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Computational approaches to human pattern recognition
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Abstract—This paper consolidates recent findings on how humans detect and recognize patterns and
considers computational procedures which reflect observed performance. A multi-level correlation
model for spatial information processing is proposed and used to interpret past results on human
psychophysical performance.

1. INTRODUCTION

The aim of this paper is to consolidate research completed over the past decade
into how humans detect and recognize forms or shapes, and to present an
overview of the underlying processes which capture various aspects of observed
behaviour. Different types of recognition problems are considered and it is shown
that a common set of computational procedures seems to underpin the known
performance of the human visual system in interpreting images. However, before
dealing with these issues in some detail, some consideration of what is understood
by “form’ and ‘shape’ is necessary.

Pattern, form or structure are quite difficult to define in a succinct way. But one
necessary condition for the presence of a structure in a signal is the existence of,
at least, some degree of correlation within the signal. A signal which is perfectly
uncorrelated in all dimensions (that is, white noise) has, by definition, no
structure. Here, ‘uncorrelated’ means that we cannot predict the intensity of any
pixel from any set of other pixels and so structures in textures, scenes or patterns
are determined by the types of correlations—or pixel dependencies—present.
Indeed, the study of these correlations—and the techniques to represent them
formally—has been, for a long time, the main focus of both texture and form
analysis (see Julesz, 1962).

An important example of how the existence of spatial correlations define
patterns is the notion of an ‘edge’: the locus of the points corresponding to the
boundary of patterns. They are the pixels whose intensities cannot be predicted
from their neighbours. This can be clearly seen in the error image resultant from
linear predictive coding (LPC, see Rosenfeld and Kak, 1982) and can also be
applied to spatio-chromatic domains (Caelli and Reye, 1993). One of the early
papers which proposed this connection between correlation and human form
perception was that of Dodwell (1970) who argued that eye movements provide
the basis for the autocorrelation of image data. This theme of autocorrelation was
further developed by Uttal (19853), and the aim of this paper is to show how
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correlation has played a central role in the understanding of biological pattern
recognition.

Correlation has played a critical role in even defining the processing of spatial
information in the vertebrate visual system, in particular for the notion of a
‘receptive field profile’ (RFP) that is used so often to model biological
information processing. Neurophysiology and psychophysics assume the
‘principle of maximum signal response’ to measure what is being processed. That
is, the response of a cell to different parametric states of a signal (for example,
orientation) defines the neurone’s RFP and the maximum response determines
the underlying feature detector (see, for example, Hubel and Wiesel, 1968). All
this assumes that analogues to such detectors exist within the visual system and
that the response is reasonably modelled by the system correlating the internal
detector with the external signal. Without this assumption it would not be possible
to conclude anything like what has been concluded from the electrophysiology of
vision over the past 50 years.

The reverse is assumed to occur in masking studies. That is, the very notion of
‘fatiguing’ spatially tuned neurones in the human visual cortex by repeated
exposure to a given signal also assumes that the maximum masking effect will be
induced by the signal which ‘best matches’ the given detector’s profile. Again,
correlation defines this match. In fact, in a direct study of this, it was possible to
show that we could not reject the hypothesis that the masking effect was
determined by the cross-correlation between signal and mask (Caelli and
Moraglia, 1987a). The experiments used Gabor signals (Gaussian modulated
sinusoidal gratings) which could be decorrelated by changes in frequency,
orientation or phase between the masking and test patterns. A forward-masking
task was used where a test signal was presented after a masking signal and subjects
were required to indicate whether the test was present or not. The percentage
correct detection was clearly predictable from the inverse of the peak of the
cross-correlation between signal and mask. Notice that this cross-correlation was
not ‘in-place’: the masking could occur within a neighbourhood of the test centre.
These results argued for an adaptive channel model where the channel centre and
bandwidth are determined by the correlation between signal and mask.

Such results have also been duplicated with more natural scences (Caelli and
Moraglia, 1987b) where the masking patterns had either the same or different
amplitude or phase spectra as the test patterns. Here it was shown that similarity
in power spectra was unrelated to the degree of masking (the power spectra of
two images were identical or quite different) and that the correlation between the
actual images (in the space domain) was the deciding factor.

This discussion demonstrates that there is some basis for the involvement of
correlation in early visual encoding and broad support for channels—neuronal
subsystems selectively sensitive to specific signal correlations—in biological
vision. What is required, however, is an analysis of the extent to which such a
computational procedure applies to higher-order or more natural visual tasks.

