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Visual Learning of Patterns and Objects
Walter F. Bischof and Terry Caelli

Abstract—We discuss automatic rule generation techniques for
learning relational properties of two-dimensional (2-D) visual pat-
terns and three-dimensional (3-D) objects from training samples
where the observed feature values are continuous. In particular,
we explore a conditional rule generation method that defines
patterns (or objects) in terms of ordered lists of bounds on unary
(pattern part) and binary (part relation) features. The technique,
termed conditional rule generation (CRG), was developed to
integrate relational structure representations of patterns and the
generalization characteristics of evidenced-based systems (EBS).
We show how this technique can be used for recognition of
complex patterns and of objects in scenes. Further, we show the
extent to which the learned rules can identify patterns and objects
that have undergone nonrigid distortions.

I. INTRODUCTION

ONE major problem in the development of systems for
visual pattern and object recognition is the development

of representations and search procedures that allow efficient
instantiation of known models in new image data. Many three-
dimensional (3-D) object recognition systems use database
techniques that are designed to index efficiently model fea-
tures in structures such as hash tables, trees, or constraint
satisfaction networks (see [1] for a review of such systems).
Although such approaches have proven somewhat successful
in the recognition of models, patterns, or shapes, they lack
the generalization capabilities that typically distinguish pattern
recognition from database systems. In two-dimensional (2-D)
pattern recognition, on the other hand, classical methods have
been used to address the issue of generalization from samples.
These include parametric and nonparametric classifiers [2] and,
more recently, neural networks.

The current paper is concerned with the application of
recent machine learning techniques to the solution of the
generalization problem and related issues. More specifically,
we study the application of machine learning techniques to
the learning of relational structures as required for visual
pattern and object recognition. These techniques can provide
solutions to three problems: feature selection, generalization,
and efficiency. The first problem, feature selection, refers to
the problem of how to select and/or order pattern features in
order to optimize the recognition process. The second problem,
generalization, refers to the problem of generating “structural
descriptions” that cover a set of training examples, as well as
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distorted and similar, unseen examples. The third problem,
efficiency, refers to the problem of optimizing search and
matching procedures for both, pattern learning and pattern
recognition.

The type of pattern representation most frequently used
in vision has been therelational structure(RS) [3]. In this
approach, complex patterns are described as being composed
of constituent parts. Pattern descriptions involve enumeration
of (unary) features of pattern parts and (binary) features of
relations between parts. In the case of an image, for example,
the pattern parts might correspond to segmented image regions,
the unary features might include area, average brightness
or orientation of the regions, and the binary features might
include distance, relative orientation or length of common
boundaries between pairs of image regions. These part and
part relation features can be linked together into a relational
structure with parts corresponding to graph vertices and part
relations corresponding to graph edges, both being described
by a set of features [3], [4]. RS representations are limited
in several respects. First, generalizations in terms of new
views or nonrigid transformations of old views are difficult to
represent. Second, pattern recognition involves typically graph
matching with a computational complexity that is exponential
in the number of parts [3], [5]. Prior knowledge can be used
to prune the search space [6], [7] but the basic problem
remains. For the same reason, RS representations are difficult
to apply to the recognition of (possibly occluded) objects
embedded in complex scenes. Finally, little attention has been
paid to the design of optimal search procedures that use
conjunctions of particular sets of feature values to define
important characterizations of patterns.

Evidence-based systems (EBS’s) have been introduced [8]
to overcome some problems of the RS approach. Both ap-
proaches share common characteristics: they work within a
supervised learning (learning by example) paradigm and they
require subprocesses for encoding, segmentation and feature
extraction. In EBS, patterns and objects are encoded by rules
of the form

if conditions on feature values
then evidence weights for each class
else no inference at all

Rule conditions are usually defined in terms of bounds
on feature values, and rules instantiated by data provide
weighted evidence for different pattern classes. The main task
of EBS has been to determine feature bounds and evidence
weights. EBS typically involve partitioning the feature spaces
into regions associated with different pattern classes, and
the problem has been to find a partitioning that minimizes
misclassifications while, at the same time, maximizing rule
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generalization. For a given feature (attribute) space parti-
tioning, rule or pattern generality is defined in terms of the
range of feature values associated with each partition, or, in
other words, the volume of the feature space hyper-rectangle
defined by the feature bounds of a rule. Consequently, pattern
generality also determines the degree of feature variability or
pattern distortion tolerated by each classification rule.

