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Abstract--In Pattern Recognition, the Graph Matching problem involves the matching of a sample data 
graph with the subgraph of a larger model graph where vertices and edges correspond to pattern parts and 
their relations. In this paper, we present Rulearaphs, a new method that combines the Graph Matching 
approach with Rule-based approaches from Machine Learning. This new method reduces the cardinality 
of the (NP-Complete) Graph Matching problem by replacing model part, and their relational, attribute 
states by rules which depict attribute bounds and evidence for different classes. We show how rulegraphs, 
when combined with techniques for checking feature label-compatibilities, not only reduce the search space 
but also improve the uniqueness of the matching process. 
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Machine learning Pattern recognition Relational structures Structural descriptions 
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I. INTRODUCTION 

This paper is concerned with integrating two different 
approaches to Pattern Recognition, Graph Matching 
and Evidenced-Based Systems, into a new method, 
Rulegraph Matching. Graph Matching refers to the 
classical approach which views Pattern Recognition as 
a problem of matching data samples to models, where 
both are represented as graphs of pattern parts (vertices) 
and relationships between parts (edges). These kinds 
of graphs are also known as Structural Descriptions I1 
or Relational Structures. For n vertices, the worst-case 
computational complexity of the matching process is 
known to be of the order 0(2 n/3) and cannot be im- 
proved even when valences (connectivities) of each 
vertex are taken into account. 12'3) 

Evidence-Based Systems (EBSs) are typically used in 
Expert Systems. ~*'5~ They represent models, or class 
data, via the enumeration of attribute (feature) states 
which evidence pattern classes and assign evidence 
weiahts according to the occurrence of feature states 
in observed data. Rather than use a graph representa- 
tion, EBSs typically use rules of the if-then-else form 
and the evidence is accumulated over the weights for 
rules which have been activated. Both unary (vertices 
in the graph representation) and binary (edge) features 
are typically included in the feature lists/6'7~ 

EBSs do not typically consider the label-compatibili- 
ties between model feature states in so far as evidence 
rules are activated simply when feature states are pre- 
s e n t - w h e t h e r  they are unary or binary. For  example, 
the existence of two parts of given sizes, and an observed 

distance between two parts may trigger three evidence 
rules. However, EBSs do not usually consider the 
relationships between the specific parts which trigger 
the unary rules and the pairs of parts which trigger the 
binary rules. This does not imply that EBSs cannot 
have local compatibility checks in their rule generation. 
For example, it is possible to generate rules in joint 
unary (U) and binary (B) feature space. But the dimen- 
sionality of such a space must correspond to a Cartesian 
product space ofU x U x B in order to guarantee that 
each sample point in the space has a label consistent 
with unary and binary features. Since EBSs typically 
avoid such high-dimensional spaces, uniqueness and 
such conjoint rules are usually sacrificed for rules 
based on simple unary or binary feature states. Further- 
more, local compatibility checks of this type are often 
insufficient to differentiate between samples. 

What EBSs loose in uniqueness, they gain in speed. 
In essence, the EBS is a technique for learning those 
feature states which capture important properties of 
patterns and it produces rules which can optimally 
discriminate between classes without considering the 
specific joint occurrences of parts and their relations in 
the data set. 

On the other hand, Graph Matching, by definition, 
takes into account parts and their relations in the 
matching process. However, issues of generalization 
from model data and optimal matching strategies are 
typically not developed in graph matching processes. 
In the present paper, we develop a new pattern match- 
ing technique which exploits the benefits of both 
methods by combining them in a single framework. 
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2. GRAPH MATCHING 

The Graph Matching formulation for Pattern 
Recognition reduces to essentially that of finding the 
best match between representative model (class) graphs 
and given data graphs. All vertices and edges of the 
graphs are labeled using unique identifiers and vertices 
or edges may share common feature states, as shown 
in Fig. l(a). In this example, the unary feature attribute 
is colour and the binary features are distance and angle 
between parts. 

In general, graphs may be matched by comparing 
vertices and edges according to their contribution to 
a relational distance metric. ") There are three main 
approaches to the graph matching problem: Indexed 
Search, Constraint Propagation and Relaxation 
Labeling. 

Indexed Search 

In Indexed Search, parts and their relationships are 
ordered in terms of their ability to identify and discri- 
minate pattern classes on feature states using Feature 
Indexing. ca) Perhaps the clearest example of this ap- 
proach is the, now classical, Decision Tree (9) where 
models or patterns are identified from data by descend- 
ing a decision tree and each level defines different sets 
of attribute (feature) bounds for different classes. Such 
trees have been used in Pattern Recognition "°) over 
the past two decades. Indexed Search, however, does 
not usually consider the conjoint occurrence of unary 
and binary features and consequently does not dif- 
ferentiate between graphs with different adjacencies 
(connectivities). This situation gets worse as the valency 
of the graphs is reduced, i.e. when there are fewer 
binary features. " t )  More recently, Interpretation 
Tables "2) have used features of higher arity, triples, 
and a matching technique closely related to geometric 
hashing. Classification performance of Indexed Search 

A(Green) W(Green) 

B(R~d) C(Btue) X(R~d)~ 
Y ( B l u e ) ~  

D( Green ) Z ( Green) 

(a) model (b) sample 

Fig. l. (a) A labeled and attributed graph. Global label-com- 
patibility checks (Subgraph Isomorphism) are required to 
differentiate between this graph and the graph in (b) as 
their unary and binary feature states, in isolation, are identi- 
cal (same set of colours--unary, same set of distances and 

angles--binary). 

can be adversely effected when parts of the input data 
are either missing or distorted--for example, due to 
occlusion and sampling errors--leading to the absence 
of feature states necessary for reliable recognition. 

Constraint Propagation 

Constraint Propagation is similar to Indexed Search 
in so far as feature states constrain the search of the 
database but, in addition, it takes into account the 
joint occurrence of unary and binary features. In face 
recognition, for example, it is not only the existence of 
a nose, mouth and a given distance between two un- 
specified parts which is important, but also the joint 
occurrence of the nose and mouth in a specific relation- 
ship (part i-relation ij-part j:Ui-BiTUj). In Inter- 
pretation Trees t'3) specific relationships are checked 
by allowing unary and binary constraints to propagate 
through an associated search tree in accordance with 
the in-place occurrences of individual parts and their 
relationships. Interpretations of the sample in terms of 
model graphs are generated at each terminal node of 
the search tree. It should be noted that this type of local 
unary-binary-unary (Ui-Bij-Uj) label-compatibility 
does not guarantee uniqueness of structural match, 
particularly if the unary and binary features are limited 
or if higher-order constraints are necessary to define 
patterns. ") In Fig. 1 a configuration of parts is shown 
in (a) which is isomorphic to (b) using local compatibi- 
lity only. However, the configurations are different due 
to a simple reallocation of unary features. 