Image correlations—and lack thereof, as measured by edge coding—occur at
many different scales and colour bands, as is illustrated in Fig. 1 using different
isotropic filters (from Caelli and Reye, 1993). Here we have used standard zero-
crossings of the V?G (Gaussian low-pass-filter followed by the Laplacian
differential operator) with two different Gaussians to obtain the results over
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Figure 1. Different structures are captured by edge extraction (the lack of correlations ‘marked’ by
zero-crossings of the V2G operator and in this case weighted by the pixel variance about each zero-
crossing) at different scales. Here the scales were determined by different bandpass filters derived
from different low-pass Gaussians (G(o) for o, = 16 and ¢, = 8 pixels, for the 128 X 128 pixel
image) applied before the Laplacian (V2). The effective filter point spread functions are shown in the
top row and the following rows correspond to red, green, and blue colour line responses to the input
(top left) coloured and textured pattern. (From Caelli and Reye, 1993.)
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different scales and colours. Though somewhat artificial, this example illustrates
that the difference between the components of an image which define ‘texture’ and
‘shape’ is, to a large extent, one of scale. It also shows how different sized
receptive fields are necessary to encode the broad range of image structures in an
image which are needed to define a ‘pattern’ or ‘shape’ and that spatio-chromatic
correlations must be also included in modelling spatial vision. For this reason, and
others, the existence of multi-scale feature extraction is an important component
of perceptual information processing.

Multi-scale analysis is particularly appropriate for pattern recognition problems
which require the detection or recognition of pattern components and their
relations. Although rather obvious, it is nonetheless important to emphasize that
‘pattern’ involves the definition of parts and relationships at different scales. This
type of representation is standard in many computer vision tasks, as, for example,
in OCR (optical character recognition) where individual characters are typically
encoded by the relationships between more fundamental stroke patterns (see
Suen, 1990). It has also been the operational model for more complex human
2D-pattern and 3D-object recognition (Biederman, 1985)—though, in both cases
it must be clearly defined what constitutes parts and relations. Here, a ‘part’
typically refers to a set of contiguous locations—a region—where each location
(pixel) shares common attributes. ‘Relations’ refers to those attributes (features)
which depict measurable (binary) comparative properties such a distances and
angles between parts.

Form, pattern and shape can be defined along a representational continuum,
from the level of images to the level of symbolic or categorical descriptions. At the
former end of the continuum, patterns correspond to signals defined exactly and,
at the other end, they correspond to generic descriptions that assume the
existence of segmented image parts and characterize such parts and their relation-
ships. Patterns of the latter type are usually found as examples of object categories
(for example, ‘chair’) and have been a major focus of attention in recent work in
machine pattern recognition and classification. Algorithms for form, pattern or
shape recognition must also contain processes which enable recognition which is
invariant to imaging and geometric transformations to be representative of the
types of problems that occur in both natural and man-made environments. The
main types of invariances are: one, those related to image and object properties
such as camera position, perspective, lighting conditions, and object material;
and, two, those related to geometric transformations—transiations and rotations
in two and three dimensions and, in some cases, dilations and non-rigid motions.

Together then, processes for pattern recognition fall into two groups, a ‘direct’
representation where the signal is specified exactly, as an image or template; and
an ‘indirect’ representation where the signal is specified by parts which can vary in
their feature states. The former processes traditionally fall into the ‘pre-attentive’
or ‘early-vision’ routines. The latter are typically associated with more goal-
directed or ‘intentional’ aspects of perception as, for example, in the formation of
explicit descriptions by the analysis of specific image region types and their
relationships. However, all such levels of representation involve parts and
relations (determined by correlation-type processes) at one scale or another and
the ‘attentional distinction’, again, is somewhat task dependent as it applies to
spatial scale.
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In all, then, our view of biological pattern recognition is summarized in Fig. 2
where the visual system is seen to contain three different types of correlational
processes. The lowest level (pixel correlation level) operates on the raw retinal
image to result in classical receptive field profiles, spatial feature detectors or
channels leading to the extraction of significant image features. The second level
(feature correlation) refers to the ability of the visual system to analyse, over
space, the outputs of such feature analysers resulting in the extraction of image
region types or ‘parts’ such as critical pattern features, texture-based segmented
regions, etc. The final level of correlation refers to the ability of the visual system
to extract similarities and differences between image or pattern parts and their
relations and so form the basis of more symbolic levels of pattern description and
recognition.

