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Scene Understanding by Rule Evaluation
Walter F. Bischof and Terry Caelli

Abstract —We consider how machine learning can be used to help
solve the problem of identifying objects or structures composed of
parts in complex scenes. We first discuss a conditional rule generation
technique (CRG) that is designed to describe structures using part
attributes and their relations. We then show how the resultant rules can
be used for region labeling and examine constraint propagation
techniques for improving rule-based object classification.

Index Terms —Conditional rule generation, machine learning, object
recognition, scene understanding, visual learning.
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1 INTRODUCTION

ALTHOUGH the literature abounds with techniques for the recog-
nition of isolated 2D patterns and 3D objects, the problem of effi-
ciently detecting and recognizing such structures in complex sig-
nals or scenes has not received as much attention, both in the
computer vision and the machine learning literature. In computer
vision, most recognition procedures, apart from those based on
cross-correlation techniques, assume that patterns to be classified
are isolated. Similarly, many machine learning techniques, from
inductive logic programming [1] through decision trees [2] to neu-
ral networks, are typically unable to accomplish efficient recogni-
tion of structures embedded in complex scenes. Further, most ap-
proaches to visual pattern and object recognition do not ade-
guately deal with the problem of recognition under distortions or
from partial data, as is the case in 3D object recognition in the
context on multiple, and possibly overlapping, objects.

For recognition problems involving the comparisons of pat-
terns composed of many parts, the literature has typically focused
on methods of reducing the run-time comparisons using different
constraint satisfaction algorithms. The problem of matching parts
and their relations is an example of the subgraph isomorphism
problem, and solution algorithms typically involve tree search
procedures where tree pruning is based on the comparison of
model and image data parts and their relational attributes. Differ-
ent models differ with respect to the methods used for generating
attribute (feature) trees, the degree of precompilation of the search
procedures from training examples, and the degree of generaliza-
tion inherent in each system. The more common approaches to
classification of isolated patterns and objects include geometric
hashing [3], feature indexing [4], interpretation trees [5], and con-
straint propagation trees [6]. These approaches have focused al-
most exclusively on the selection and ordering of model attributes
for the efficient interpretation of isolated objects, and have not ad-
dressed issues of generalization in an adequate way.

More recently, a number of authors have endeavored to use
techniques from machine learning to increase the robustness and
efficiency to these methods, i.e., to improve their ability to gener-
alize from training or known object data, and to improve their effi-
ciency in searching scene data. The former involves using standard
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generalization methods from machine learning, while the latter
involves the development of methods for describing patterns or
objects by minimum-length descriptions and the development of
appropriate constraint propagation techniques. For example, evi-
dence-based methods have been used recently in 3D object recog-
nition [7], [8], where object model views and parts are used to
automatically generate rules (attribute bounds) that provide evi-
dence for different models. In such systems, generalizations to
new views or to distortions are defined in terms of the rule attrib-
ute bounds and evidence weights. However, they typically have
not encoded relational information and have not been applied to
complex scenes. The aim of this paper is to address both of these
issues from the viewpoint of automated rule generation and the
application of rules to the interpretation of complex scenes.

2 CONDITIONAL RULE GENERATION: CRG

The idea of Conditional Rule Generation (CRG) is to generate clas-
sification rules that include structural pattern information to the
extent that is required for classifying correctly a set of training
patterns. CRG searches for the occurrence of unary and binary
features states between connected pattern components and cre-
ates a tree of hierarchically organized rules for classifying new
patterns. Generation of a rule tree proceeds in the following
manner.

First, the unary features of all parts of all patterns are collected
into a unary feature space U in which each point represents a sin-
gle pattern part. The feature space U is partitioned into a number

of clusters U;. Some of these clusters may be unique with respect to
class membership (e.g., U; in Fig. 1) and provide a classification
rule: If a pattern contains a part p, whose unary features u(p,) sat-

isfy the bounds of a unique cluster U;, then the pattern can be as-
signed a unique classification. The nonunique clusters contain
parts from multiple-pattern classes and have to be analyzed fur-

ther. For every part of a nonunique cluster (e.g., U, in Fig. 1), we
collect the binary features of this part with all other parts in the

pattern to form a (conditional) binary feature space UB;. The bi-
nary feature space is clustered into a number of clusters UB;.
Again, some clusters may be unique (e.g., cluster UB,; in Fig. 1)
and provide a classification rule: If a pattern contains a part p,
whose unary features satisfy the bounds of cluster U;, and there is
an other part ps, such that the binary features b(p,, ps) of the pair