The problem of representing higher-order adjacency 
can be addressed using local binary constraints to- 
gether with global labeling and Subgraph Isomorphism. 
For example, subgraph matching systems based on 
Subgraph Isomorphism have been used in Computer 
Vision. "4) In this scheme global label-compatibility 
checks are made with previously matched parts based 
on a set of label mapping states. When a new part is 
matched, the new label mapping must be consistent 
with previous mappings states for this label and this 
enables differentiation between the two graphs shown 
in Fig. I. The complexity of Constraint Propagation 
is higher than that of Traditional Bipartite Matching 
due to the backtracking required. Even though 
such problems can be solved by branch and bound 
search,ti s.16) it is not necessarily efficient since a depth- 
first backtracking scheme can still be expensive. 

Relaxation Labeling 

Relaxation Labeling solutions to the Graph Match- 
ing problem employ a parallel iterative scheme which 
updates the mapping between model and data parts as 
a function of the compatibilities between the part rela- 
tions in each structure. Since the connection of a node 
with its neighboring nodes is fundamental to a graph, 
relaxation-based processing extends naturally to com- 
putations over graphs using labels as constraints." 7) 
Kitchen and Rosenfeld tl a) describe a Discrete Relaxa- 
tion Labeling scheme for matching relational structures 
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and Kim and Kak t~9~ have proposed a scheme using 
bipartite matching embedded in discrete relaxation for 
matching relational structures for 3D object recognition. 
In all cases, the solution found is not guaranteed to be 
optimal, and Simulated Annealing t2°) may be used to 
increase the likelihood of a globally optimal match. 

Again, in this paper we connect the generalization 
capabilities (rule bound selection) of Indexed Search 
methods like Decision Trees with the label-compatibility 
checking process implicit in the latter two methods, all 
within the context of EBSs. 

3. EVIDENCE-BASED SYSTEMS 

Evidence Based Systems (EBSs) t21t summarize 
known class or model data by sets of rules each of 
which defines feature (attribute) bounds which, in 
various degrees (weights), "evidence" different classes 
or models. The learning component of EBSs is that of 
determining the bounds and weights (generalization) 
from the training data. Such automatic rule generation 
procedures use well known clustering techniques (for 
example, Leader and K-means methods, see t22.23~), the 

ID3 System t9'24) and various probability paradigms 
including Bayesian and Dempster-Shafer Theory. 1251 
Caelli and Dreie{ 6'71 describe such a scheme for classify- 
ing data based on unary and binary features in a 3D 
Object Recognition System (ORS) and we will examine 
the automatic rule generation procedure of that system. 

Feature values of parts and relationships are mapped 
to points in unary and binary feature  spaces where 
each axis corresponds to different attributes from the 
feature sets. Points in feature space from a union of all 
training patterns are first clustered using the Leader 
clustering algorithm in which points are grouped 
according to a neighborhood distance threshold. The 
heads of such rules are then formed by fitting a bound- 
ing hyper-rectangle to each cluster which minimize a 
class-based entropy function. The rules are of the form: 

IF  Bounds l . . . . . .  pp~, (featurel . . . . .  feature,) 

THEN Evidence Weights (wl, . . . ,  w,,I 

ELSE no evidence. 

Figure 2(a) shows a situation where points are not 
segregated in the feature space and the corresponding 
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Rules Class Weights 

C1 C2 

R~I 0.75 0.25 

R~ 0.20 0.80 

R~ 0.83 0.17 

R b 0.00 1.00 

Fig. 2. An Evidenced-Based System (EBS) rulebase: (a) EBS rules (R) are shown as rectangles for unary (u) 
and binary (b) feature spaces of two attribute dimensions; and (b) evidence weights for each class and each 

rule are derived from the class relative frequencies. 
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rules are overlapping, a situation which does not occur 
in Traditional Feature Indexing. Indeed, the clustering 
scheme is essentially a non-parametric method of deriv- 
ing a probability distribution for all parts in the training 
data. 

For  each of these rules, evidence weights may be 
derived using the training patterns from which they 
were generated. In the simplest case, these weights may 
be the frequencies of points for each class (see Fig. 2(b)). 
At run time, rules are activated by the collective unary 
and binary features present in a sample pattern and a 
total class weight is returned to allow identification of 
the class membership for the sample. The rule activation 
is parallel and so evidence is evaluated in linear time 
with respect to the number of features. 

As stated above, Caelli and Dreier 16'7) use a minimum 
entropy clustering procedure for generating rules which 
optimize classification when class samples are not con- 
tiguous or segregated in feature space. The method 
combines clustering with simulated annealing t26) to 
minimize a combined cluster entropy function, and 
rule boundaries are shifted to optimize the class 
membership of each rule. The evidence weights are 
then derived by training a Neural Network 127) thus 
allowing a nonlinear combination of evidence weights 
for different patterns of rule activations (see Fig. 3). 

Evidence-Based Systems (EBSs) do not explicitly 
label data (assign labels to each part and relation) in 
the definition of models or patterns. Rather, the exist- 
ence of a model is simply evidenced by the activation 
of sets of unary and binary rules. 

Perhaps the main limitation of the EBS-Neural Net- 
work approach is that the representation, from an 
analytic viewpoint, is not unique in so far as rules are 
generated without explicit consideration of the relation- 
ships between specific unary and binary feature states 
that define specific objects. This is attained implicitly 
via the hidden units in the Neural Network (Fig. 3) 
where unary and binary feature states occurring in the 
same view would simultaneously activate one or more 

wij 

Rbn Z:~ . 

Input Hidden Output 

> Class I 

> Class k 

Fig. 3. A single hidden layer Neural Network is shown for 
use in matching the Sample Pattern shown in Fig. 4(c) with 
the Class 1 Training Pattern. All unary and binary rules are 
used for input and the output corresponds to the class label. 
A non-linear activation function is used to calculate the state 
of each node depending on the state of each connecting node 

and the weights wi? 

hidden units. This process does not guarantee a unique 
representation of structural relations in the data. 