System Overview

First-Order Second-Order Third-Order
Pixel Correlation  Feature Correlation Part Correlation
; - Part Unary and
- Signal Detection - Segmentation Binary FeZture
- Receptive Field Profiles - Invariant Pattern Extraction
- Channel Models Recognition - Rule Generation

t I

Top-Down Feedback

Figure 2. A multi-level perspective of pattern recognition. The processing of spatial information falls
into three subsystems. The first corresponds to low-level pixel correlation processes for feature
extraction, the second to low-level invariant pattern recognition and segmentation, and the third
corresponds to goal-directed analysis of image characteristics for recognition and symbolic
interpretation purposes.
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2. FIRST- AND SECOND-ORDER CORRELATIONS

As discussed earlier, at the lowest level of processing, the essential model behind
the very definition of receptive field profiles has always been cross-correlation or
template matching. In this formulation of ‘structure detection’ the problem is to
design a filter to optimally find a signal $(x, y) in (zero-mean) white noise N(x, y)
where the image (G) model is:

Gx, y) = S(x,y) + N(x, y). (1)

The solution is given by the ‘matched filter theorem’ (Rosenfeld and Kak,
1982), where the filter is the signal itself. The match is determined by the cross-
correlation between the signal {§) and the image (G):

Clx, ) = 855G =) S5(u, WG(x+ u,y+ v, (2)

u, v

where, by the Cauchy-Schwarz inequality,
LS, MGx+ u,y+ v < (z S (u, V))“2( YGHx+ u y+ v))l/z, (3)

with equality if and only if G(x + u, y + v) = 185(u, v) where A corresponds to an
amplification constant. The ‘energy detector’ (Van Trees, 1968) is the matched

filter of the form:
Clx, y)

——=JE, (4
JEG(x, y) /B

where the signal and local image energy are, respectively:
E =) S%u v (5)

i, v

and
Eglx, y) = ) GXx + u, y +v). (6)

v

A number of experiments have been done to evaluate whether human observers
conform with this model in the detection of known signals in white noise (Burgess
and Ghandeharian, 1984) and non-white noise (coloured noise) and even natural
images (Caelli and Moraglia, 1986; Caelli and Nawrot, 1987). These experiments
involve a forced-choice task where the known signal is embedded in one of a
number of specified regions of an image and the observer, on any given trial, is
asked to indicate in each trial where it is. A trial consisted of presenting the signal
for a brief exposure (200 ms) to the observer, and after 500 ms (to avoid the
perception of apparent motion) the full image was presented containing the
embedded signal. The observer was required to choose the position of the signal
from a given set of possible positions.

Performance in such experiments, as measured by percentage correct detection
rates show a number of characteristics of human recognition. Humans are quite
inefficient at this task (Burgess and Ghandeharian, 1984). That is, when one com-
pares Eqn (4) with detection rates it is quite clear that humans are much less effi-
cient than the ideal detector would be in the same task (ibid.). This could be due
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to inefficiences in later decision making processes, but it might also be that the de-
tection model is inappropriate, or that the signal was encoded in a different way.

Indeed, Caelli and Moraglia (1986) and Caelli er al. (1988) have shown that, if
multi-scaled edge versions of signals are used, performance is predicted much
more accurately for non-stationary images such as natural scenes, faces, etc. For
example, Caelli er al. (1988) have investigated how different correlation models
can predict the recognition of faces using a supervised learning paradigm. In this
case, examples of three different classes were generated by (digitally) mixing three
fundamental faces with various degrees of each basic face to produce the types of
images shown in the top row of Fig. 3.

