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This paper presents a new method for the mammographic detection and classification
of two types of breast tumors, stellate lesions and circumscribed lesions. The method
assumes that both types of tumors appear as approximately circular, bright masses with
a fuzzy boundary and that stellate lesions are in addition surrounded by a radiating
structure of sharp, fine lines. Experimental results for a set of 27 mammograms are
presented and the method is shown to have a high detection rate and an extremely low
false positive rate. @ 1992 Academic Press, Inc.

I. INTRODUCTION

Breast cancer is one of the leading cancers in the female population. About
25% of all cancers diagnosed in women are breast cancers and about 209% of all
lethal cancers are breast cancers (13). Treatment of breast cancer is currently
effective only if it is detected at an early stage. The most effective method of
early detection is mammographic screening (3). Implementing such a screening
program is, however, difficult since it requires the interpretation of a large
volume of breast images by trained radiologists. With recent advances in medical
image processing it has become feasible to design automated diagnosis systems,
or, on a more modest level, to design systems that can aid radiologists in
mammogram interpretation.

Several approaches to analyzing mammograms have been proposed in the
past (I, 6, 8-11, 14). They can be loosely grouped into three categories. Some
approaches use texture measures to either characterize the general appearance
of mammograms for breast cancer risk assessment (/1) or detect regions dif-
fering in appearance from the rest of the breast (6, 8, 10) to locate suspicious
areas. These methods do not, however, use characteristics specific to tumors
and thus are limited in their performance. A second category comprises systems
that are designed to detect specific types of tumors such as microcalcifications
{(4) or circumscribed masses (9). Performance of these systems is generally
better because tumor-specific characteristics can be used both for detection of
tumors and for elimination of nontumors. Finally, in a third category there are
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PLATE 1. Mammogram with a stellate lesion. The position of the lesion is indicated by the two lines
on the margin.

systems used for differential diagnosis of tumors at known tumor locations (£,
14). These systems show a very good diagnostic performance, approaching the
performance of human experts.

The system described here belongs to the second group and is part of a project
with the goal of developing a fully automated breast cancer detection system.
The system is designed to detect two types of tumors, stellate lesions and
circumscribed lesions, and to perform a differential diagnosis between the two.

Most breast carcinomas have the appearance of stellate lesions (see Plate 1),
consisting of a central tumor mass surrounded by a radiating structure of sharp,
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PrLATE 2. Mammogram with a circumscribed lesion. The position of the lesion is indicated by the
two fines on the margin,

dense, and fine lines, called “*spicules,” that emanate from the central mass
(15). The central tumor mass of a malignant stellate lesion is a solid, distinct
radiopaque mass and appears as a bright blob in mammograms. Afthough diffi-
cult to perceive when it is small, the central mass is always present. The spicules
radiate outward in all directions and vary in length, but generally the average
length increases with tumor size. Some stellate lesions are benign in nature
and can be differentiated mammographically from malignant lesions with high
accuracy. In the present article we concentrate on technigues for detecting only
malignant lesions although we believe that similar techniques can be used for
detecting benign lesions.

Circumscribed lesions, on the other hand, appear as approximately circular
masses (see Plate 2). In malignant lesions the central mass is highly radiopaque
and the lesion boundary is fuzzy. Although there are additional signs that can
be used for diagnosing circumscribed lesions, brightness, shape, and boundary
characteristics are the primary signs and are the only ones used in the present
systenl.

In the work presented here we assume that circumscribed lesions and the
central mass of stellate lesions are sufficiently similar in appearance to justify
asingle detection method. The detection of both lesions can then be decomposed
into two subproblems, central mass detection and recognition of the radiating
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structure. If there is evidence for the presence of a radiating structure, a lesion
is diagnosed as stellate lesion; otherwise it is diagnosed as a circumscribed
lesion.

It should be made clear from the outset that the objective of the methods
presented here is not to achieve tumor detection with a minimal computational
effort. Rather the objective is to achieve the best possible performance in
detection and diagnosis of tumors with as much computational effort as is
required. In spite of this objective, there are some situations in which the
methaod fails, These cases will be discussed in Section IV.