However, EBSs rule generation schemes can be used 
to reduce the search space of models and parts. In the 
reduced search space, traditional subgraph matching 
can be used to check predicate correspondence and to 
guarantee an optimal match between data and model. 

4. RULEGRAPHS 

In this section, we introduce the notion of rulegraphs. 
They combine three essential components: 

• A set of rules produced by an EBS. 
• A method for maintaining label information. 
• An Bayesian framework for relational evidence. 

The labeling of rules is demonstrated by the simple 
example in Fig. 4(a). Here, two classes of polyhedra 
are shown which are described by the unary features 
"perimeter" and "colour" and the binary features "dis- 
tance between centers" and "sum of corner distances". 
Two unary rules and two binary rules represent the 
different feature states in each feature space. For  the 
two classes, feature states are shared by the same set 
of rules and, as a result, the EBSs representation, alone, 
is unable to differentiate between these two classes. 

If unique label identifiers are assigned to each of the 
parts from the training patterns then the compatibility 
between these EBS-rules can be maintained. For  
example, the binary feature states of relation AC for 
class 1 and EF for class 2 are both represented by R~. 
However, the parts giving rise to these relations are 
represented by different rules--R'~ for A and R~ for C 
as opposed to R~ for E and F. Labeling of these rules 
is used to represent the compatibility between them. 
Unary rules are labeled with single label identifiers, 
and binary rules are labeled with pairs of label identi- 
fiers, for example, R~(A, D) and R~ (AC, EF)(see Fig. 4(a)). 

The compatibilities between rules can be represented 
by considering the unary rules as vertices and the 
binary rules as edges in a graph using the labels to 
determine the connections. A rulegraph is a graph o[ 
rules in which vertices correspond to unary rules and 
edges correspond to binary rules according to the 
following connection criterion: 

• Two unary rules R~ and R~ are connected by a 
binary rule R~ if there exists labels X, Y such that 
X e R ~  and YeR~ and XYeR~.  

A rulegraph model for a training pattern corresponds 
to a graph where unary and binary rules replace model 
parts and their relationships. In Fig. 4(b) two different 
rulegraph models are shown which represent the train- 
ing patterns for class 1 and class 2. Rulegraphs, there- 
fore, explicitly represent the rules produced by EBSs 
and their interrelations via shared label instances and 
they capture compatibility information with respect 
to the structural aspects of the pattern description. 

In Fig. 5(b) a rulegraph model is shown for the 
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Training Patterns 

/3 

(a) 

C 

Class 1 Class 2 

F 

25" 

Unary Binary 

(b) Rulegraph Models 

DF E R~ 

B, C E R~ E, F E R~ 

AC E R~ / 
AB E R:  

A E R~ D E R'~ 
Class 1 Class 2 

(c) Sample Pat tern 

Activates rules: 

XeR~ 

YER~ 

XY E R~ 

(d) Interpretation 

of sample: 

C~R~ 

AC E ~  

AE R~ 
Class 1 

Fig. 4. Training patterns are used in (a) to label the unary and binary rules according to the mapping of 
the parts and their relationships into each feature spaces. Unary rules are labeled with single labels and 
binary rules are labeled with label pairs. Rulegraph models may then be formed, according to the connection 
criterion, and these are shown in (b). At run time, parts in the sample pattern activate unary and 
binary rules based on their feature states as shown in (c). The search for label-compatible rules between the 

sample and the model results in a rulegraph interpretation (best match) as is seen in (d). 

simple graph using colours and distance. The rulegraph 
has three unary rules--R~e d, R~ .... and Rgl,e--and 
two binary rules corresponding to two ranges of dis- 
tance--Rbho~t and R ~o,s. The rulegraph is a convenient 
representation since it has lower cardinality than the 
original graph as each unary rule may contain multiple 
labels. Further, multiple binary rules may connect two 
unary rules consistent with this connection criterion. 
The adjacency information is reflected by the con- 
nectivity in the rulegraph according to the labeling of 
each rule vertex and edge. 

The likelihood of a rulegraph corresponding to each 
class in the training set may be determined by the 
evidence weights for each rule vertex and edge. For 
each unary and binary EBSs-rule we can determine 
probabilities from the class frequencies within a given 

rule's bounds in feature space: For example, for R~ from 
Fig. 2(b), p(class ~ I R~) = 0.75 and p(class21R~) = 0.25. 

The relational property of rulegraphs is to be con- 
trasted with normal rule-based systems which assume-- 
justified or not--independence of evidence. ~28'29) This 
assumption leads to problems when evidence weights 
are dependent on the adjacency of parts as well as the 
parts themselves (as shown in Figs 1 and 4(a)). In this 
case labeling is the key to effective combination oJ 
evidence as it defines just what the dependencies be- 
tween unary and binary feature states should be to 
instantiate a given model or pattern class. Indeed, both 
Compatibility Relations and Inference Networks have 
previously been used in the Expert Systems domain. ~2sJ 
Rulegraphs carry these techniques over into Visual 
Pattern Recognition. 
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(a) 
A(Green) 

B(ned) (Blue) 

D(Green) 

(c) 
Class graph 

Model Rulegraph 

(b) 

A, D e IPc .... 

AB E RbLong / \ AC E RbLo.g 
B D E Rbsao~t/ \ DC e R~ao., 

/ \  

wlF , i w  

b BC E Rsao~ 

Model Rulegraph 

Sample Rulegraph 

Rulegraph Interpretation Clique of 
of sample Compatible rules 

Fig. 5. The cardinality of the rulegraph model shown in (b) is reduced with respect to the class graph it 
represents (a) as parts have been replaced by rules. Multiple binary rules may connect two unary rules 
consistent with the connection criterion. A clique of compatible rules corresponds to a set of label-compatible 
rules between the model and the sample shown in (c). A Rulegraph Interpretation of the sample in 

terms of the model corresponds to rules from this clique. 

5. RULEGRAPH MATCHING 

In this section we show how rulegraph models may 
be used to classify labeled sample data by checking the 
compatibility between rules. A modified version of 
Subgraph Isomorphism is used to check label com- 
patibility between rules rather than parts. This reduces 
the cardinality of the search space normally associated 
with Traditional Subgraph Isomorphism. 