Subjects were then trained to correctly classify these examples in a ‘learning
phase’ where the examples were briefly exposed (200 ms) followed by a displav of

Figure 3. The face classification problem studied by Caelli et al. (1988). Here, subjects were trained
to criterion performance on examples of faces and then asked to classify new composite faces. Top
row shows composite (average) faces for three classes. Second, third and fourth rows correspond to
intensity-disjunctive, multi-scale edge and edge-disjunctive versions of the class prototypes. Here, the
disjunction operation was based on detecting features which were not common over classes—
enhancing the discrimination of the class prototypes. Again, performance was best predicted by
cross-correlations between edge-disjunctive prototypes of the multi-scaled edge versions of the faces.
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a number indicating the class (1, 2, or 3). These training trials were interleaved
with test trials where observers were required to identify the class membership
without feedback. The learning phase was halted when observers made no errors
in classification of all training examples. Following this, the ‘test phase’ consisted
of displaying new examples (new mixed versions of the fundamental faces) which
observers were required to classify into the three learned classes. The aim, then,
was to investigate what type of correlation model is most parsimonious with
human classification performance. Examples of these different types of
prototypes are shown in Fig. 3.

Four different correlation models were studied and are defined below. In each
case the class ‘prototype’ was defined by the aggregate of the (aligned) samples.

1. Direct correlation model. The predicted similarity between a sample and the
aggregate class prototype is determined by the peak value of the cross-correlation
between the signal and prototype.

2. Intensity-disjunctive correlation model. The predicted similarity between a
sample and the aggregate class prototype is determined by the peak value of the
cross-correlation between the signal and discriminating regions of the class
prototypes.

3. Edge correlation model. The predicted similarity between a sample and the
aggregate class prototype is determined by the peak value of the cross-correlation
between a multi-scale edge version of the signal and the equivalent version of the
class prototypes.

4. Edge-disjunctive correlation model. The predicted similarity between a
sample and the aggregate class prototype is determined by the peak value of the
cross-correlation between a multi-scale edge version of the signal and the dis-
criminating components of the equivalent edge versions of the class prototypes.

Classification performance was consistent with an internal encoding of the
prototypes and signals in terms of the multi-scale edge information and a
representation of class prototypes which emphasized the discriminating features
of each class.

These types of results support a number of other claims in the literature related
to second-order feature correlations in spatial vision. For example, the spatial
gradients of feature correlations (how the correlations between feature detector
outputs vary over space) has been the predominant procedure for texture
segmentation over the past decade (see Caelli, 1988; Gurnsey and Browse, 1989).
In all, then, such experiments show that, in recognition processes, the visual
system seems to emphasize regions (parts) which lack correlations (that is, edges)
and which provide a basis for differentiating between different classes. In the
above examples these ‘parts’ corresponded to regions which evidenced edges over
a variety of scales (see Fig. 3). Similarly, we have argued for the encoding of
patterns as ‘signed blobs’, at multiple scales, for texture (Caelli er al.,1986) and for
images in general (Watt, 1987). Such processes, again, form the basis for
recognition-by-parts (Biederman, 1985) as proposed for 3D object recognition.

In fact, earlier, Caelli and Dodwell (1984) and Dodwell and Caelli (1985)
argued for such a form of tokens—encoding position, orientation and local
invariance structures—and implemented a method for predicting the recognition
of patterns by these measures. These experiments involved observers
discriminating between pairs of ‘vectorgraphs’, distributions of oriented line
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segments over the image plane, where one differed from the other in terms of
jitters (random rotations) introduced in the orientations of the line elements or
parts. Figure 4 shows examples of patterns used in these studies. The columns
show different positional configurations while the rows show different orientation
distributions and, together, different spatial gradients of oriented line segments
occur. From such configurations it was possible to more clearly study the role of
orientation encoding as a function of the spatial arrangement of the patterns. The
results showed that discriminability was not predictable from simple orientation
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Figure 4. Examples of ‘vectorgraphs’ used by Caelli and Dodwell (1982) and Dodwell and Caelli
(1985) to study how such configurations are processed in human vision. The columns show different
positional configurations: random (R), grid (G), circle (C) and star (S), and the rows show different
orientation distributions: random (R), parallel (P), circle (C) and star (S). Pattern discrimination was
determined as a function of orientation jitters in each pattern (labels merely indicate pattern number).
Discrimination was found to vary not only as a function of orientation differences alone, but also as a
function of the relationship between orientation and position of the elements.
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Figure 5. Coherence extraction algorithm used by Caelli and Dodwell (1984) to predict discrimina-
tion performance. Orientation discrimination was found to be enhanced when the spatial gradients of
the positional information was locally consistent with the given orientations.

differences, but by the combination of positional and orientation information in
the signals—a form of second-order feature correlation. It was possible to
represent this type of information via two components: coherence and invariance.
The former referred to the local consistencies between the rate of change of
position with respect to rate of change of orientation (second-order feature
correlations). The latter referred to the degree to which the pattern was actually
invariant to rigid motions. Both components enhanced sensitivity to orientation
discrimination. Figure 4 shows the types of patterns studied by us involving
patterns with the same orientation histograms but having different spatial
arrangements. Figure 5 shows the coherence computation which was most
consistent with the discrimination performance where two types of orientation
components were extracted and correlated.

