Vol. 2:
of attributes Computer VisionT. Y. Young, Ed. New York: Academic, 1993.
: . . . [2] R. O. Duda and P. E. HarRattern Classification and Scene Analy-
In the CRG method, pattern recognition is achieved by  sis New York: Wiley, 1973. _ _
combining evidence about the classification of small patterf g}eﬁgggraaﬁ”dlg%z Brown,Computer Vision Englewood Cliffs, NJ:
fragments (chains). This approach allows the classificatiopy L. shapiro and R. Haralick, “Structural descriptions and inexact match-

rules to be applied efficiently to arbitrary partial patterns. On ing,” IEEE Trans. Pattern Anal. Machine Intellvol. PAMI-3, pp.

i i 504-519, 1981.
the other hand, given that the number of pattern chains grOV\fa R. E. Tarjan and A. E. Trojanowski, “Finding a maximum independent

exponentially with chain length, it is not feasible to apply CRG ~ set,” SIAM J. Comput.vol. 6, pp. 537-546, 1977.
in situations where pattern recognition has to rely on veryél \IOI/I-TE-PL- GfiTgsg(r)LObieCt Recognition by ComputeCambridge, MA:
) . . ress, .
long chains _Of pattern parts. A_t the level (_)f attl’lbl_lt_e teStmg[ﬂ P. Flynn and A. K. Jain, “3-D object recognition using invariant
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