Below, we first present methods for detecting the radiating structure of stellate
tumors (Section 1I). Then we discuss methods for detecting the central tumor
mass and methods for making a differential diagnosis between the two types of
lesions (Section III). In the final section we present experimental results and
discuss problems and inadequacies of the proposed approach (Section 1V).

[1. RADIATING STRUCTURE RECOGNITION

The radiating structure of stellate tumors is formed by spicules that emanate
radially from the central fumor mass. In this section we present three different
approaches for detecting this radiating structure. The approaches make different
assumptions about the structure of an “‘ideal”” stellate tumor and their perfor-
mance depends on the extent to which the ideal tumor matches the actual
appearance of stellate tumors. The first two approaches are modeled after
descriptions provided by expert radiologists and are presented only briefly,
while the third and most successful approach, the spine-oriented approach, is
presented in full detail. (For a detailed review of all approaches the reader is
referred to (12).)

1. The edge-oriented approach assumes that the spicules of a stellate tamor
are narrow and distinctly visible. Lines along the spicule edges should therefore
converge to the center of the radial structure.

2. The field-oriented approach does not require individual spicules to be
distinctly visible, but it assumes that the spicules produce a brightness-gradient
field exhibiting a consistent radial structure. Radial lines of this structure should
converge in the center of the tumor.

3. The spine-oriented approach assumes that the spicules not only are dis-
tinctly visible but in addition show a characteristic microstructure. Extracting
this microstructure allows finding the center of the radial structure with high
accuracy.

The performance of each method is illustrated here with the tumor shown in
Plate 1, which is shown magnified and enhanced in Plate 3a.

Before turning to the details of the three proposed approaches we present
some aspects common to all methods. First, all mammograms were digitized
from film using a camera with resolution 512 x 480 pixels and 256 gray levels.
The breast region was automatically extracted from the background and the
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PLATE 3. (a) Enhanced view of the stellate lesion in Plate 1. (b) Response of the edge-oriented
approach. {c) Response of the field-oriented approach. (d) Response of the spine-orierted approach.
In all three response images bright points correspond to high values of H(/, /) and thus indicate the
presence of a radial center at that position. {e) Binary map of all spinal pixels found by the spinal
detection method.

gray levels within the breast arca were linearly stretched to a full contrast of
256 gray levels. The result of this preprocessing is shown in Plates 1 and 2.

Second, the radial structure recognition methods are all combined with a
Gaussian filter to remove high-frequency noise in the digitized mammograms.
The Gaussian filter G is defined as

Glx, ¥) = Qmad) exp[—(x* + yD/20Y, 1

where the standard deviation o controls the amount of smoothing. In order to
obtain a reasonable amount of noise suppression while at the same time not
destroying the very fine spicular structure, a conservative size of & = 1.5 pixels
was chosen in our implementation, The following notation is used. Let M(x, y)
denote the digitized mammogram. The Gaussian-filtered image I(x, y) is then
obtained through the convolution I = M = G. (Note that this is done for
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FI1G. 1. Sketch illustrating the idea of the Hough transformation. A set of lines defined by radial
measurements (x, y, #) should converge at a single point or lead to a cluster of intersections near
the center of the radial structure.

notational convenience only. The Gaussian operator can be combined with
subsequent operators into a single operator.)

Third, all methods use the Hough transformation {(5) to locate the center of
the radial structure. The idea of the Hough transformation is that given a point
(x,, y,) with radial orientation 8,( see Fig. 1), the center of the radial structure
is constrained to lie on the line defined by the equations

= +r
X =X c.os 6, 2]
vy=y,+trsinf,.

For a set of measurements (x,, v., 8,) the center of the radial structure is given
by the intersection of all such lines. If there are measurement errors or if the
data contain noise, the center of the radial structure is defined by the cluster of
intersection points. We now define a two-dimensional histogram H(, j). For
every measurement (xy.. v, 8,), H(i, j) is increased by one if the line defined by
[2] passes through pixel P(i, j), defined by {(x, y): |x — | < 1/2, |y - i| < 172}
Peaks or clusters in A then indicate image points that are likely to be at the
center of a radial structure.