That is, support was found for at least two levels of correlations: one which
extracts local orientation information; and the other, a second-order feature
correlator, which enables perceptual grouping via correlating different features
extracted from the image. In this case, the concern was with ‘coherence’. This
measure defined the correlation between the actual orientations of line elements
within an image region and orientations extracted from the rate of change of
orientation with respect to position over that region. As would be expected by
summation, when both sources of orientation were similar (highly correlated over
the image: high coherence) individual line orientation sensitivity increases. This
process is depicted in Fig. 5. Similar findings (without a computational model)
have been recently reproduced by Uliman (1990) and Field er al. (1993).
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This study provides an example of the strong evidence that human recognition
processes do not actually operate on the image, per se, but rather on critical
features, their relations, and the way these features index world structures.
Further, it turns out that the very types of coding principles proposed to exist
within the vertebrate visual cortex (namely, the significant involvement of spatial
differentiation throughout the visual system as illustrated by excitatory and
inhibitory regions of receptive fields right through the visual system) are a crude
way of optimizing such operations as cross-correlations, segmentation and
compression of image information. That is, such methods essentially reduce the
redundancy in the signal by decreasing the perceptual salience of the correlated
(non-edge) components. This type of process apparently occurs over different
‘scales’ of analysis, involving different sizes of receptive fields.

Results like those discussed above support a common theme emerging in the
recent physiological and psychophysical literature. That is, although the visual
system has available a relatively complete (retinal) representation of the image it
attends primarily to less redundant features (less correlated regions over many
scales) of an image and particularly those region which optimize performance on
a given vision problem. In the face-classification experiment (see above) such
critical features corresponded to edge-disjunctive information which encoded the
most discriminating edge-specific facial features. These ‘conjunctive’ and
‘disjunctive’ images, again, delimit correlations common within a pattern class and
not common between classes, respectively. From a cross-correlation perspective,
this makes sense for non-stationary images since direct cross-correlations
produce less than ideal performance, a result already noted for white noise by
Burgess and Ghandeharian (1984) with human observers.

2.1. Geometric invariance

Such explorations do not accommodate two other important aspects of form
which fall under the generic problem of ‘stimulus equivalence’ (Dodwell, 1970):
geometric invariance and form invariance. The former refers to the problem of
recognition under geometric transformations while the latter refers to recognition
under shape distortions. In the following two sections these questions are briefly
dealt with in this order.

A number of claims have been made as to just how the human visual system—
and associated cognitive processes—copes with the problem of recognizing
patterns independent of their geometric transformations. Some have argued for
complete four-parameter invariance (translations, rotations and scale (dilations))
while others argue for essentially none. Psychophysical studies have repeatedly
demonstrated a lack of complete rotation invariance and, in some tasks, the
importance of absolute position of the stimulus in the visual field even for
recognition processes. However, the actual visual task needs to be carefully
considered before general conclusions can be made. It should be remembered
that, normally, the human observer is quite capable of 3D object recognition with
familiar objects. This is not only invariant to 2D but 3D (6-parameter) rigid
motions. Consequently, task specificity and adaptation processes cannot be
overemphasized in this area as many experimenters have clearly demonstrated
how easy it is to train subjects to mentally rotate and consistently recognize
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rotated patterns (Kolers and Perkins, 1975). On the other hand, it has been
claimed that the existence of multiple orientation and scale-specific detectors at
each retinal position permits, in principle, a 4-parameter invariant architecture.
However, only recently have we (Zetzsche and Caelli, 1989) shown what extra
normalizations are required to attain full invariance using this type of pattern
encoding.