Regions in feature space are not necessarily class disjoint,
and so evidence weights are usually used to index the degree
to which samples within a region correspond to different
classes. Evidence weights are typically derived from the rel-
ative frequencies of different classes per region [8] or, more
recently, by minimum entropy and associative neural network
techniques [9]. Some systems actually combine clustering (or
feature space partitioning) with weight estimation into a single
neural network architecture [10].

Although these types of evidence-based systems allow gen-
eralizations from samples, they only attain implicit learning
of the relational structures. Pattern encoding is achieved using
unary rules (rules related to part features) and binary rules
(rules related to part relational features) that are both activated
to evidence patterns or objects. However, structural pattern
encoding is typically incomplete in EBS. This is so because
EBS-generated rules are not necessarily label-compatible, i.e.,
the feature conditions in the EBS rules do not contain labels
to index specific pattern parts and their relations in order to
guarantee compatibility of unary and binary feature states.
This leads to problems when patterns are defined uniquely by
the enumeration of specificlabeledunary and binary feature
states of the form . This is illustrated in Fig. 1
where two patterns are shown that have isomorphic unary
and binary feature states (i.e., color and distance values)
but are not identical. This shows that the existence of such
correspondences does not guarantee identity in structure unless
the unary and binary feature labels are compatible. Rules
satisfying this “label compatibility” property of rules must
evidence objects or patterns uniquely, i.e., lists of unary and
binary feature states must evidencespecific joint occurrences
of parts and relations. The problem then is how to generate
rules having this property.

As already stated, a labeled and attributed graph is the sim-
plest representation for visual patterns that takes into account
the label-compatibility of unary and binary features. Graph
matching techniques are used to solve the recognition problem
where a sample pattern structure (for example, new data for
classification) is matched to a model structure by searching for
a label assignment that maximizes some objective similarity
function [3]. Pattern classes are represented by sets of instances
and classification is thus achieved by searching through all
model graphs to determine the one producing the best match.
This representation and graph matching approach, in the form
of interpretation trees and feature indexing, has been the
preferred architecture for object recognition [7], [1].

Different approaches to improving the efficiency of the
matching processes have been proposed, such as constraint-
based decision trees [6], “precompiled” tree generation [11],
heuristic search techniques [12], dynamic programming [13],
relaxation labeling [14], or hierarchical model fitting [15].

Fig. 1. Two patterns that have isomorphic unary (U = vertex color)
and binary (B = distance) feature states but differ with respect to their
label-compatibilities. That is, the sequences ofUi � Bij � Uj � � � � differ
between the two patterns (from [21]).

However, the problem of learning and constructing union
and discrimination trees for structural descriptions has been
addressed only sporadically in the literature, such as in [16]
within the framework of inductive learning of symbolic struc-
tural descriptions or in [17] within the framework of proba-
bilistic inductive prediction of sequential patterns.

In summary, graph matching methods solve the label-
compatibility problem but do not address adequately the
fundamental issue of generalization, i.e., the ability to recog-
nize equivalences between patterns that are not identical. Also,
they do not fully exploit learning to determine the optimal
search path amongst unary and binary feature states to evaluate
the existence of specific patterns. In 3-D object recognition, in
particular, it is often necessary to classify objects as belonging
to a specific object type even though individual samples of
the class may be nonrigid transformations of other members
of the same class. Evidence-based systems, on the other
hand, provide a means for pattern generalization, but do not
adequately address the label-compatibility problem.

In the following sections, we focus on the analysis of a
technique for the learning of structural relations,conditional
rule generation(CRG). The CRG method searches for the
occurrence of unary and/or binary feature states between
connected components of the training patterns and generates
trees of hierarchically organized rules for classifying new
patterns. It so enables induction (generalization) on labeled
and attributed graphs as well as generating optimal decision
trees for the identification of specific RS. The aim of this paper
is to analyze how the CRG method can be applied to problems
involving the recognition of 2-D patterns and 3-D objects in
complex visual scenes.