A. Edge-Oriented Method

The edge-oriented approach is based on the assumption that the radiating
structure is formed by a number of very sharp, thin, and radially arranged
spicules that are distinctly visible. If a line is drawn passing through an edge
point of a spicule and in a direction normal to the edge gradient, it should pass
through the center of the radial structure.

To find the center of stellate tumors the following procedure is followed. First
all edges in the mammogram are extracted. To reduce noise effects, edge
extraction is combined with the Gaussian filter [1] and only edges with a gradient
exceeding a certain threshold Tare used. All edge pixels (x; , y,), with orientation
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f#, normal to the edge gradient, are then used to find the radial center, using the
Hough transformation described above.

In our implementation the spicule edges were detected nsing the Canny edge
detector (2) which identifies edge positions with zero-crossings of the second
directional derivative in the direction of the principal gradient, i.e.,

71 _
on?

0, (3]

where n = VI/|VI| is the direction of the principal gradient and f = M = G as
before.

The result of the edge-oriented approach for the tumor in Plate 3a is shown
in Plate 3b. The discussion of the result is deferred until after the field-oriented
approach has been presented, since the results of both approaches are very
similar.

B. Field-Oriented Method

The field-oriented approach is based on (7). It is similar to the edge-oriented
approach but does not assume that the spicules are distinctly visible and thus
it does not require that spicule edges be detected. Rather it assumes that the
spicules produce a brightness pattern such that the brightness-gradient field
follows concentric circles or, equivalently, that the vector field normal to the
gradient field has a radial structure. The center of the radial pattern which
corresponds to the central tumor mass of the stellate lesion is considered an
area free of any regular pattern.

To find the center of stellate tumors the following procedure is followed. First
the brightness gradient field

ol aI) 4

glx, y) = (Bx’ 5y
is computed and then the flow field normal to the gradient field is determined.
Centers of the radial structures are determined from the flow field measurements
(x, ¥, 8 using the Hough transformation, as was the case with the edge-
oriented approach.

The result of the field-oriented approach for the tumor in Plate 3a is shown
in Plate 3c. As can be seen in Plates 3b and 3¢, neither the edge-oriented nor
the field-oriented approach produces a peak at the center of the stellate tumor.
Rather, they produce an annular response. There are two reasons for this. First,
both approaches assume that spicules are very narrow, thin lines, in accordance
with descriptions found in the literature (e.g., (15)). A closer analysis of stellate
tumors reveals, however, that the angle subtended by some spicules is obtuse,
and this leads to the annular response profile. Thus, the assumptions about the
ideal tumor shape of both approaches do not match the actual appearance of
stellate lesions. Second, both approaches respond strongly to the boundary of
the central fumor mass. In fact, the strongest annular response is produced by
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spinal orientation

Fic. 2. Tdeat microstructure of a spicule. The gradient field on both sides of the spine is indicated
by the arrows. In the neighborhood of a spinal pixel P there are two arcas (around A and B) where
the gradient field is coherent and two other areas (around € and ) where the gradient field is
incoherent. Also shown are the spinal orientation s and the spicular angle .

round objects, such as a white disk, and thus cannot be used as evidence for
the presence of a radial structure.

C. Spine-Oriented Method

The spine-oriented method assumes that the spicules are not only distinctly
visible but in addition show a characteristic microstructure. In the following we
first describe this microstructure and then present the steps required to detect
spicules and to detect the center of the radial structure.

Each spicule is assumed to have a specific shape, as shown in Fig. 2. The
central line of the spicule is called the spine and its orientation, the spinal
orientation, is defined as pointing toward the dull end of the spicule, i.e., toward
the center of the ideal stellate tumor. Pixels on the spine are called spinal pixels.
Other pixels within a spicule are called spicular pixels and their orientation, the
spicular orientation, is defined as the gradient at that pixel. Within a small local
area, spicular pixels point in an almost uniform direction and thus form an
oriented field. A closer analysis of the mammograms reveals that the spicular
orientation field is oriented mainly in a direction between the direction normal
to the spines and the spinal direction, as illustrated in Fig. 2.

Furthermore, the following pattern, called gradient coherence rule, can be
observed (see Fig. 3). If P is a spinal pixel, then there arc two areas {around A
and B) where the brightness gradient field is coherent, i.e., where the gradient
vectors g(x, y) point to approximately the same direction. There are two other
areas {around C and D) where the gradient field is incoherent.