A Bayesian probability framework is used to de- 
termine evidence weights for rules, and matching is 
carried out using a simple metric for relational structures. 
The Relational Evidence Metric is presented in detail 
in Appendix B. The evidence weights are then used to 
probabilistically reduce the search space further, using 
A* search. As far as the authors know, this has not 
been used before for Subgraph Isomorphism. 

Initially, parts in the sample pattern activate unary 
and binary rules based on the feature states of the parts 
(see Fig. 4(c)). The task is now to determine rules which 
are label-compatible between model and sample, by 
pairing vertices and edges in much the same way as in 
traditional Graph Matching. 

5.1. Label compatibility checking method 

The aim of the label compatibility checking method 
is to check the compatibility between the labels in the 
model rules and the labels in the sample data. In 

rulegraphs, multiple labels may be present in the vertices 
and edges, and this necessitates a new method for 
checking label-compatibility. 

Among the methods for checking compatibility be- 
tween individual parts, Subgraph Isomorphism is the 
most effective in differentiating between samples. In 
Traditional Snbgraph Isomor0hism , labels in the 
sample are mapped to labels in the model, provided 
that their mapping states correspond, and this gives 
rise to sets of mapping states. Compatibility between 
the sample and model relies on a consistency of the 
mapping states and can be checked using Constraint 
Propagation Methods. For example, the steps used 
to determin~ compatibility between the two labeled 
sample parts X, Y in Fig. 4(c) and A, C from class 1 in 
Fig. 4(a) are as follows. 

Traditional subgraph isomorphism for ordinary graphs. 

1. From primitive parts X, Y in the sample and A, 
C in the model, test the possible Mapping States: 
A ~ X  and C ~  Y 

2. Existence Check: given Mapping States A ~ X  
and C ~ Y, if edge AC exists in the model graph then 
edge X Y must exist in the sample graph. 

3. For successful Existence Checks, update the list 
of acceptable Mapping States with the Mapping States 
A-~X and C-~ Y 
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In step 1, possible mapping states are created for the 
labels between the sample and model. Each label in the 
sample must be exactly mapped to only one label in 
the model. In step 2, the existence criterion for edges 
of the sample graphs is checked. In step 3, the map- 
ping states for each label are updated with the new 
states. 

In rulegraphs several labels may exist in each rule 
vertex and this gives rise to multiple mapping states 
involving the same labels. A new technique which 
determines label compatibility between rules instead 
of parts--the Label Compatibility Checking Method-- 
is now outlined for rulegraphs. This method uses a 
modified existence criterion capable of handling mul- 
tiple labels and the binary evidence weights are used 
for updating the Mapping States. The steps used 
to determine compatibility between the two active rules 
R~ and R~ for the sample in Fig. 4(c) and the model 
rulegraph for class 1 in Fig. 4(b) as follows. 

Label compatibility checkin9 method for ruleoraphs. 

1. From unary rules R7 and R~ we have the possible 
Mapping States: 
[R~:A ~ X  and R~:B~ Y and R~:C--* Y]. 

2. Existence Check: given Mapping States R~:A ~ X 
and R~ :C ~ Y, if AC ~ R~ exists in the model rulegraph 
then X YeR~ must exist in the sample data. 

3. For  valid Existence Checks, update the Mapping 
States with A ~ X and C ~ Y by instantiation (if the 
label is not yet mapped) or elimination (if the label is 
mapped). The new Mapping States are: 
[R~:A ~ X and R~:C ~ Y]. 

4. Several R b can exist between R~ and R~. In this 
case R b - R~ b are updated in order of decreasing evidence 
weights. 

b 1 b 5. There must exist at least one Rj~R,  . . .R,  for 
which b b A C e R j X Y e R j .  

In step l, possible mapping states are created for all 
the labels in the two rules. In this scheme single labels 
may be represented in several mapping states. In step 
2, a modified existence check is carried out for each 
pair of mapping states for R~ and R~. In step 3, the 
(multiple) mapping states are updated by instantiation 
(if the label is not yet mapped) or elimination (if the 
label is mapped) using the mappings generated from 
the new existence checks and the old mapping states. 
In step 4, the mapping states are updated in order of 
decreasing evidence weights of rules into which they 
map (since several binary rules can exist between two 
unary rules). This ensures that labels which have 
strongest evidence for a particular class will be mapped 
first. Finally, in step 5, we check that at least one binary 
rule is satisfied. A description of the complete algorithm 
is given in Appendix A. 

Steps 1-5 of the Label Compatibility Checking 
Method describe a technique for checking compatibility 
between two rules. The matching process may now 
proceed by finding sets of rules which are all pairwise 
compatible cliques ~3°~ (see Fig. 5(c)): 

• A clique of compatible rules corresponds to a set 
of rules where each rule is label-compatible with every 
other rule. 

The problem of finding the best match now reduces 
to that of finding the clique which has the largest total 
evidence weight. The process of compatibility testing 
updates that label mapping states a n d - - a s  a result 
of backtracking--search is required in order to find 
the best match (as in Constraint Propagation, see 
Grimson~13~). Terminal nodes of the resulting search 
tree correspond to interpretations of the sample with 
respect to model rutegraphs (as shown in Fig. 4(d)). 

5.2. A* search for best match 

The cardinality of the search problem (excluding 
label-compatibility checks) has already been reduced 
to the number of unary rules instead of the number of 
primitive parts. The evidence weights can be used in 
rulegraphs to direct the search toward rules and models 
for which strong evidence for isomorphism exists using 
dynamic programming principles. To achieve this we 
use A* search combined with the Relational Evidence 
Metric described in Appendix B to allow probabilistic 
pruning of the search tree. 

The aim of the A* search is to find the best interpre- 
tation of the sample rulegraph in terms of the model 
rules, i.e. the clique of compatible rules with the largest 
evidence weight. A* is essentially a branch and bound 
search utilizing current cost with a heuristic estimate 
of the remaining cost. ~3x) The heuristic is based on the 
evidence of the current match plus an upper bound 
estimate of the potential match remaining and this 
results in optimal pruning of the search. The current 
match is obtained by evaluating the evidence weight 
for the rules in the current clique of compatible rules 
and the upper bound of potential match possible can 
be calculated based on the (optimistic) assumption 
that all presently compatible rules turn out to be 
compatible with one another. For  example, the sample 
in Fig. 4(c) activates rules R~,R~ and R~. Initially, 
evidence for the potential match for each class is cal- 
culated simply using the active rules--since the cliques 
are all empty. For class 1 R~(A), R~(B, C) and Rb(AC) 
and for class 2 R~(D) and R~(E, F). In addition, duplicate 
search states are removed, further pruning the search 
space- -as  follows: 

A* search for best match usin9 rulegraphs. 