II. CONDITIONAL RULE GENERATION

CRG is designed for the encoding and learning of complex
patterns or objects that are assumed to consist of multiple
parts. In object recognition, image regions are assumed to
be segmented consistently into multiple regions or parts. The
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Fig. 2. Cluster tree generated by the conditional rule generation (CRG) procedure. Grey squares denote cluster that are unique with respect to class membership
(i.e., clusters withHi = 0); white squares denote nonunique clusters. The unresolved unary clusters (U1 andU2)—with element from more than one class—are
expanded to the binary feature spacesUB1 andUB2. Expansion and clustering continues until either all clusters are unique with respect to class membership
or the (a priori chosen) maximum tree depth is reached. In the latter case, the cluster tree is refined through reclustering or cluster splitting.

resulting parts are described by (unary) features such as area,
average brightness, or eccentricity. Relations between parts
are described by (binary) features, such as distance between
centers, relative orientation, or length of common boundaries.
As described in more detail below, rules in CRG are defined
as clusters in conditional feature spaces which correspond to
either unary or binary features of the training data. The clusters
are generated to satisfy two conditions: they should maximize
the covering of samples from one class, and they should
minimize the inclusion of samples from other classes (see
also [18]). In our approach, such rules are generated through
decision tree expansion and cluster refinement as described
below.

A. Cluster Tree Generation

In the following, we present the technique for generating
cluster trees, first in an informal way and then more formally.
Cluster tree generation begins by collecting the unary feature
vectors of all parts, of all views, and of all objects into a
unary feature space. This feature space is partitioned into a
number of clusters. Some clusters may contain elements of a
single pattern class and may thus provide classification rules
for some pattern parts. The other clusters have to be analyzed
further. For each part of a nonunique cluster we collect
all binary feature vectors of the relation betweenand other
pattern parts into a binary feature space. This feature space
can be analyzed analogous to the unary feature space. The
analysis continues by analyzing unary and binary features of
longer and longer sequences (chains) of pattern parts until all
pattern parts can be classified uniquely.

More formally, each training pattern is assumed to be
composed of a number of parts (pattern components). Each
part is described by a set of unary features

and pairs of parts are described by a set of
binary features . Below, denotes the pattern to
which a part belongs, and refers to the information or
cluster entropy statistic:

(1)

where defines the probability that an element of cluster
belongs to class .

First, the unary features of all parts of all patterns are
collected into a unary feature space:

. This feature space is partitioned into a number
of clusters . Some clusters (e.g., in Fig. 2) are unique
with respect to class membership (with entropy )
and provide a simple classification rule for some patterns:
if a pattern contains a part whose unary features satisfy
the bounds of a unique cluster then the pattern
can be assigned a unique classification. The nonunique clus-
ters contain parts from multiple pattern classes and have to
be analyzed further. For every part of a nonunique cluster

(e.g., in Fig. 2) we collect the binary features of
this part with all other parts to form a (conditional) bi-
nary feature space: and

. This binary feature space is clustered into
a number of clusters . Again, some clusters may be
unique (e.g., in Fig. 2) and provide classification rules
for some patterns: if a pattern contains a part whose
unary features satisfy the bounds of cluster, and there is
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an other part , such that the binary features of the pair
satisfy the bounds of a unique cluster then

the pattern can be assigned a unique classification.
For each nonunique cluster , the unary features of the
second part are used to construct another unary feature
space: , which is
clustered into clusters . Again, unique clusters pro-
vide classification rules for some patterns (e.g., in
Fig. 2), the other clusters require further analysis, either by
repeated conditional clustering involving additional parts at
levels , etc. or through cluster refinement,
as described below.

Every element of a cluster in the cluster tree corresponds to
a sequence of unary and binary features
associated with a noncyclic chain (path) of pattern parts. CRG
thus produces classification rules for (small) pattern fragments
and their associated unary and binary features whereas EBS
and rulegraphs produce classification rules for sets of unary
and binary features. In the current implementation, we analyze
all chain permutations, i.e., all permutations of sequences

. This is re-
quired in order to guarantee classification of arbitrary partial
patterns.

Feature space clustering can be obtained using parametric
or nonparametric clustering [2]. Alternatively, one can omit
clustering altogether and rely completely on the cluster re-
finement methods described in the following section. In the
current implementation of CRG, cluster trees are generated in
a depth-first manner up to a (a priori chosen) maximum level
of expansion (see Table I). Clusters that remain unresolved
at that level are split in a way described in the following
section.