In the following, we first describe the method for detecting spicules using the
gradient coherence rule, and then the method for focating the center of the
radial structure.
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Gradient Coherence Measurement. Following (7) we define the local coher-
ence of the brightness gradient fleld g(x, ¥) in the neighborhood of (x, y) in the
following way. Let g(x, y) = [g(x, ¥), g,(x, )] and g(x; y) = |glx, 3], the
gradient magnitude. We compute local averages of g, g,, and g, using a Gaussian
weighting function G; i.e., we compute the convolutions J(x, y) = G = g, J (x,
¥) = G#g,,and J(x,y) = G=* g, . Now we define the local coherence x(x, y)
of the gradient field at (x, y) as

5. y) = (JHx, y) + J2x, W)
Sk Jx, y) '

The coherence ranges from zero in the absence of any dominant orientation in
the neighborhood of (x, ¥) to 1 for a highly oriented pattern.

For x(x, ¥) > 0 the dominant local orientation is given by J(x, y) = [/ (x, ¥),
J.(x, ¥)I, and the angle w of J(x, y) with the horizontal axis is given by

JAx, y))
S, 9/

Assume that P is a spinal pixel and that A and B are on the side of the spine as
shown in Fig. 2. Let a = J(A) and b = J(B). The spinal orientation s, pointing
toward the dull end of the spicule and thus toward the radial center, can be
estimated from a and b using

(5]

w(x, v} = arctan ( 6]

a_ b
al o]

Gradient Coherence Rule. The gradient coherence rule, introduced above
and illustrated in Fig. 2, states that if P is a spinal pixel then there are two areas
A and B in the neighborhood of P where the gradient field is coherent, and two
other areas C and D where it is incoherent.

To establish whether pixel P is a spinal pixel, a small area centered at P is
divided into four quadrants @,—Q,, and four pixels A, B, C, and D are chosen
in each quadrant at a fixed distance from P (see Fig. 3a). If gradient coherence
in the neighborhood of P is low, i.e., if both measures x(A)x(B)} and x(C)x(D)
are low (less than 0.8 in our implementation), P is rejected as a spinal pixel.
Otherwise we can tell which pair of quadrants the (potential) spine falls on by
comparing x(A)x(B) with x(Chx(D).

In addition, we have to test whether the gradient field in the neighborhood of
P shows the characteristic structure illustrated in Fig. 2. The interested reader
is referred to the Appendix for a detailed description of the tests. Here it suffices
to say that the gradients at A and B have to point more or less toward P, and
that these tests have to work for arbitrary spinal orientations. If a pixel P has
passed all tests it is considered a spinal pixel. The spinal pixels for the temor
shown in Plate 3a are shown in Plate 3e.

Estimation of Spinal Parameters. Bach spinal pixel is described by three
parameters which capture the essential information about a spicule:

(7]

§ =
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potential spine

Q

FIG. 3. Four situations illustrating the detection of a spinal pixel. (a) The gradient field is measured
at pixels A, B, C, and D in quadrants ,—©, in the neighborhood of a spinal pixet P. (b) Vectors
a and b denote the averaged gradient fields at pixeis A and B. Also shown are the four quadrants
¢1—tjs and the orientation  of the gradient field at pixels A and B. (¢) Improved estimates of the
spinal orientation s are obtained from gradient measurements at points A’ and B'. The two points
lie on a line normal to the initial estimate of s and at a distance of AP from P. Subpixel accuracy
is obtained through bilinear interpelation. (d) Pixels on the boundary of large objects may pass the
spinal consistency tests but are rejected as spinal pixels if the spicular angle & is too large.

1. The location is given by the pixel position.

2. The spinal orientation is given by the estimate s.

3. The spicular angle & defines the acuteness of a spicule. It is estimated
from a and b using

¢ = 7 — arcsin (%b—!). (8]

Information about the spicular angle is used in the following way. Very obtuse
spicular angles indicate that the spinal pixel detection is responding to the
boundary of a central tumor mass or of some other large object, as illustrated
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in Fig. 3d. Thus if the spicular angle exceeds a threshold 7, (I130° in our
implementation}, P is rejected as a spinal pixel.