{pr, ps ) satisfy the bounds of a unique cluster UB;;, then the pattern
can be assigned a unique classification. For nonunique clusters, the

unary features of the second part p, are used to construct another
unary feature space UBUj that is again clustered to produce clus-

ters UBUjy. This expansion of the cluster tree continues at addi-
tional levels UBUB, UBUBU, ... involving additional pattern parts
until all clusters are completely resolved. Some clusters may, how-
ever, never be resolved. In this case, the cluster tree has to be re-
fined by either reclustering one of the features spaces or by split-
ting one of the clusters.

Analysis of nonunique clusters can proceed by further ex-
panding the cluster tree, analyzing unary and binary attributes of
additional pattern parts. Alternatively, the derived clusters in the
tree can be refined or broken into smaller, more discriminating
feature bounds or rules as described below.

One successful approach to cluster-tree refinement involves
entropy-based splitting procedures. Consider splitting the ele-
ments of an unresolved cluster C along a (unary or binary) feature
dimension F. The elements of C are first sorted by their feature
value f(c), and then all possible cut points T midway between suc-
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cessive feature values in the sorted sequence are evaluated. For
each cut point T, the elements of C are partitioned into two sets, P,
= {c | f(c) < T} with n; elements and P, = {c | f(c) > T} with n, ele-
ments. We define the normalized partition entropy Hp(T) as Hp(T)
= (nH(Py) + nyH(P,))/(ny + ny). The cut point T that minimizes
Hp(Tg) is considered the best point for splitting cluster C along
feature dimension F. The best split of cluster C is considered the

one along the feature dimension F that minimizes Hp. For an unre-
solved leaf cluster C,, one can split C,_ or any cluster in the parent

chain of C.. Among these clusters, the one that minimizes H; is
considered the optimal point for refining the cluster tree.

U1
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uB2
UB23

UBU21 UBU231|
UBU212 UBU23;

UBU21 UBU23

b(pl.p2)

UB2

UBU121

'UBU122|

R
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Fig. 1. Cluster tree generated by the Conditional Rule Generation pro-
cedure (CRG). The unresolved unary clusters (Ul and U2)—with ele-
ment from more than one class—are expanded to the binary feature
spaces UB1 and UB2, from where clustering and expansion continues
until either all rules are resolved or the predetermined maximum rule
length is reached, in which case rule splitting occurs.

A completely resolved cluster tree provides a set of determi-
nistic rules for classification of patterns. Every cluster element in

the cluster tree corresponds to a sequence U; — Bj; — U; — By — ... of
unary and binary features associated with a noncyclic chain of
pattern parts. CRG thus produces classification rules for (small)
pattern fragments and their associated unary and binary features.
For each feature space in the cluster tree, a standard decision tree
[2] is produced. CRG thus produces a tree of decision trees that is
indexed by sequences of pattern parts. The dynamic expansion of
cluster trees constitutes a major advantage of CRG over decision
trees: CRG can expand trees to the level optimized for a given data
set whereas decision trees operate on fixed sets of features that
have to be chosen a priori (see [9] for more details).

3 SCENE LABELING AND RECOGNITION: SURE

CRG generates classification rules for (small) pattern fragments
based on their unary and binary features. When the classification
rules are applied to some pattern, one obtains one or more
(classification) evidence vectors for each pattern fragment, and the
evidence vectors have to be combined into a single evidence vector
for the whole pattern. This is more or less straightforward for sin-
gle (isolated) patterns, but difficulties arise in scenes composed of

multiple patterns where it is unclear whether a sequence p; — p; —

... — pp of pattern parts belongs to the same pattern or whether it is
“crossing the boundary” between different patterns. In the former
case, the CRG rule can be expected to produce correct classifica-
tions, whereas in the latter case, classification may be arbitrary.
This problem has been studied by Grimson [6], Lowe [10], and
others in the context of model-based vision. Here, we discuss a
solution in the context of a rule-based system that makes only
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weak and general assumptions about the structure of scene and
objects. Our solution is based on the analysis of the relationships
within (intra) and between (inter) instantiated rules. The solution
method, termed SURE (Scene Understanding using Rule Evalua-
tion), is based on the sequential evaluation of constraints described
in the following sections.