It should be noted that there are two types of invariances: weak (‘blind’)
invariance and ‘strong’ (parametric) invariance. The former refers to the
development of encoding schemes which simply do not code the transformations.
A pixel histogram, for example, does not register image rotations and the
(Cartesian) Fourier power spectrum does not encode translations of the full
image (see Ferraro and Caelli, 1988, for more details). By parametric invariance
is meant an encoding scheme (R) which is linear with respect to the transforma-
tions. For translations, rotations and scale transforms, the associated 4D
representation is:

T(R(%,3,6,0)) = R(X+ AL,y + Ay, 0+ Ag, 0 + AD), (7
where the transformation T for translations, rotations and dilations (by amounts
A) is, in general, defined by:

x' = a*(xcos AO + ysinAf) + Ax (8)

and
y = a%(—xsinAf + ycosAB) + Ay. (9)
Here, %, y, 6, 0 correspond to normalized image coordinates which satisfy the 4D

shift-invariant property. The computational procedure is illustrated in Figs 6 and
7 and consists of the following steps:

® Create a set of filters indexed by orientation and scale. In this implementation
we used Gabor filters: filters whose point-spread functions corresponded to
Gaussian-modulated grating of the spectral form:

(u— uy)? + (v—1,)?
£372

where (u, v) define spatial-frequency coordinates, (1, v,) the filter centre (spatial
frequencies of the cosine gratings), and f*? the frequency bandwidth, where f =

2 2

Jug + vg.
@ Implement correlations between detector outputs in normalized coordinates.
® Invert transforms for determining match and transformation states:

x=a%(x — Ax)cos AO — (y — Ay)sin AB) (11)

glu, v) = exp(— (10)

and
y=a"%((x — Ax)sin A@ + (y — Ay) cos AB). (12)

The process is illustrated in Figs 6 and 7 below.

Up to the normalization factor, this system is perfectly consistent with the type
of organization of the visual cortex proposed by Hubel and Wiesel (1968) as long
as additional second-order correlations occur between orientation and size-tuned
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Figure 6. Upper left images: Input pattern ‘R’ and 12 versions filtered by Gaussian-modulated
gratings of four different orientations (0, 45, 90 and 135 deg) and three different scales. Lower half:
Input pattern and 24 versions as shown above but plotted in normalized filter coordinates. (From
Zetzsche and Caelli, 1989.)

detectors. However, although useful for machine vision, the system is not
consistent with many perceptual recognition tasks which show that pattern
recognition is not invariant to rotations (see, for example, Foster, 1978). This
does not imply that invariance encoding is not present. Rather, it simply shows
that the pattern recognition required of many psychophysical experiments does
not ‘occur’ at precisely this level of processing. That is, although this type of
invariance may be present in the visual system, this does not imply that it is used
in processing and learning spatial descriptions of patterns. Indeed, there is good
evidence that many patterns, reflecting 3D objects, do have preferred orientation,
positions and even size in the visual field. These expected states of familiar
patterns seem to have been adapted to the extent that other positions are not so
easily recognized.

Finally, some comments about Lie transformation groups, Lie algebras,
Fourier transforms and invariance seem appropriate. It should first be noted that
the visual system is particularly sensitive to specific patterns like concentric
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circles, gratings and star-like patterns. This has been shown in recognition (Caelli
and Dodwell, 1984; Dodwell and Caelli, 1985), adaptation and masking
paradigms (Simas and Dodwell, 1990). However, this does not imply that the
visual system has, explicitly, the differential operators corresponding to the
equivalent Lie operators nor does it imply that these exhibit the internalized
‘annulling’ action of such operators to result in these invariant path curves being
of specific importance as Hoffman (1968) originally claimed.

Indeed, as recently shown by Ferraro and Caelli (1988), these patterns also
correspond to different kinds of Fourier transform basis functions and there is a
direct relation between the corresponding Fourier power spectra invariants and
invariants of corresponding Lie operators. In other words, it cannot uniquely be
concluded from these observations that the result can only be ‘explained’ in terms
of Lie operators or Fourier analysis ‘in the head’. What can be concluded is that
forms of spatial differentiation occur in human vision, and that there seems to be
some sensitivity to patterns which correspond to invariant path curves of retinally
{perspectively) projected rigid motions: affine projections of object motions onto
the retinal surface.