Detection of Radial Center. Once all spinal pixels have been detected and
their parameters estimated, the radial centers are located using the Hough
transformation, as was the case with the edge-oriented and the field-oriented
approaches, However, the spine-oriented approach provides a tighter constraint
on the position of the radial center. Given a spinal position P and a spinal
orientation vector s, the position of the radial center is constrained to lie on the
ling P + s, v > 0. The other two approaches provide a nondirected estimate
only. Furthermore, given that the position constraint is a semi-infinite line, an
additional constraint can be used. As was described previously, the central
mass of a stellate tumor is brighter than the background. Therefore, brightness
along the line from a spinal pixel P in the direction of the spinal orientation s
should increase, reach a local maximum at the tumor center, and then decrease.
The endpoint of the radial line can be set at the point where brightness drops a
fixed amount (two gray levels in our implementation) below the current maxi-
mum along s. Let this point be at P + ¢s. Then the radial center is constrained
to lie on the finite line defined by

P + vys, 0=v=c [91

We can now compare the results of the edge-oriented approach (Plate 3a), of
the field-oriented approach (Plate 3b), and of the spine-oriented approach (Plate
3d). The first two approaches produce annular responses instead of peaks for
two reasons: first, estimated spicular angles are often obtuse and, second, both
approaches respond not only to spicuies but also to the boundary of the central
tumor mass. The spine-oriented approach is more robust for several reasons.
First, its response is unaffected by obtuse spicular angles. Second, it provides
a more accurate estimate of the true radial direction. Third, it provides a tighter
constraint on the position of the radial center as given in [9].

Spicule Remouval. The spine-oriented approach has one further advantage. In
the next section we present a method for detecting the central, bright tumor
mass of stellate tumors and of circumscribed masses. That method responds
best 1o a perfectly circular bright area, e.g., a white disk superimposed on a
darker background. Its response is weakened to the extent that the actuoal
appearance of a tumor deviates from this ideal shape. In the case of stellate
tumors, its response is thus weakened by the presence of the spicular structure.
The spine-oriented approach provides accurate information about the presence,
position, and orientation of spicules and thus enables 1s to remove them before
the central mass detection process is applied.

Spicule removal is achieved through application of a spicule-smearing filter.
The spicule-smearing filter is applied at the position of a spinal pixel P at an
orientation normal to the spinal orientation, as illustrated in Fig. 4a. Ideally,
the gray-level values of the area inside the spicule should be replaced by the
gray-level value of the surrounding background. This is approximately achieved
using a directional selective median filter whose kernel is shown in Fig. 4b.
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spinal orientation

spinal pixel spicule-smearing filter

XXX+« «+» XXX
b XXX ++ P+ XXX
XXX+ o+ + XXX

FIG. 4. (a) Situation illustrating the application of the spicale-smearing fiter. The filter is applied at
a spinal pixel and is oriented normal to the spinal orientation. (b} Shape of the spicule-smearing
filter with center at pixel P. Pixels marked “*X’'' are used to obtain an estimate of the background
gray level.

When this filter is applied to a spinal pixel P the gray level of P is replaced by
the median of the gray levels at the pixel positions marked X, provided that the
new gray level is darker than the old gray level. This is because the intensity of
spinal pixels is normally higher than that of nearby background pixels.

The steps required for radial structure recognition using the spine-oriented
approach can be summarized as follows. First, all spinal pixels are located in
the whole breast area using the method described in Section C. The outcome
of this stage is a map of all spinal pixels together with their associated descrip-
tors, spinal orientation, and spicular angle. Binary maps of all spinal pixels for
the two fesions in Plates 1 and 2 are shown in Figs. 5 and 6. As a final step in
this stage, the spicule-smearing filter is applied to the original image.