1. Form a queue of all cliques of compatible (initially 
empty) rules for all model classes. 

2. Maintain queue in decreasing sorted order of: 
sum of clique evidence weights plus an upper bound 
estimate of the complete sum of evidence weights. 

3. Initially, all cliques are empty. A clique may be 
extended with active rules that are compatible with 
every rule in the clique. 

4. Repeat until best match is found: 

(a) Extend the first clique on the queue by one rule. 
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(b) For  each extension, update the label mapping 
states and re-insert into queue while removing dupli- 
cates. 

(c) A best match has been found when clique can 
no longer be extended. 

An initial priority queue of active rules from all 
classes is constructed based on estimates of the potential 
match weight for each rulegraph model, and the queue 
is sorted in decreasing order of evidence potential. The 
queue contains rulegraph interpretations from all classes 
of data and is searched simultaneously. This maximizes 
the pruning effect of A* search by only extending those 
cliques which have the highest potential for being the 
best match. This results in alternate classes being 
examined during the course of the search. A clique is 
extended with rules in decreasing order of their evidence 
weights, thus ensuring that the sample parts are first 

assigned to the model parts to which they most likely 
correspond. 

The best match has been found when the clique at 
the head of the queue cannot be further extended. The 
queue order guarantees that extensions of cliques further 
down the queue cannot possibly yield a better match. 
The result of such a search for the sample in Fig. 4(c) 
is shown in Fig. 4(d). Here the best rulegraph interpre- 
tation for the sample is shown in terms of the rulegraph 
model for class 1. The system produces an overall 
evidence weight for the interpretation corresponding 
to the likelihood of the sample coming from the class. 

6. CLASSIFICATION PERFORMANCE AND COMPLEXITY: 
2D COMPLEX PATTERN RECOGNITION 

The Rulegraph Matching technique is designed to 
improve on the uniqueness in pattern classification 

CLASS_I 1 CLASS 12 CLAS S_ 13 CLASS_ 14 CLASS_I 5 

(b)Training Patterns from TS for CLASS_I  

(c) Sample patterns from SS for CLASS_I  

Fig. 6. In (a) all 15 classes for the Blocks Data are shown. Four training patterns (or views) for class 1 are 
shown in (b). (c) Four different test patterns with distorted features and missing (occluded) parts. 
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while, at the same time, reducing the computational 
complexity of the graph matching stage. Rulegraph 
Matching has to be evaluated both with respect to 
classification performance and with respect to com- 
plexity of matching. First, classification performance 
of Rulegraph Matching is compared to that of EBS 
using a Neural Network and that of Traditional Sub- 
graph Isomorphism. Second, a comparison of the com- 
plexity of these different approaches is made and in 
order to do so systematically, synthetic data were used. 

A complete set of patterns is shown in Fig. 6(a). For 
the Training Set (TS), four fragments were extracted 
from each of the 15 patterns (see Fig. 6(b)). Similarly, 
four different (not necessarily part disjoint) fragments 
were extracted from each of the 15 patterns for the test 
Sample Set (SS). This scheme of pattern sampling simu- 
lates occlusion and data loss and is consistent with 
sampling regimes found in 3D Object Recognition and 
other complex Pattern Recognition problems. In addi- 
tion, both unary and binary feature attributes were 
distorted using additive Gaussian noise with a variance 
corresponding to five percent of the original feature 
variance. This moved the corners, colour and spatial 
positioning of the polyhedra relative to the class from 
which they were sampled (see Fig. 6(c)). 

The extraction of relations between all part pairs 
creates significant redundancies and adds a squared 
factor to the storage requirement. As a result, only 
adjacent and non-overlapping binary features were 
used. Data graphs with different numbers of vertices 
were generated by varying the numbers of parts, but 
in all cases the SS consisted of 60 different samples over 
which performance was averaged. The data is not 
guaranteed to be perfectly classifiable and exhibits 
many characteristics fundamental to problems en- 
countered in Pattern Recognition. 

The rule generation scheme used Leader clustering 
(in feature spaces) based on the nearest neighbor meth- 
od and required only a single parameter, a distance 
threshold. Smaller thresholds generate more specific-- 
and more numerous--rules  with lower class entropy 
values with respect to the TS and higher thresholds 
generate more general--less numerous and possibly 
overlapping--rules that are resilient to variation and 
distortion of the data. As a result there is an optimum 
number of rules associated with any particular Pattern 
Recognition problem though, in this example, we have 
run tests with different numbers of rules. 

For  comparison purposes,  the EBS (see Caelli 
and Dreier ~6'7~) was trained using a Neural Network 
(EBS-NNet) with one hidden layer in which the number 
of nodes was equal to the maximum of the input 
(number of unary and binary rules) or output (number 
of classes)--whichever was larger. Backpropagation 
was used to minimize the error in the network and 
1000 sets of training epochs were used over several 
different learning rates and the best performing trained 
network were used for classification. 

Tests were also performed by matching using Tradi- 
tional Subgraph Isomorphism matching and the same 

relational evidence metric that was used in Rulegraph 
Matching. This was done in order to find the best 
possible classification for each data set. For Subgraph 
Isomorphism, a depth-first search strategy was used 
utilizing Branch-and-Bound (SI-BB) which constrains 
the search when it is not possible to reach a better 
match result via extension of the current interpretation. 
Depth-first search of this type is typically preferred for 
problems of high cardinality 1161 since breadth-first 
search can lead to exponential space requirements. 
Indeed, without the use of a depth-first strategy we 
would not have been able to obtain exhaustive search 
resul ts-- the Branch and Bound scheme used is as 
follows: 

Branch and bound depth first search for best match 
using subgraph isomorphism. 

1. Form a queue of all cliques of compatible (initially 
empty) parts for all model classes. 

2. Initially, all cliques are empty. A clique may be 
extended with active parts that are compatible with 
every part in the clique. 

3. Set the best match (so far) to the first clique. 
4. Repeat until best match is found: 

(a) Extend the first clique on the queue by one 
part. 

(b) For each extended clique: 

(i) Update the label mapping states. 
(ii) If the Sum of clique evidence weights plus an 

upper bound estimate of the complete sum of evidence 
for the clique is greater than for the best match then 
re-insert into the front of the queue else discard. 