3.1 Initial Rule Evaluation

The first stage in SURE involves direct activation of the CRG rules
in a parallel, iterative, deepening method. Starting from each scene
part, all possible sequences of parts, termed chains, are gener-
ated and classified using the CRG rules. Expansion of each
chain S = <s;, sy, ..., ;> terminates if one of the following condi-
tions occurs:

1) the chain cannot be expanded without creating a cycle,
2) all CRG rules instantiated by S are completely resolved, or

3) the binary features b(s,,s,,,) do not satisfy the features
bounds of any CRG rule.

If a chain S cannot be expanded, the evidence vectors of all rules

instantiated by S are averaged to obtain the evidence vector E(S)

of the chain S. Further, the set S, of all chains that start at p is used
to obtain an initial evidence vector for part p:

E(p) = Wls) DE) @

SESP

where #(S) denotes the cardinality of the set S. Classification of scene
parts based on (1) has one major problem. Chains that are contained
completely within a single “object” are likely to be classified cor-
rectly. However, chains that “cross” two or more objects are likely to
be classified in a arbitrary way, and they thus distort classifications.
To the extent that such “crossing” chains can be detected and elimi-
nated, the part classification (1) can be improved.

In the following, we present four rules aimed at detecting and
eliminating “crossing” chains. Two of the rules are deterministic con-
straint rules, and the other two are probabilistic compatibility rules.
Further, two of the rules use dependencies within chains (intrachain
rules), and the other two use dependencies between chains (interchain
rules). We discuss now, in turn, each of the four rules.

3.2 Chain Permutation Constraint
Every CRG rule encodes a set of model chains

M =<mgmg,, - mg > 1<k<K}

(see Section 2). When a chain S = <'s;s, ---s, > instantiates such a

rule, each image part s; indexes a set of model parts
M(s;) ={mg, 1<k <K}. The chain permutation constraint is
based on the assumption that rule instantiations are invariant to
permutations, i.e., if two chains are permutations of each other
(e.g., S1=<A, B, C>and S, =<B, A, C>), their parts must index the
same set of model parts, independent of instantiated rules. For
example, the model parts corresponding to scene part A given
chain S; must be the same as those corresponding to A given chain
S,, i.e., M(A]S,) = M(A]S,). This constraint can be applied inde-
pendent of whether the chains S; and S, are “crossing” or not.
Further, the chain permutation constraint can be applied repeat-
edly over sets of chain permutations using standard constraint
propagation.

3.3 Single Classification Constraint

The single classification constraint is based on the assumption that
at least one chain among all chains starting at a scene part does not
cross an object boundary and that at least one instantiated rule
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indexes the correct model parts. Given this, if there is any scene
part that initiates a single chain S; and this chain instantiates a
single classification rule, then the model parts indexed by S; can be

used to constrain all chains that touch S;. More formally, let

S, = <58;,8,, ..., S, > be a single classification chain. Then, for
1

all chains S, =<8, -+, S

i1 Sjzs > that touch S;, the common parts

n;
must index the same set of model parts. That is, for sy € S;, 55 € S;,
Sik = Sjj = M(sy) = M(sy). With the single classification constraint, S;
constrains all chains S; that touch S;, but the reverse does not hold,
since touching chains may be “crossing” and should therefore not
be used to constrain other chains.

As with the chain permutation constraint, the single classifica-
tion constraint can be propagated through the network of chains.
Any chain that ends up with an empty set of model parts M(s;) for
one of its components s; is considered inconsistent and eliminated.
Further, the evidence vector of each chain is recomputed from the
set of all indexed model parts (rather than from the set of all model
parts of the instantiated rule as described in Section 2).

These two deterministic constraints are very powerful in terms
of eliminating inconsistent (crossing) chains. Their usefulness
breaks down, however, for cases where the assumptions formu-
lated earlier are not met for a given training and test data set.