B. Cluster Refinement

All nonunique (unresolved) clusters at a given level of the
cluster-tree (e.g., clusters , and in
Fig. 2) have to be analyzed further to construct unique decision
rules. One way of doing this is to simply expand the cluster
tree, analyzing unary and binary attributes of additional parts
to generate rules of the form. However,
if the features used are insufficient, it may be impossible
to obtain completely “resolved” branches in the cluster tree.
Alternatively, the derived clusters in the tree can be refined
or broken into smaller clusters, using more discriminating
feature bounds, as described below. Both approaches have
their respective disadvantages. Cluster refinement leads to
an increasingly complex feature-space partitioning and thus
may reduce the generality of classification rules. Cluster-
tree expansion, on the other hand, successively reduces the
possibility of classifying pattern fragments, or, in the case of
3-D object recognition, classifying objects from partial views.
In the end, a compromise has to be established between both
approaches.

In cluster refinement, two issues must be addressed, the
refinement method and the level at which cluster refinement
should be performed. Consider the cluster tree shown in Fig. 2
with nonunique clusters , and . One

TABLE I
CLUSTER TREE GENERATION

way to refine clusters (for example, cluster ) is to
recluster the associated feature space into a larger
number of clusters. However, classification rules associated
with other clusters and are lost and have
to be recomputed. Alternatively, given that each cluster is
bounded by a hyper-rectangle in feature space, refinement of a
cluster can be achieved by splitting this rectangle along some
boundary. This ensures that other sibling clusters remain un-
affected. With respect to the level at which cluster refinement
is performed, instead of splitting an unresolved leaf cluster

one could split any cluster in the chain of parent
clusters or .

Consider splitting the elements of an unresolved cluster
along a (unary or binary) feature dimension. The elements
of are first sorted by their feature (attribute) value ,
and then all possible cut pointsmidway between successive
feature values in the sorted sequence are evaluated. For each
cut point , the elements of are partitioned into two sets,

with elements and
with elements. We define the partition entropy as

(2)

The cut point that minimizes is considered the
best point for splitting cluster along feature dimension
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(see also [19]). The best split of cluster is considered the
one along the feature dimension that minimizes .
As noted above, rather than splitting an unresolved leaf cluster

, one can split any cluster in the parent chain of .
For each cluster , the optimal split is computed, and the
cluster that minimizes is considered the optimal level
for refining the cluster tree. Clusters above may contain
elements of classes other than those that are unresolved in.
Hence, in computing for those clusters, we consider only
elements of classes that are unresolved in.

Two further properties of the splitting procedure are impor-
tant, since they affect the type of rules generated by CRG.
First, if a nonterminal cluster of the cluster tree is split, the
feature spaces conditional upon that cluster are recomputed
since the elements of the feature space have changed. Second,
in the case of a tie, i.e., if two or more clusters have the same
minimal partition entropy , the cluster higher in the
cluster tree is split. Together, this leads to CRG having a clear
preference for shallow cluster trees and for short rules, which,
in turn, leads to efficient rule evaluation.

In the generation of a cluster tree, every new feature space
(the initial unary feature space, or any of the conditional
feature spaces , etc.) can be partitioned using
standard cluster methods [9] to obtain an initial rule set.
Alternatively, one can refrain from feature space clustering and
rely completely on the splitting procedure introduced above.
The latter approach was used in all applications reported
below.

The rules generated by CRG are sufficient for classifying
new pattern or pattern fragments, provided that they are
sufficiently similar to patterns presented during training and
provided that the patterns contain enough parts to instantiate
rules. However, cluster trees and associated classification
rules can also be used for partial rule instantiation. A rule
of length (for example, a -rule) is said to be
partially instantiated by any shorter sequence of unary
and binary features (for example, a -sequence). From
the cluster tree shown in Fig. 2, it is clear that a partial
instantiation of rules (for example, to the -level) can lead to
unique classification of certain pattern fragments (for example,
those matched by the or rules, but it may alsoreduce
classification uncertainty associated with other nodes in the
cluster tree (for example, ). From the empirical class
frequencies of all training patterns associated with a node
of the cluster tree (for example, ), one can derive an
expected classification vector, orevidencevector. For example,
if cluster (in Fig. 2) contains five elements of class 1,
three elements of class 2, and no other elements, the associated
evidence vector would be .
The evidence vector is used to predict the classification vector
of any part, or sequence of parts, that instantiates the associated
rule.

C. Evidence Combination

CRG generates rules for the classification of chains of
pattern parts. In the application of these rules to a pattern,
one obtains therefore multiple evidence vectors, typically one
for each chain and each instantiation of a rule. These evidence

vectors have to becombinedinto a single overall classification
of the pattern. The problem of evidence combination is very
closely related to the concept of “stacked generalization”
[20] with some added difficulties that are discussed below.
Dependent on a number of factors there are several possible
approaches to evidence combination.