II1. CENTRAL MASs DETECTION

As discussed in the Introduction, stelfate lesions can be described as being
composed of two major components: a radial structure of spicules and a bright
central tumor mass. The appearance of circumscribed lesions can be described
as a bright, approximately circular area with a fuzzy boundary, superimposed
on a darker background. After the spicules of stellate tumors have been re-
moved, as described in the previous section, the appearances of both types of
tumors are similar. This allows us to use the same method to detect both
circumscribed lesions and the central mass of stellate lesions.
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F1G. 5. Binary map of all spinal pixels found for the mammogram in Plate 1.

A. Detection

There are two main approaches to the detection of tumor masses: segmenta-
tion and template matching. In the segmentation approach, one first detects all
image regions that are brighter than adjacent areas and then determines whether
the shape of the detected regions is approximately circular, e.g., whether it is
elliptical with a low eccentricity value. In our work we have the alternative
approach, namely template matching. Details of this approach have been de-
scribed elsewhere (9) and we present only a brief summary here.

Templates such as the one shown in Fig. 7 are used to detect the central mass.
Likely positions of central masses are given by positive peaks in the (normalized)
cross-correlation of this template and the mammogram image. The strongest
response is produced by a circular bright region superimposed on a dark back-
ground, with the region diameter matching the diameter of the central region of
1s in the template. The ring of 0s in the template allows the image region to
deviate slightly from a perfectly circular shape without affecting the magnitude

of the cross-correlation peak.




DETECTION AND CLASSIFICATION OF BREAST TUMORS 231

L .

* - ) .

Y y =

& Vg % r- . il O

o g F . £ " . - ;

- . & ~ a1

- L L t K , W N "
- E.“\& nr"jf-’{'? "a“‘ ‘5'.' "}‘ f . ™ z,-',\ % Fr 4 %
S E PN S L - '.\q-r( ‘-].*.
. Yy A PR ' . L ARl e
";fi";"'ﬁ,-'_‘..a _'._.""'--T.L;‘.’a_h ;’L'*.;‘,f.,}“;‘qu"-‘ z]h 2
M H“}.‘* '._*'-';'-*"L..,H*.,b RO " h.f",vk’f"} A fE
L LR A A L L - S S [ P S

FiG. 6. Binary map of all spinal pixels found for the mammogram in Plate 2,

Since the diameters of central tumor masses vary over a large range, we use
a set of templates with different diameters of central region, ranging from 12 to
56 pixels in our implementation. The diameter of the template producing the
strongest cross-correlation peak is then taken as an estimate of the diameter of
the tumor mass.

Given a template T, such as that in Fig. 7, with the origin (0, 0) at the center,
and a mammogram image M, the normalized cross-correlation R(x, y) is defined
as

E(EJ)ED t(l, J)m(x + i; ¥ + J)
(Z¢ pep (1, ) 2 peD mix + i,y + v

Rix,y) = [10]

where

-1 -1 -1
-1-1 0 -1 -1
-1-1 01 0-1-1
-1-1 0111 0-1-1
101111 1 0-1
110111 0-1-1
-1-1010-1-1
-1 -1 0-1-1
-1 -1 -1

FiG. 7. Central mass template for a central region diameter of 5 pixels.
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(6.]) = T6.0) = 3 76.)
iJ
(1]
mii,J) = MG, j) - %(;DM(LJ)
LAE

and where I} is the set of template pixels and N is the number of nonzero
template pixels. Note that [10] gives a definition of normalized cross-correlation
and that more efficient forms can be used in an implementation. Local maxima
of the cross-correlation function R correspond to possible positions of central
fumor-masses.

The potentially large set of tumor positions given by the positions of cross-
correlation peaks is reduced using the following set of criteria. First, local
maxima with a correlation value R < 0.2 are discarded. This includes negative
peaks that would correspond to dark regions on a bright background. Second,
local maxima that are spatially very close are taken as resulting from a single
image phenomenon, for example, as resulting from a single tumor. Clusters of
iocal peaks are therefore combined into a single potential tumor site. Third, a
percentile method is used to reduce the number of potential tumor sites; t.e.,
only a fixed percentage {2.5% in our implementation) of the strongest peaks are
further analyzed as potential tumors. This eliminates the problem, for mammo-
grams with rich textures, of a large number of potential tumor sites being
generated.