(iii) If the clique has a higher sum of clique evidence 
weights than the best match set the best match to the 
clique. 

(c) A best match has been found when clique can no 
longer be extended. 

Classification performance for matching the Training 
Set (TS) to itself is shown in Fig. 7(a). It can be seen 
that both EBS-NNet and Rulegraph Matching achieve 
perfect classification when the number of rules is suffi- 
ciently large to enable each rule to differentiate between 
patterns. Since there is no occlusion or distortion this 
is similar to a simple string matching procedure, and 
Rulegraph Matching achieved perfect classification 
with very small sets of rules. Using the occluded and 
distorted SS best classification performance was 
achieved with between 5 and 15 rules (see Fig. 7(b)). It 
can be seen, here, that the best classification perform- 
ance for the Rulegraph Matching (889/0) is consider- 
ably better than for the EBS-NNet (55~o) and it is 
almost as high as is possible using Traditional Subgraph 
Isomorphism (SI-BB) (90~o). 

The high classification performance of Rulegraph 
Matching can be attributed to its ability to encode 
more class information through the use of labels, while, 
at the same time, allowing for rules which are general 
enough to allow for variation and distortion of data. 
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(a) Blocks training set (TS) - 20 Parts 
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Fig. 7. (a) Classification performance for different numbers of rules for the Training Set (TS). (b) Classification 
performance is shown for the distorted and occluded Sample Set (SS). Here Rulegraph, EBS-NNet and 
SI-BB correspond to the Rulegraph Matching system, the Evidence Based-Neural Network system and 

Traditional Subgraph Isomorphism with Branch-and-Bound, respectively. 

In this implementation, as the number of rules increase 
there is less generalization. 

Using the same data sets, we can also compare the 
computational complexity of the different methods. 
For the case of the EBS-NNet the complexity is de- 
termined by the number of weight additions at each 
node of the network during the feedforward operation. 
For a fully connected network the complexity is O(r 2) 
with r being the number of nodes in the hidden layer, 
provided, of course, that this number is larger than the 
sum of unary and binary features activating the rules. 
For both SI-BB and Rulegraph Matching, the com- 
plexity is determined by the total number of operations 
which compare a single edge in the model with respect 
to the existence of a single label-compatible edge in the 
sample. As a result, we have expressed the computa- 
tional cost of SI-BB and Rulegraphs in terms of exist- 
ence checks. For comparison purposes, we equate an 
existence check of Rulegraph Matching and SI-BB 
with one weight addition in EBS-NNet. 

Results for the average computational cost for the 
same Blocks Sample Set (SS) are shown in Fig. 8(a). It 
is apparent that Label Compatibility method used by 
the Rulegraph Matching system requires only a fraction 
of the operations required by Traditional Subgraph 
Isomorphism (SI-BB). In fact, it is close to the number 
of operations required by the EBS-NNet. The numbers 
of existence checks was consistent with the observed 
run times. EBS-NNet and Rulegraph Matching system 
matched nearly instantaneously while SI-BB consumed 
large amounts of computation time. Further, it should 
be noted that rulegraphs are superior to Neural Nets 
at learning time: frequencies and labels of training data 
are merely recorded, while Neural Nets require sub- 
stantial training time for Backpropagation. 

In summary, the results indicate that the rulegraphs 
offer a classification performance close to the obtain- 
able optimum and a significant improvement over 
EBSs; in particular for occluded and distorted data. 
The computational complexity of the rulegraph method 
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(a) Blocks sample set (SS) - 20 Parts  
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Fig. 8. A comparison of the average case computational complexity expressed in log2 of the total number 
of existence checks required to find best match, for the different systems. (a) The results for the Sample Set 

(SS) and different numbers of rules and (b) for different number of parts. 

is much lower than that of Subgraph Isomorphism 
(using BB) and similar to that of the Neural Network. 

7 .  W O R S T  C A S E  C O M P L E X I T Y  

To study the worst case computational complexity 
of Rulegraph Matching, we give a theoretical analysis, 
based on the assumption that feature ordering and 
pruning methods have no effect. We give empirical 
results for tests using different numbers of parts to 
confirm the validity of our theoretical analysis. 

The process of subgraph matching using Subgraph 
Isomorphism is equivalent to the maximum weighted 
clique problem ~3°~ for which Tarjan and Trojanowski t21 
have shown complexity to be 0(2 v/a) where v, in our 
case, corresponds to the number of vertices or parts. 
This is consistent with the empirical values for the 
SI-BB system for different numbers of parts (Fig. 8(b)). 

In Rulegraph Matching, primitive parts are replaced 
by rules and search for a maximal clique of rules is 

carried out in a space which is reduced in cardinality 
compared to that of Traditional Subgraph Isomorphism. 
Further, each rule in the model may only be paired 
with one and the same rule in the sample so that the 
worst case number of operations involved in this search 
will be 2 '/3 for r being the number of unary rules, 
assuming that the A* search has no pruning effect. This 
determines the maximum possible size of the search 
tree and since each problem has an optimum number 
of rules this is constant for a given recognition problem. 

The worst complexity of the lable compatibility 
checking method occurs when the feature values from 
every vertex map into both unary rules and the feature 
values from every edge map into every binary rule 
between these tw.o unary rules. Under these conditions 
the existence of every edge in the model graph will have 
to be checked with the existence of every edge in the 
sample graph, resulting in 72 operations for ~ being the 
number of edges. The overall worst case complexity of 
the Rulegraph Matching algorithm method thus is 
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O(722r/3). This is consistent with the results for Rule- 
graph Matching shown in Fig. 8(b) where the number 
of existence checks is seen to grow as a quadratic 
function of the number of edges (the number of vertices 
and edges were approximately equal). 

It should be pointed out that our analysis is conser- 
vative in so far as it assumes that the label compatibility 
checking method will behave in the worst case at each 
node of the search. Further work is required to establish 
the complexity of the Rulegraph Matching method 
when used with the automatically learned rules and 
this may require a probabilistic analysis similar to that 
of Grimson tl 3) for the case of Interpretation Trees. 

Based on these above analysis alone, Rulegraph 
Matching has a worst case complexity of O(722 r/3) 
compared to that of Traditional Subgraph Isomorphism 
with 0(2 v/a) and O(r 2) for that of the EBS. This indicates 
that the Rulegraph Matching is capable of matching 
very large graphs if constant numbers of rules are 
used. 