First, different rules can be devised dependent on whether
information about training patterns is completely preserved or
not. In the rulegraph approach [21], for example, information
about training patterns is completely preserved and the clas-
sification of a sample pattern is based, in the end, on finding
the best match of the sample graph to the stored training or
model graphs. Here, evidence rules are simply used to prune
the search tree. In EBS [22], on the other hand, pattern infor-
mation that is not preserved in the classification rules is lost.
Second, evidence combination schemes become typically more
elaborate as one progresses from the recognition of single,
complete patterns to single, incomplete (partially occluded)
patterns to complex scenes containing multiple, incomplete
patterns. Third, evidence combination rules can either be given
a priori as in [20] or they can be learned as in [22]. In
the present paper, we discuss the use of CRG for the case
of complex scenes with multiple patterns, where information
about training patterns is not completely preserved and where
evidence combination rules are givena priori.

III. D ETECTING 2-D PATTERNS IN SCENES

In this section, we illustrate learning of 2-D patterns using
the CRG method and the recognition of these patterns em-
bedded in more complex scenes using the generated rules.
The first example, line triples, consists of four classes of
patterns with four training examples each [see Fig. 3(a)].
Each pattern is described by the unary features “length” and
“orientation,” and the binary features “distance of line centers”
and “intersection angle” between adjacent parts, i.e., part pairs
whose center-to-center distances do not exceed a limit .
The line patterns are simplified versions of patterns found in
geomagnetic data that are used to infer the presence of certain
metals or minerals.

CRG was run with maximum rule length set to
(i.e., rules up to the form of are being generated),

and it produced 35 rules, three-rules, 18 -rules, two
-rules, and 12 -rules.

At recognition time, a montage of patterns was presented
[see Fig. 3(b)], and the patterns were identified and classified
as described below, producing the classification result shown
in Fig. 3(d). Pattern identification and classification is achieved
using the following steps.

1) Unary features are extracted for all scene parts (lines),
and binary features are extracted for all adjacent scene
parts, i.e., pairs whose center distance does not exceed
the distance used in training . The adjacency
graph is shown in Fig. 3(c), where dots indicate the posi-
tion of the line centers, and adjacent pattern parts (lines)
with a center-center distance are connected.

2) Given the adjacency graph, all noncyclic paths up to
a certain length are extracted, where .
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(a)

(b) (c)

(d)

Fig. 3. (a) Four classes of patterns with four training patterns (views) each.
Each pattern is composed of three lines. Lines are described by the unary
features “line length” and “orientation,” and pairs of lines are described by
the binary features “distance of line centers” and “intersection angle.” (b)
Montage of (slightly distorted) line triples. (c) In the adjacency graph for the
montage, dots indicate the position of the line center and adjacent lines (with
a center distance below a given limit) are connected. (d) Result of the pattern
classification using the rules generated by CRG. Class labels for each line
are shown on the right.

These paths, termedchains, constitute the basic units
for pattern classification. A chain is denoted by

where each denotes a pattern part. For
some chains, all parts belong to a single learned pattern,
but other chains are likely to cross the “boundary”
between different patterns.

3) Each such chain is classified
through parallel instantiation of the rules generated dur-
ing training. Depending on the unary and binary feature

states, a chain may or may not instantiate one (or more)
classification rule. In the former case, rule instantiation
may be partial (with a nonunique evidence vector ),
or complete (with ). As discussed above,
the evidence vector for each rule instantiation is derived
from the empirical class frequencies of the training
examples.

4) The evidence vectors of all chains
starting

at a common part must be combined to obtain a
classification for part .

We have studied two ways of combining the evidence
vectors, a winner-take-all (WTA) solution and a relaxation
labeling solution. Implementation of the WTA solution is
straightforward. The evidence vectors of all chains starting
at are averaged to give , and the most likely class
label is used to classify part .