3.4 Interchain Compatibility Analysis

The interchain compatibility analysis is based on the following
general idea: The less compatible the evidence vector of a chain S;
is with the evidence vectors of all chains that S; touches, the more

likely it is that S; crosses an object boundary. In this case, S; is
given a low weight in the computation of (1). More formally, let
S = <Si1Sips - S, > @A §; =<sp5;, Sin, > be touching
chains, let T; be the set

T = {p|EIk p=s,and3lp= sj,} with #(T;;) > 0. The compatibility of

and of common parts, i.e.,

Siand S;, C(S;, S)) is defined as
IRSECLL Ll )
() (s o (o))

The overall compatibility of a chain S; is then defined with re-
spect to the set S of chains that touch S;, i.e., St = {S; | #(T;) > 0}

Winter(si) = WZ) ZC(Si ’S) ©)

T) SeSt

@

Using the interchain compatibility, we can now modify the
original averaging for the part evidence vectors in (1) to

E(p) _ 2SeSp Winter (S)E(S)

z"SeSp Wimer (S)
where S is defined as in (1).

4)

3.5 Intrachain Compatibility Analysis
The last rule for detecting boundary-crossing chains is based on

the following idea. If a chain §; = < s;,5;,, ..., §;, > does not cross
boundaries of objects then the evidence vectors E(sil),
E(s). ... E(s;,) computed by (4) are likely to be similar, and dis-

similarity of the evidence vectors suggests that S; may be a
“crossing” chain. Similarity of any pair of evidence vectors can be
measured by their dot product, and similarity of all intrachain
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evidence vectors is captured by the following measure:’

n n

Wou(9) = g 2 2 ) El5) ®

k=1 I#

With the incorporation of the intrachain compatibility analysis,
the part evidence vectors are computed using the following itera-
tive (relaxation) scheme:

E(p) = 0 5 3 Wi (L (IE(S) ©
SESp

(S) and the

with the normalizing factor Z =" W, (S)win,,
<p

logistic function @(z) = [1 + exp[—-20 (z — 0.5)]". Iterative computa-
tion of (6) is required, since recomputation of E(p) affects the in-

trachain compatibility wi,..(S). As indicated above, the four rules
presented in this section are evaluated squentially, and the final
part classification is given by the iterative scheme (6).

4 EXAMPLES

Although many problems in 3D object recognition require the
registration of depth information, there remain some that can be
sufficiently represented by simple multiview images of each ob-
ject. This is the case with the blocks example shown in Fig. 2. It
consists of configurations of blocks that are learned in isolation
(Fig. 2, top and middle row) and have to be recognized in complex
arrangements (Fig. 2, bottom row). The training set consisted of
five classes of block configurations, each with three training ex-
amples with one of each being shown in Fig. 2 (c1-c5). The com-
plex scenes consisted of up to 20 blocks, two of which are shown
in Fig. 2 (s1 and s2).

@

cl-c3

c4-c5

4

sl -s2

V’ -

AV

Fig. 2. (c1-c5): Example of one training pattern for each of the five
classes of patterns in the blocks example. (s1-s2): Complex arrange-
ments of patterns of learned training patterns.

Images of the training and test images were captured with a
color camera and segmented using a form of K-means clustering
on position (x, y) and color (r, g, b) attributes [11]. Small clusters
were merged with larger neighbor clusters in order to eliminate
spurious image regions. The following unary features were ex-
tracted for each image region: size (in pixels), compactness
(perimeterzlarea), and the normalized color signals R/(R + G + B),
G/(R + G + B), and B/(R + G + B). For pairs of image regions, the
following binary features were computed: absolute distance of
region centers, minimum distance between the regions, distance of
region centers normalized by the sum of the region areas, and

1. We thank Dennis Moore for suggesting this measure.
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length of shared boundaries normalized by total boundary length.
For the training data, CRG analyzed 240 different chains and
produced 25 rules: 11 U-rules, 3 UB-rules, and 11 UBU-rules. Clas-
sification performance was tested with the two scenes, s1 and s2,
shown in Fig. 2. For scene s1, 16 out of 17 parts were classified
correctly, and, for the 17 parts of scene s2, 15 were classified cor-
rectly and one part was not classified. Relative merits of the rules
discussed in Section 3 are illustrated in Table 1, which shows
number of chains, the number of correct classifications, and the
average entropy of all classification vectors after the (sequential)
application of the four rules. It is clear from these results that the
rules proposed in Section 3 are capable of improving the classifi-
cation of scene parts through elimination of crossing chains, and,
hence, improve region and object classification in complex scenes.