8. A 3D OBJECT RECOGNITION EXAMPLE 

We have also compared the Rulegraph system with 
the EBS-NNet system for recognizing synthetic (CAD- 
generated) 3D objects where the learning of their re- 
lational structures is attained through a finite number 
of views. The segmentation and feature extraction 

Fig. 9. Left: range data is shown for two 3D objects. Here, 
intensity corresponds, inversely, to depth. Right: segmentation 
is shown in terms of convex, concave and planar region types 
(from zero-crossings of Gaussian curvature). Surfaces were 
smoothed by an isotropic Gaussian filter with tr = 6 pixels for 
256 x 256 pixel images before determining the derivatives 
(and the determinant of the Hessian, see equation (1); from 

Caelli and Dreier, 1994). 

stages are identical to those used in the Evidence- 
Based Object Recognition System used by Caelli and 
Dreier t6'7) and are summarized as follows. The input 
data for the model construction stage consisted of 
view-dependent depth maps. View-dependent input 
samples are chosen in order to restrict the computa- 
tions of surface curvatures, or pixels, to what is visible 
(see Fig. 9). The segmentation procedure uses the zero- 
crossings of the determinant of the Hessian 

fxxfrr - f ~ y  (1) 

and determines convex, concave and planar regions in 
a way which minimizes noise amplification which typi- 
cally occurs when full H and/or K zero-crossings 
are eyaluated (Yokoya and Levine, 1989)332) Such a 
segmentation procedure applies equally to training 
and sample data and is invariant to rigid motions. 
Once these parts are extracted then part attributes 
(unary features) and relations (binary features) can be 
computed. 

The Rulegraph and EBS-NNet Systems were tested 
using a database of six objects (see Fig. 10): the 3D 
Objects database, each with 24 views defined over 
equal angular steps in azimuth and elevation of a 
view-sphere. In addition to these 144 views, an extra 
84 new views were generated (14 for each object) where 
each new view was oriented half-way between training 
set views. 

Segmentation, feature extraction and rule generation 
was performed on each view of the training data. In 
this case the unary features were areas and 3D spanning 
distances and the binary features were centroid and 
maximum distances. Results obtained for the TS and 
with new SS views are shown in Fig. 11 (For a more 
detailed analysis of features see Caelli and Dreier, 
1994t6,7)). 

The Rulegraph system achieves perfect classification 
on the TS with less rules than the EBS-NNet system. 
Again, label-compatibility checking allows for the use 
of more general rules (larger feature value ranges) 
leading to improved classification for the new views in 
the SS. Here, the number of features and training views 
were reduced with respect to what was necessary for 
perfect classification of the new sample views. Only 
two unary features (area and maximum span) and two 
binary features (centroid distance and maximum dis- 
tance) were extracted and a reduced number of views 
was used. Increasing the number of training views 
and/or the kinds of features extracted also increases 
classification performance for the new sample views. 
Indeed, Caelli and Dreier t6'7} achieved near perfect 
classification performance when sufficient views and 
features are used, particularly if the features are invari- 
ant to pose. 

Label-compatibility checks allow for the use of more 
general rules which allows for larger numbers of object 
classes to be learned from fewer training views. In 
addition, the representation offers improved uniqueness 
when objects share similar parts and relations. 
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Fig. 10. Rendered example views for each of the objects in the 3D objects database. There were 24 views per 
object in the Training Set (TS) of images and 14 (new) views in the Sample Set (SS) of images (from Caelli 

and Dreier, 1994). 
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(a) 3-D Objects training set (TS) 
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Fig. 11. (a) Classification performance is shown for the 3D Object database for different numbers of rules 
in the Training Set (TS), and (b) (new) views in the Sample Set (SS). 

9. DISCUSSION 

One problemwith evaluating such 2D and 3D learn- 
ing/recognition procedures is that of developing an 
objective definition of problem difficulty. In this work 
we have adapted a slightly different approach--we 
have analyzed the complexity of the algorithms, parti- 
cularly as a function of the number of rules. The reason 
for this is relatively clear. Learning/recognition can be 
attained if we have enough features, rules and com- 
putational power• Consequently, it can be agreed that 
what makes one approach an improvement on others 
is whether it can achieve the same (or better) per- 
formance--in this case generalization and classification 
accuracy--with less operations. The rulegraph system 
described here uses properties of EBSs and Graph 
Matching/Search techniques to enable efficient match- 
ing search processes within a representation which 
retains pattern (relational) uniqueness and generaliza- 
tion from training data. 

Rulegraph matching derives its power from a com- 
bination of several components. First, the computa- 
tional complexity is reduced compared to traditional 
graph matching techniques through the replacement 
of pattern parts by rules. Second, the use of label- 
compatibility checking between model and sample 
rules leads to an improved representational uniqueness. 
Third, the search space of the matching process can be 
pruned significantly by embedding rulegraph matching 
into an evidential framework. That is, the EBS weights 
provide a weighted graph which enables us to use A* 
search to find the best match. The superior performance 
of rulegraph matching has several important impli- 
cations for the pattern matching process, apart from 
reduced complexity and improved classification per- 
formance. 

Rulegraphs offer an improved way of learning from 
training patterns. No model-based prior knowledge is 
required about pattern classes and no strict control is 
required over the presentation of patterns at training 



Rulegraphs for graph matching in pattern recognition 1245 

time. Hence rulegraph matching may prove useful in 
situations where training data is limited or incomplete. 
The classification performance of rulegraphs is high 
even when small numbers of rules are generated. Rule- 
graph matching thus allows pattern recognition in 
situations where only partial or distorted data is avail- 
able at classification time, as is the case in 3D object 
recognition. The reason for this is c lea r - - the  conjunc- 
tion of broad attribute bands (evidence) reduces possible 
candidates and the label-compatibility checking further 
enacts this conjunctive process. 

For  Object and Pattern Recognition new benefits of 
Rulegraphs have become apparent. First, Rulegraphs--  
like Graph Ma tch ing - - a r e  capable of returning in- 
formation in addition to class membership. The orien- 
tation of the input data with respect to the sample 
domain and number  and identity of parts are also 
returned. Indeed, the Rulegraph system has been shown 
to provide information necessary for systems perform- 
ing analyses at a symbolic level for the case of scene 
interpretation. ~33'34~ Second, a trade-off is possible 
between the uniqueness of the matching results and 
computational  cost through choosing different num- 
bers of rules. For  any particular problem an optimum 
number  of rules will produce best classification per- 
formance and hence, as the number  of parts in a graph 
increase, the complexity grows only quadratically. This 
opens the possibility for matching graphs with larger 
numbers of parts than has been previously possible 
with Traditional Subgraph Isomorphism. 