2.2. Third-order correlations: Explicit structural descriptions

So far concentration has been on pattern representations where the signal and
image are encoded in terms of another image. This type of representation,
however, cannot readily accommodate the variations of form that the visual
system can easily cope with as in the recognition of various types of ‘cups’, ‘chairs’
or facial expressions. This is because ‘form’ or ‘patterns’ also reference real-world
objects or structures and so techniques which solely rely on definitions, qua
images, are bound to be inadequate. Secondly, such types of representations are
quite expensive on storage—a particularly important facet of 3D object
recognition where objects have to be represented from many views. For these
reasons, at least in the computational vision literature, it is common to extract a
symbolic representation. That is, once the image has been segmented into regions
based on position, orientation, size, colour and texture characteristics, systems
typically extract the unary (part) and binary (relational) features (see Ballard and
Brown, 1982). The ‘internal’ representation and matching processes are then
enacted at the symbolic, or explicit feature-based, levels as outlined in theories of
‘recognition-by-parts’ (RBP).

This form of representation has been proposed in biological vision by Watt
(1987) in terms of the extraction of ‘blob’ features at multiple scales and by
Biederman (1985) for the representation of 3D objects by ‘geons’, parts
represented by superquadrics. Unfortunately, no full recognition model has been
produced in either case. In a similar way, Caelli et al. (1993) have recently shown

Figure 7. (a) Comparison of responses for two versions of ‘R’. Notice how the 4D representation
translates rotations, scale and translations all into translations in the 4D normalized coordinate
system. (b) Results of cross-correlating the normalized forms of an image (top row, column 3; row 35,
column 3) and a signal (top row, column 4; row 5, column 4) but only using one frequency band (top
row, column 3; row 5, column 5). The output cross-correlation images are shown in rows 2-4 and
6-8 where intensity indicates the likelihood of the signal (of a given size and orientation relative to the
original signal) being present at each position. (From Zetzsche and Caelli, 1989.)
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how the perceptual matching of parts of sequentially displayed images are
matched in apparent motion by the similarities of their part properties and their
relations. In this case it was possible to model the correspondence process (the
process of matching each pattern in Frame 1 with patterns in Frame 2, see Fig. 8)
as a constraint satisfaction process defined by a parallel relaxation-type process
of the form:

i) = o((p1G) + L Cliji ks DpL(D), (1)

k1

where i, k correspond to part pairs in Frame 1 and j, / correspond to part pairs in
Frame 2 as shown in Fig. 8; p! (j) corresponds to the probability that part i in
Frame 1 is mapped to part j in Frame 2 at iteration #; C corresponds to the
compatibility function between these two mappings; and ¥ corresponds to a non-
linear function. This dynamical relaxation process converges in a few steps to the
mapping between two patterns in terms of their part similarities and the
compatibilities between the part relations (see Rosenfeld and Kak, 1982). The
results demonstrated here that the perceptual apparent motion between patterns
is defined by the perceived similarity between the individual shapes and the
associated compatibilities between the mappings. In such cases the compatibilities
are defined in terms of the similarities between part relations in each configura-
tion as terms of the specific binary feature states.

Certainly, this approach has now become standard in many machine vision
problems from optical character recognition (see Suen, 1990) to 3D object
recognition systems (see Jain and Hoffman, 1988). In all such cases there are
typically five common processes in the learning/run time phases:

® Fncoding: the processes which define how image intensity or depth (range)
data are encoded relative to specific task demands. This includes, for example,
the determination of pixel feature vectors which encode colour, textural
information in intensity images or the encoding of local surface curvatures in
range images.

@ Segmentation: the process of breaking the image up into parts based on
differences in colour, texture or, for depth information, shape or surface
curvature differences.

® Feature extraction: the processes of generating a description of the resultant
parts (unary predicates) and their relations (binary predicates). Unary features
include part intensities, areas, positions and orientations. Binary features include
interpart angles, distances and contrasts.

® Rule generation: the extracted features have to. be summarized and
generalized to form rules which maximally evidence difference patterns or classes.

® Maiching: new patterns are evaluated and classified using the class
discrimination rules.

Using the RBP approach, the perception of shape identity invariant to
geometric transformations is determined by the types of unary and binary
features encoded by the observer. For example, interpart distances are invariant
to rotations and translations, while part contrasts are invariant to translations,
rotations and dilations. However, at this stage, no formal experiments have been
reported (in 2D or 3D) which systematically investigate the types of unary and
binary features which are probably used to solve such recognition problems. Such
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experiments are necessary to determine the perceptual-cognitive bases for the
types of processes described above.