B. False Positive Removal

The percentile method produces a fixed number of potential tumor locations,
independent of the true number of tumors in a mammogram, including the case
in which there is no fumor present. Two techniques, described in detail in (9)
are used to remove false positives (often also referred to as “false alarms’).

The histogram test is based on the assumption that there is a significant
contrast between a tumor area and the surrounding background. A gray-level
histogram of a2 region containing both tumor region and background should
therefore be bimodal (or possibly multimodal). If the histogram at a given
position is unimodal or flat, it is unlikely that this position corresponds to the
center of a tumor mass. The region in which the histogram is computed must
be large enough to include some of the background area to ensure bimodality.
An estimate of the tumor mass diameter is obtained from the template with the
maximuom cross-correlation value; the histogram can then be computed over a
circular area with a larger diameter.

The neighborhood test is based on the following observation. Due to the
fuzzy boundary of tumor masses, the peaks in the cross-correlation R are
relatively flat at tumor positions but are vsually sharp at nontumeor positions.
Thus, if the cross-correlation drops rapidly in the neighborhood of a peak, the
position is rejected as a potential tumor site,

Experimental results reported in (9) show that these two false posilive tests
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are very effective in removing nontumors from the list of potential tumors,
leaving on the average only about 1.7 nontumors per mammogram. What re-
mains to be done is to decide whether the tumors detected are circumscribed
lesions or stellate lesions.

C. Tumor Differentiation

The principle underlying the differential diagnosis between circumscribed
lesions and stellate lesions is very simple. If a lesion is at the center of a radial
spicular structure it is diagnosed as a stellate lesion; otherwise, it is diagnosed
as a circumscribed lesion. We define the spicularity of a lesion as the number
of spinal pixels connected to a lesion. A spinal pixel is considered connected to
a lesion if it satisfies the following two conditions. (1) The spinal pixel is not
located inside any central mass. {2) The spinal direction line defined in [9]
crosses the boundary of the central mass.

As the diameter of a tumeor increases, there is an increasing probability
that the central mass touches some scattered spinal pixels. Furthermore, large
stellate lesions tend to have longer spicules, as was discussed in the Introduc-
tion. Therefore, the spicularity measure of lesions should be normalized by the
diameter, and it is defined as the ratio of the number of connected spinal pixels
to the diameter of the lesion. Now we can formulate a decision rule. If the
spicularity of a lesion exceeds a criterion value ¢ (¢ = 7 in our implementation)
it is diagnosed as a stellate tumor; otherwise it is diagnosed as a circumscribed
tumor.

The two lesions in Plates 1 and 2 are shown again in Plates 4 and 5, with a
circle around the central mass and all spinal pixels connected to the central
mass. Both the stellate lesion (Plates 1 and 4) and the circumscribed lesion
(Plates 2 and 5) are diagnosed correctly.

IV. RESULTS AND DISCUSSION

The method presented in this paper was developed using a small training set
of mammograms. Parameters related to the radial structure recognition were
determined from this training set. Parameters related to central mass detection
were taken from (9). The method was then evaluated using a set of 27 mammeo-
grams, containing 23 stellate lesions and 4 circumscribed lesions.

In comparing the diagnoses produced by the computer and by the radiologist
we cannot expect that the tumor areas found are exactly the same. Therefore,
the following criterion was adopted. The radiologist drew a circle around the
central mass of stellate tomors and around circumscribed lesions. [fthe intersec-
tion of this circle and the nearest area indicated by the computer overlapped by
more than 50%, the tumor was considered detected; otherwise it was considered
missed.

Of the 27 lesions, 22 were detected by the computer and 5 were missed; i.e.,
the hit rate was 81%. Of the 22 detected lesions 2 were misclassified. One
stellate lesion was diagnosed as a circumscribed, and one circumscribed lesion
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PLaTE 4. Final resuit of the proposed approach for the stellate lesion in Plate 1. The circle indicates
position and size of the central mass as found by the central mass detection method. All spinal
pixels that are not connected to the central mass have been removed. The lesion is classified as
steflate since the spicularity value is high.

was diagnosed as stellate. In addition, a total of 6 lesions were indicated by the
computer at positions where the radiologist did not indicate any suspicious area;
i.¢., there were, on the average, 0.2 false positive per mammogram. Although
the detection rate is fess than perfect, we judge the performance of the proposed
method as very good because, on the other hand, the false positive rate is
extremely low compared to other published methods. (Hand (6), for example,
reports an average of over 50 false positives per mammeogram.)