Finally, in Rulegraph Matching, learning is done 
posterior to rule generation in so far as label com- 
patibilities and probability information is collected 
after the rules have been generated. The possibility 
of using label-compatibility information prior to this 
p rocess - - in  the very generation of the ru les - -has  also 
been recently addressed using a Condi t ional  Rule 
Generat ion technique, c35.36) The integration of Condi- 
tional Rule Generat ion and Rulegraphs into a single 
framework of Relational Evidence Theory is the subject 
of ongoing investigation. 

In summary, Rulegraphs capitalize on the efficiency 
and generalization components  of Evidence-Based 
Learning and the relat ional  structures of Gra ph  
Matching. Together they permit an application of A* 
search to the graph matching problem and a reduction 
in the cardinality of the matching process. 
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APPENDIX A 

Label Compatibility Checking Method algorithm 

The Label Compatibility Checking Method operates in 
two steps using the Compatibility_check0 and Update_state() 
functions. First, the compatibility of a candidate rule is checked 
against the current clique. Second, if the candidate rule is 
compatible then the matching state is updated. 

The Compatibility_check0 function checks the existence of 
edges in the sample with respect to their existence in the 
model. This process is carried out for edges between the 
candidate rule and each rule in the clique separately. If an 
edge exists in the model between a unary candidate rule and 
a unary rule in the clique then at least one edge must exist in 
the sample to validate a label mapping. Compatibility occurs 
when label mappings are possible for all unary rules. Labels 
are not mapped if and only if they are not present in any 
mapping state. 

The Update_state() function adds the candidate rule to the 
clique and updates the label mapping states between the 
model and the sample. The mapping states are updated by 
instantiation and elimination and the binary rules are used 
to update labels in decreasing order of evidence weights from 
the edges. In Order to allow backtracking during search the 
new mapping states for the extension of the present clique 
must be saved as separate search states along with the set of 
rules in the clique (matched) and candidate rules (unmatched). 

/* Determines the compatibility of candidate rule R~ with the clique */ 
/* and itself, then sets candidate label mapping states. */ 
Compatibility_check(){ 

for all R~ where R~eclique OR R~ = R~{ 
at_least_one = false; model edge_exists = false; sample_edge_exists = false; 
for all model labels L 1 where (L 1 eR~){ 
for all model labels L 2 where (L2eR~) { 

model_edge_exists = true; 
for all sample labels K 1 where (K 1 eR~){ 
for all sample labels K 2 where (K2ERU){ 

sample_edge_exists = true; 
if (((L t and K 1 are not mapped) OR (mapping(L1 ~Kt ) ) )  
AND (mapping(L 2 -~ K2) OR (L 2 and K~ are not mapped))) 
then { 

if (3R~:((L~L2eR b) AND (K1K2eR~)) 
then { 

set cand~mapping(L~ ~ K~); 
set cand~napping(L 2 - .  K 2); 
atdeast_one = true; 

} 

if ((model_edge_exists) AND (sample_edge_exists) 
AND (NOT at_least one)) then return(false); 

} 
return(true); 

} 
/* Adds candidate rule R~ to the clique and updates the label mapping states */ 
/* with the candidate label mapping states by elimination and instantiation. */ 
Update_state() { 

add R~ to clique; 
for all R~ in decreasing order of evidence weight w(R~){ 

for all model labels L where (3X:LX~R~){ 
for all sample labels K where (3 Y:KY~Rb){ 

if (L and K are not mapped) then 
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if (cand_mapping(L~ K) OR mapping(L-, K) then 
set new_mapping (L-~ K) else clear new_mapping(L-~ K); 

else 
if (cand_mapping(L-~ K) AND mapping (L~ K) then 
set new_mapping(L-, K) else clear new_mapping(L~ K); 

update mapping states with new_mapping states; 

APPENDIX B 

The relational evidence metric 

A Bayesian framework tzs'29~ is used to evaluate the match- 
ing. Evidence weights for rules are derived from the posterior 
probabilities of each rule given the class w(Rilclass). These are 
simply calculated from the frequencies of points for each class 
which activate each rule (see Fig. 2(b)). 

A relational metric is used to sum evidence from unary and 
binary rules. This is based on the relational distance metric 
scheme used by Shapiro and Haralick, "'3~) except that the 
graphs being compared are graphs of rules, not graphs of 
parts. The evidence weight metric for the match of a sample 
to a class model is computed in two steps. 

First, the weight for each rule is adjusted by the proportion 
of the number of labels in the sample to the number of labels 
in the model, provided this is less or equal than 1. Assume 
there are v single labels and 7 label pairs present in the current 
label mapping states. This results in normalized unary evi- 

dence Ui(R~[class ) from rule R~ and binary evidence BI(R~I class) 
for rule R/t' for the model class. 

f l  ~ t  Esam le r ~R u U j \  
U(Rrlclass ) = w(R~'lclass)min(l, " ~ '  ~J ! -  ) 

\ vk~model A t,k~R ~ /-!k / 

f l  ~ esam le eR t' ~ ' J \  
B(Rblclass)= w(Rblclass)min(l, ~'J p ~,,.j , ~ | .  

~k E) 'k~model  ~ 7 k e R ~ ' k }  

Second, independence is assumed between unary and binary 
evidence within a label-compatible interpretation clique. The 
evidence weights for the unary rules are multiplied by the 
proportion of the connecting binary rule weights and the 
binary rules are thus considered supporting evidence for each 
unary rule in the evidence summation. The result of the 
summation is then normalized by dividing by the union of 
evidence from rules activated by labels and label pa i rs - -Re 
sample in the sample and R e model in the model. This returns 
an evidence weight between in the interval [0, l] 

Y R,~¢liq~ B(Rylclass) 

ZRU~c  q~g(g~lclass) Z_" _ ~ _  .w(gYclass) 
Kj esamp e ~ K2emoael 

w(classl clique) = 
Z R,~ . . . .  ~,e A ~,~ mode, w(R ~lclass) 
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