3. CONCLUSIONS

In this paper a number of issues have been argued. First, there is no single
subsystem in visual information processing for form recognition. That is, the
extraction, processing and identification of form covers a large number of visual
routines from low-level pixel correlators to the generation of high-level symbolic
representations of image parts and their relations. Results and interpretations of
visual function have been combined into the multi-level system shown in Fig. 2.
This description argues, as in this paper, for different levels of correlation
occurring in vision. This view is particularly topical in the texture-processing
literature where the first two of these correlation levels (see Fig. 2) have been
proposed to be necessary to explain many texture discrimination results (see
Caelli, 1988; Gurnsey and Browse, 1989). Another way of viewing these
subsystems is that early processing is focused on ‘producing chunks’ while latter
stages are concerned with ‘interpreting and using chunks’.

This work has focused on using filter theory and standard correlation
techniques to represent what may be processed in images by human observers.
However, similar and possibly more salient representations for encoding,
segmenting and defining structural information in images can be derived by the
use of differential geometry. Recently, this has been investigated by Barth et al.
(1993). In this form the intensity image is treated as a geometric surface and the
more salient regions correspond to those which have non-zero Gaussian
curvatures. Such regions correspond to corners, etc. and depict the regions of low
spatial correlation as discussed earlier. This alternative view is mentioned to
emphasize that there are many different ways of formally representing the visual
processing claims proposed here.

One of the major pardigms of neurophysiology and psychophysics over the
past century has been the idea that specific tasks such as detection, discrimination
and recognition are actually Jocalized along this ‘pixels-to-predicates’ pathway.
The position put forward here is that this is not the appropriate conceptualization
of vision. Most psychophysical experiments involve a conscious observer with
prior knowledge of some sort or another and trained to solve, in the most general
sense, an image interpretation problem. In this sense, then, such tasks use all
the processes described in this paper and illustrated in Fig. 2. The channel
models, neuron doctrine and signal detection paradigms have been included all
within the low-level pixel-correlation models. This is because all these
approaches to understanding spatial encoding are based on the notion that there
exist, within the visual system, analogues to specific intensity profiles which are
more important to biological vision than others and that their presence is detected
by correlation-type mechanisms. It can be argued that, although psychophysical
tasks have been constructed to investigate and determine the types of profiles that
may be involved in such spatial encoding, this is not sufficient for a full model of
spatial pattern recognition—particularly for complex patterns, as, for example,
occur in the recognition of handwriting.

Further, it is proposed that the very notion of pixel correlation has analogous
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processes in higher-level vision. Examples of this include the ‘feature-correlator’
stage referred to in Fig. 2 which has been investigated by a number of workers
over the past decade. Further along the processing pathway, our perceptual ability
to correlate part and part-relational features, and to generate evidence for
patterns from image part data is simply another form of correlation, and the
‘parts-correspondence’ approach to apparent motion discussed in the previous
section is an example of this.

To further illustrate this point, techniques for invariant pattern recognition
have been briefly reviewed and results have been pointed out on the limits of
human invariant pattern recognition. Such results suggest that human pattern
recognition is more appropriately characterized as a recognition-by-parts process
which is fed by the low-level processing systems. The point is, however, that in
first- and second-order correlation domains there is the basis for fully invariant
pattern recognition using orientation and size-specific feature extractors, as
shown in Figs 6 and 7. However, it seems not to be used directly by the visual
system. Rather, it is more likely that it subserves the more conscious recognition-
by-part matching procedures which are more powerful for complex recognition
and interpretation problems but do not necessarily encode pattern parts and
relations by invariant features.

Some comments should be made concerning 3D object recognition. In the
machine vision literature, most approaches to this problem involve all of the
processes defined above but these usually apply to range (depth) image data.
What is not clear, in human vision, is where along the visual pathways intensity
information is converted into depth information and what features, feature
correlation and segmentation procedures are really used to solve object
recognition problems. For example, claims by Biederman (1985) that observers
decompose objects into superquadrics (geons), and by Hoffman and Richards
(1986) that such segmentation at least involves breaks at lines of minimum
curvature are, at present, insightful speculations.

Finally, in Fig. 2 the existence of top-down feedback for the selection and
tuning of correlation processes is suggested. By this, it is simply meant that in
most recognition tasks observers have prior knowledge of the visual environment,
the range of feature states and even image regions of importance. Such knowledge
clearly affects what is attended to in the image and what types of applications of
the various correlation processes are to be used.
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