TABLE 1
NUMBER OF CHAINS (NS), NUMBER OF CORRECT CLASSIFICATIONS
(NC), AND AVERAGE ENTROPY OF CLASSIFICATION VECTORS (AE)
AFTER APPLICATION OF EACH RULE DESCRIBED IN SECTION 3, FOR
THE TWO COMPLEX SCENES SHOWN IN FIG. 2

Scene sl Scene s2
NS[NC] AE |NS|NC| AE
after initial rule evaluation 81| 13 [0.26| 93 | 11 | 0.33
after chain permutation constraint 55 | 15 {0.26 { 66 | 13 | 0.32
after single classification constraint 32§16 [010| 36 | 15 {0.21
after inter-chain compatibility analysis | 32 | 16 | 0.10 | 36 | 15 | 0.18
after intra-chain compatibility analysis | 32 | 16 | 0.0 | 36 | 156 | 0.0

The blocks example is essentially a 2D application even though
the objects were 3D objects. The objects example, on the other hand,
consists of full 3D range images. Cylindrical range images of six
isolated objects and complex scenes were obtained with a Cyber-
Ware scanner where objects are placed on a rotating table and
illuminated by a vertical laser beam. Range was determined by
normal triangulation techniques (given camera and laser calibra-
tion) with an accuracy between 0.1-0.4 mm. From a Delauney tri-
angulation of the sampled surface points, a description of the local
surface geometry was obtained using the covariance method pro-
posed in [12].

The object surfaces were segmented into regions using local
covariance descriptors. Each region was described by the unary
features avg(d;) and avg(d,), the average logarithm of the two ei-
genvalues of the local second-order covariance matrix. Pairs of
regions were described by the following binary features: the dif-
ference avg(d,) — avg(d,), the product of the average convexity of
the two regions, the distance between the region centers, and the
ratio of the two region areas.

The training set of the objects example consisted of five ob-
jects, a bottle, a cup, a planter, a pot, and a spray, as shown in
Fig. 3. The cylindrical range images of each object were seg-
mented and unary, and binary features were extracted as de-
scribed above, and CRG rules were generated as described in
Section 2. The generated rules were applied to three different
scenes containing multiple objects (see Fig. 4). The three scenes
contained 25, 32, and 31 parts, respectively. Of these parts, 18,
23, and 28 parts were classified correctly.

5 DiscussION

In the previous sections, we have presented CRG, a method for
learning structural descriptions in the form of evidence rules on
attribute bounds of ordered predicates. We have also introduced
SURE, a method for constraining the application of classification
rules in scenes composed of multiple objects.

CRG shares with standard decision trees [2] similar methods
for the search and expansion of decision trees. CRG differs from
these methods in several respects. First, it is designed to develop
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rules for unique identification of classes with respect to their
“structural,” i.e., linked unary and binary feature representation,
whereas decision trees use unstructured sets of attributes. Second,
CRG expands cluster trees adaptively and optimized for a given
dataset, whereas decision trees operate on fixed sets of attributes.

In the present paper, we have addressed two major issues.
First, given that CRG represents structural descriptions in terms of
sets of independent pattern chains, we have studied how interde-
pendence of these chains can be analyzed. Second, and more per-
tinent to this paper, we have studied how these interdependencies
can be used to group pattern parts or image regions into groups
that are likely to be associated with a single object.

Fig. 3. Five objects used in the objects example. A full 360-degree
cylindrical range image was obtained for each object. The black lines
correspond to boundaries between segmented surface regions.

scene 1 ﬂ

!

/

|
ﬁ
scene 2

scene 3

Fig. 4. Three different views of each of the three test scenes. Note that
the different views are for illustration purposes only. A full 360-degree
cylindrical range image was obtained for each scene.

Some work has been previously done on grouping of image
features and parts within the context of model-based vision, where
model backprojections can be used to prune false groupings or in-
correct interpretations. Here, we have attempted to achieve the
same within the framework of a rule-based interpretation system
and by relying only on very general and weak assumptions about
image and scene structure. We have achieved this by utilizing
constraints within and between instantiated rules, using both de-
terministic and probabilistic constraints. The SURE method we
have described can be used alone, as in the examples described
here, or it can be used as an additional mechanism for hypothesis
pruning in model-based vision systems.
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