The WTA solution does not take into account that, for
a chain , the average evidence vectors

may be very different and pos-
sibly incompatible. If they are very different, it is plausible
to assume that the chain is “crossing” boundaries between
different patterns/objects. In this case, the chain and its ev-
idence vectors should be disregarded for the identification
and classification of scene parts. Accordingly, compatibilities
between evidence vectors are taken into account using a
relaxation labeling (RL) procedure. Here, the weight of an
evidence vector of a part depends on the similarity
(compatibility) of to the evidence vectors of neighboring
parts. Further, constraints on evidence vectors are propagated
throughout the pattern using a standard relaxation labeling
technique [23]. More precisely, the RL solution is given by

(3)

where corresponds to the evidence vector of at
iteration , with corresponds
to the compatibility between parts and , and is the
logistic function

(4)

The compatibility function is defined in terms of the scalar
product between the evidence vectors of partsand ,

(5)

For identical evidence vectors and
, and for incompatible evidence vectors, for example

and .
Compatibility of evidence vectors is a weak constraint for

updating the evidence vectors of each part and it may even
have an adverse effect if the adjacency graph is complete. This
is due to the following. As mentioned before, the evidence
vectors of all chains
starting at part are combined to obtain a classification
for part . Some of these chains may involve completely
“unrelated” parts, i.e., parts belonging to different patterns,
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yet they may instantiate some classification rule. To the
extent that this happens, classification of part may be
adversely affected and even be incorrect. For these reasons,
good classification performance for complex pattern montages
(as shown in Fig. 3) are not a trivial result. For the simple
patterns shown in Fig. 3, and the moderate connectivity of
the adjacency graphs of the montages, the relaxation method
outlined here proved to be sufficient to obtain perfect part
labeling. For the montage of undistorted, noise-free training
patterns in Fig. 3(b), recognition performance was perfect. In
order to test recognition performance for noisy patterns, we
added Gaussian noise with a standard deviation of 1%, 2%,
and 5% of the feature ranges to each feature. For these noise
levels, performance dropped only moderately to an average
of 97%, 89%, and 80%, respectively. When the patterns in
Fig. 3(b) were separated from each other, thus eliminating the
possibility that chains of “unrelated” parts were classified,
pattern classification performance remained high at 99.3%
correct for Gaussian noise with a standard deviation of 5% (of
the feature ranges) and dropped to 87% correct for Gaussian
noise with a standard deviation of 10%. These results clearly
show that CRG is capable of finding adequate generalizations
of the training patterns, and that it is capable of generating
recognition rules that show a relatively high resilience to
pattern distortions.

Much stronger constraints than compatibility of evidence
vectors can be derived from more specific structural informa-
tion of the training patterns, such as the label-compatibilities
between pattern parts, or from pose information in the case of
3-D object recognition. The usefulness of such information is,
however, pattern dependent and considered beyond the scope
of the present paper.

IV. OBJECT RECOGNITION USING INTENSITY DATA

The blocks example presented in this section consists of
various configurations of colored blocks. The configurations
are learned in isolation (see Fig. 4) and have to be identified
in more complex arrangements (see Fig. 5). The training set
consisted of five classes of block configurations, each with
three training examples, and the test arrangements consisted
of up to 20 blocks.

Images of the training and test scenes were captured with
a color camera. Preprocessing was fairly simple, consisting
of a segmentationstage and afeature extractionstage. Seg-
mentation was achieved using a form of K-means clustering
(minimizing within-cluster variance in feature space) on posi-
tion and color attributes [24]. For the resulting
clusters, small clusters were merged with larger neighbor
clusters in order to eliminate spurious image regions. Given the
rich image information, it is not surprising that the resulting
image regions correspond fairly well to the individual block
faces.

In the feature extraction stage, the following unary features
were extracted for each image region: size (in pixels), com-
pactness , and the normalized color signals

, and . For pairs
of image regions the following binary features were computed:

absolute distance of region centers, minimum distance between
the regions, distance of region centers normalized by the sum
of the region areas, and length of shared boundaries normalized
by total boundary length.

For the training data, CRG analyzed 276 different chains of
pattern parts and produced 32 rules: nine-rules, four -
rules, 12 -rules, three -rules, and four -
rules. From the distribution of rule types, it is evident that CRG
used predominantly unary features for classification. Given the
fact that CRG has a strong tendency to produce shallow cluster
trees and short rules (see Section II-A), and given the fact that
the unary features are quite diagnostic (see Fig. 4), this result
is not surprising. However, each unary and binary feature was
used in at least some of the classification rules.

Classification performance was tested with several complex
configurations of block patterns, two of which are shown
in Fig. 5, together with the classification results. Classifica-
tion proceeded as described in Section III, using the chain
analysis and relaxation labeling solution. For both scenes,
all parts [11 in Fig. 5(a), 17 in Fig. 5(b)] were classified
correctly with the exception of a single part from the class-
4 configuration [see Fig. 5(c) and (d)]. The reasons for the
occurrence of misclassifications were discussed in the previous
section.