Of the five missed lesions, three were partially obscured by other anatomical
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PLATE 5. Final result of the proposed approach for the circumscribed lesion in Plate 2. The circle
indicates position and size of the circumscribed mass as found by the central mass detection
method. A few spinal pixels connected to the mass are found. However, the lesion is classified as
circumscribed since the spicularity value is low.

structures (breast parenchyma). In the other two cases the central tumor mass
was too diffuse to be detected by the central mass detector. Both situations are
similar in the sense that there is only partial evidence in the image for the
presence of a lesion. Detection in such situations is feasible only if evidence
from partial clues is very strong. The map of spinal pixels {Fig. 6} indicates that
the spinal pixel detection method, in spite of its complexity, does not respond
specifically enough to spicules, but responds to a variety of image patterns.
Hence, evidence for a radiating structure alone cannot be used for detecting
stellate lesions. Similarly, the criteria for detecting the central mass of stellate
tumors and circumscribed masses have to be chosen very conservatively. Other-
wise, too maiy false positives would be generated in a typical mammogram. This
clearly indicates that further significant progress in computer-based detection of
breast cancers depends on the development of methods that respond very
specifically to the characteristics of a tumor, with whatever computational effort
that may be required.

APPENDIX

Outlined below are the detailed tests for verifying that the gradient field in the
neighborhood of a spinal pixel P is in accordance with the structure illustrated in

Fig. 2.
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If P is a spinal pixel, a small area centered at P is divided into four quadrants
0,—0., and four pixels A, B, C, and D are chosen in each guadrant at a fixed
distance from P (see Fig. 3a). If gradient coherence in the neighborhood of P is
low, i.e., if both measures y(A)x(B) and x(C)x(D) are low, P is rejected as a
spinal pixel. Otherwise we can tell which pair of quadrants the (potential) spine
falts on by comparing x(A)x(B) with x{C)x(D).

Without loss of generality, assume x(A)x(B) > x(C)x(D); i.e., the spine is
assumed to fall on quadrants (, and Q, (see Fig. 3b). Using a set of consistency
rules we now determine whether P isindeed a spinal pixel. A small area centered
at pixels A and B is divided into four quadrants g,—q,. Let a and b denote the
averaged gradient vectors at A and B, respectively,i.e.,a = J(A)and b = J(B),
and let w, and w, denote the angle of the two vectors with the horizontal axis.
Furthermore, let a € g, denote ‘‘vector a points to quadrant g,."” P is rejected
as a spinal pixel if any of the following conditions holds: '

Ha&gq

(i) b € g3

(iii) a € g, and " bEqg and w, < o,
(ivia € qq4 and b E g, and w, > w,
(viag g and beg,

(vi)a € g4 and beg.

In conditions (i) to (iv) one or both of the gradients points away from the spine.
In conditions (v) and (vi) both gradients are approximately parallel, pointing
into opposite directions.

The next set of conditions is tested only if the spinal orientation s, as defined
in [73, is neither nearly vertical nor nearly horizontal (to within 10° in our
implementation). In this case P is rejected as a spinal pixel if any of the following
conditions holds:

(vii) a € g5, be g, and S € g3
(vii)a € q;, beg,, and §E g
(ix)a € g, becgqg, and scg
(x)a&ggq,, beEg, and s Egq).

In all four conditions (vii) to (x) the orientation of s contradicts the assumption
that the spine falls on quadrants @, and ;.

Finally, to obtain more accurate estimates of the spinal orientation s two new
positions A’ and B’ are determined on a line normal to s and at the same distance
as PA and PB (see Fig. 3¢). The new estimate of the spinal orientation s’ is given
by

s = a'fla’| + v/,
where 2’ = J(A") and b’ = J(B"). If the estimates s and 8’ differ by more than
a preset.amount (15° in our implementation) pixel P is rejected as a spinal pixel,

since large differences in the estimates indicate that the gradient field in the
neighborhood of P does not exhibit the required consistency.
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