For comparison purposes, we have analyzed the block
example using classical decision trees [25]. For decision trees,
an implicit relational structure has to be imposed on the
selection process. In the first analysis, a -triple analysis,
each image part of the training and test images was
described by 13 features. These features consisted of the five
unary features of (see above), the four binary features (see
above) of the relation between and its closest neighbor, and
another four binary features of the relation betweenand its
second-closest neighbor. For the class 1 cases which consisted
of two parts only, the feature values for the second binary
relation were set to “unknown.” A decision tree was generated
using C4.5 with default parameters [25], and the resulting tree
was used to classify all parts of the test scenes in Fig. 5. In
each of the two scenes, three parts were misclassified. The
good performance obtained with C4.5 is consistent with the
observation that the use of higher-order relational information
does not seem to be crucial for successful classification of this
data set.

The first comparison using C4.5 employed features of all
-triples (unary features and binary features of relations

with two other parts) for classification. A second analysis,
using -triples (with 14 features: the same five unary
features of all pairs of parts, as well as the same four binary
features of their relation) was performed, but the results are
much worse. For the scene in Fig. 5(a), 33 out of 110 -
triples or 30% were misclassified, and for the scene in Fig. 5(b)
103 out of 272 -triples or 37.8% were misclassified.
Given these high error rates, it is not surprising that part
classification for the scenes in Fig. 5 was rather poor. For the
scene in Fig. 5(a), 11 out of 17 parts were classified correctly,
and for the scene in Fig. 5(b), five out of 11 parts were
classified correctly. This performance could not be improved
using the relaxation scheme described in Section III.
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Fig. 4. Images of five classes of toy block configurations with three views each. The image parts are described by the unary features size, eccentricity
and the three normalized color coordinates. Pairs of image parts are described by the binary features of midpoint distance, area-normalized midpoint
distance, minimum distance, and normalized shared boundary length.

A general point is, however, more important. The CRG
method generates rules of (minimal) variable lengthoptimized
for a given training set, whereas the decision tree (C4.5)
fixes the dimensionality of the feature space and rule length.
Indeed, C4.5 does not use part-indexing and so the relational
structure has to be encoded implicitly in the attributes extracted
from different parts and part relations. The choice of -
triples for the block example lead to a C4.5 performance
that was essentially the same as that of CRG, but for the

-triples C4.5 performance was much worse. This choice
has to be donea priori whereas it is adjusted dynamically
in the CRG method. Further, CRG is designed to exploit
structural information of patterns and dependencies between
feature states, whereas C4.5 analyzes a fixed set of features that
are assumed to be independent. In this sense, the application
of C4.5 to the blocks data was somewhat misleading in the
sense that the necessary and relevant structural information

was generated manually. This example of forcing C4.5 to
function with RS and complex scene data emphasizes the very
need for systems like CRG, for relational learning algorithms
in general.

Recently, Quinlan [27] and Muggleton and Buntine [28]
have investigated general methods for learningsymbolicrela-
tional structures in the form of Horn clauses in the following
sense. In FOIL, [27] considers the problem of learning, from
positive examples (closed world) or positive and negative
examples, conjunctions of literals that satisfy

where would correspond, in our case, to a class label. FOIL
solves such problems by expanding the literals—adding pred-
icates and their variables—to the right-hand-side to maximize
the covering of positive instances and to minimize inclusion of
negative ones. In this framework, then, CRG is also concerned
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(a) (b)

(c) (d)

Fig. 5. Two block scenes and their classifications. (a) Block scene consisting of 11 blocks corresponding to examples of classes 2, 3, and 4. (b) Block
scene consisting of 17 blocks corresponding to examples of all classes. (c) Classification result for block scene in (a) with region labels corresponding to
classes. (d) Classification result for block scene in (b) with region labels corresponding to classes.

with generating similar class descriptions of the specific forms

However, CRG differs significantly from FOIL in the follow-
ing ways.

1) Choice of unary -rules and binary -rules as bounded
attribute (feature) states, is determined within continuous
unary and binary feature spaces.

2) Ordering of literals must besatisfiedin the rule gener-
ation.

3) Search technique uses backtracking and recursive split-
ting.

4) Resultant rules are not only Horn clauses but each literal
indexesbounded regions in the associated feature space
(as shown in Fig. 2).

V. DISCUSSION

CRG develops structural descriptions of patterns in the form
of decision trees on attribute bounds of ordered predicates with
labeled parts and part relations (see Fig. 2). It is thus useful to
compare it with other techniques from machine learning which
attain similar ends symbolically.

CRG shares with ID3/C4.5 [25], [26] and related techniques,
similar methods for the search and expansion of decision trees.
However, these latter techniques were not designed to generate
rules satisfying label compatibility between unary and binary
predicates. CRG, on the other hand, is explicitly designed to
develop rules for unique identification of classes with respect
to their “structural” (i.e., linked unary and binary feature)
representation.

In decision trees, features or attributes are analyzed within
a single feature space, independent of their relationships or
arities, and no preferential order is imposed on the features. In
contrast, the CRG method generates conditional feature spaces
and defines a preferential ordering on attributes in the sense
that, for example, a split of a -feature is preferred over a
split of -features. This preferential order leads to the
generation of shallow cluster trees and short rules, as discussed
in the previous sections.

Decision trees operate on a fixed chain length (for ex-
ample, the - or -triples in the block example)
and thus force, a priori, the choice of implicit relational
structures to be analyzed. CRG, on the other hand, has
variable length chain expansion determined by the number
of parts and their relations that are required to uniquely
define patterns. Consequently, CRG is superior to classic deci-
sion trees when classification relies on relational information
and does so to different degrees for different patterns or
classes. Under these circumstances one would be forced to use
high-dimensional features spaces with classical decision trees,
whereas CRG would generate minimal depth trees. Generating
minimum depth trees is, however, of crucial importance given
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that the number of chains grows exponentially with chain
length.

In summary, one can say the classical decision trees are
attribute-indexedin the sense that various levels in the tree de-
fine different attributes and the nodes define different attribute
states. CRG adds another structural layer to the decision tree
structure, apart-indexedtree of features spaces, each with its
own attribute-indexed decision tree. With this tree of decision
trees, CRG imposes both a limit on the number of attributes
that are being considered, and an ordering on the evaluation
of attributes.

In the CRG method, pattern recognition is achieved by
combining evidence about the classification of small pattern
fragments (chains). This approach allows the classification
rules to be applied efficiently to arbitrary partial patterns. On
the other hand, given that the number of pattern chains grows
exponentially with chain length, it is not feasible to apply CRG
in situations where pattern recognition has to rely on very
long chains of pattern parts. At the level of attribute testing,
the complexity of CRG is identical to classical decision trees.
However, the uniquerelational aspectsof CRG may result
in more efficient learning, depending on the type of learning
context.

It should be noted that pattern recognition using CRG
does not require perfect identification or classification of
all component parts. As illustrated earlier, the CRG method
identifies “focal” features which best discriminate between
classes and, as such, provide critical and sufficient signatures
for recognition. However, one difference with respect to the
issue of performance evaluation lies in whether CRG is treated
as an automated relational hashing procedure or a technique
for pattern definition which discards the training data. If the
latter is true then CRG cannot directly recover pose or exact
model projections onto data. This, in some instances, may not
be required. However, for a more exact performance of the
procedure, including training data within the data structures
allows us to illustrate the strength of recognition and model
projection.

The CRG method is an example of the general solution to
complex pattern recognition problems involving the generation
of rules which are linked together in ways that determine
“structure” uniquely enough to identify classes but enable
generalization to tolerate distortions. Both aims, uniqueness
and generalization, are not explicitly guaranteed in other
methods, such as neural networks or decision trees. Further,
uniqueness and generalization constitute the equivalent of a
“cost” function in CRG, and the search technique has been
developed to satisfy these constraints.

Finally, CRG raises the question as to what really is a
“structural description” of a pattern. CRG simply generates
conditional rules that combine an attempt to generalize the
pattern definitions in terms of feature bounds and to restrict
the description lengths as much as possible. For complex and
highly variable training patterns, CRG can generate a large
number of rules which can be thought of as a set ofequivalent
descriptionsof the pattern structure. It is possible to determine
the more frequently occurring chains and associated feature
bounds from the cluster tree, if the notion of “commonness”

is deemed necessary for a structural description. However,
this may not really be a meaningful definition of structure.
Rather than producing a singular rule structure, a “structural
description” is defined by aset of rulesthat CRG generates
from a set of training patterns.
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