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A method for automated detection of breast tumors in mammograms is presented. The
method uses the asymmetry principle: Strong stinctural asymmetries between corresponding
regions in the left and right breast are taken as evidence for the possible presence of a tumor
in that region. Asymmetry defection is achieved in two steps. First, mammograms are
aligned, compensating for possible differences in size and shape between the two breasts.
Second, asymmetry between corresponding posifions is determined using a combination of
several asymmetry measures, each responding to different types of asymmetries. Results
obtained with a set of mammograms indicate that this method can improve the sensitivity
and reliability of systems for automated detection of breast fumors.  © 1991 Academic Press, Inc.

I. INTRODUCTION

Breast cancer is one of the leading cancers. About 10% of all women develop
breast cancer and about 25% of all cancers diagnosed in women are breast
cancers (/). Aithough effective prevention is not possible, early detection can
at least reduce the chance of breast cancers from becoming incurable. Mammog-
raphy has been shown to be the most effective and reliable method for early
cancer detection (2),

Two different technigues are used in the interpretation of mammograms. The
first technique consists of a systematic search of each mammogram for visual
patterns symptomatic of tumors. For example, a bright, approximately circular
blob with hazy boundary might indicate the presence of a circumscribed mass
{2, 3). The second technique, the asymmetry approach, consists of a systematic
comparison of corresponding regions in the left and right breast. Significant
structural asymmetries between the two regions can indicate the possible pres-
ence of a tumor.

Mammogram interpretation is both time-consuming and difficult, requiring
the expertise of trained radiologists. This stands at odds with the recommenda-
tion that mammography be performed at regular intervals to reduce the inci-
dence of lethal breast cancers. However, with recent advances in medical image
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PLATE 1. Mammograms of the left (a} and right (b) breast. A tumor is present in the right breast at
the position indicated by the two white lines. (The visible contours in (b) are an artifact of the
printed reproduction and were not present in the original image.)
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processing it has become feasible to design automated diagnosis systems, or, on
a more modest level, to design systems that can aid radiologists in mammogram
interpretation.

Several systems for automated mammogram interpretation have been
proposed in the past. They differ both with respect to their goals and with
respect to the techniques used to achieve these goals. Some systems (¢4—6)
use texture measures to characterize the appearance of local regions within
mammograms. Regions that have a markedly different appearance from the
rest of the breast are considered possible tumor sites. In a similar way,
Magnin ef al. (7) use textural measures to characterize the general appearance
of mammograms for assessing the risk of developing breast cancer. Other
systems are designed to detect specific types of tumors, such as circamscribed
masses (3), stellate tumors (8), or microcalcifications (9). Detection perfor-
mance of these systems is generally better than the more general systems,
since they can use tumor-specific characteristics both for the detection of
tumors and for the elimination of non-tumors. Finally, some systems (/0,11)
are designed not fo detect but to classify tumors at krown positions.
Diagnostic decisions of these systems are based upon sets of textural measures
and their performance is usually excellent, approaching the performance of
expert radiologists.

None of these systems is reliable enough to be used in ¢linical applications.
However, all systems use methods that may be incorporated into a clinically
useful system. The system described in the present article uses yet another
method, the asymmetry approach, for detecting possible tumor locations in
mammograms. The reason for considering this approach is not that we expect
this method to be superior to other approaches. On the contrary, methods
that attempt to detect specific tumors, are likely to give a better performance.
The method presented here can, however, provide clues about the presence
of tumors that are not available to other methods and thus it provides another
building block for a clinically nseful system. In fact, the system presented
here is part of a project with the goal of developing a clinically useful system
for mammographic tumor detection and classification (3, 8).

The strategy of the asymmetry detection system can be described as follows.
Given a pair of identical-view mammograms of the left and right breast (see
Plate 1), detect all structural asymmetries between corresponding positions in
the left and right breast. Significant asymmetries are taken as evidence for the
possible presence of a tumor,

A closer inspection of the mammograms shown in Plate 1 reveals several
difficulties for the asymmetry approach. First, due to natural asymmetry,
and due to the mammographic recording procedure, the shapes of the left
and right breast do not match (apart from the mirror transformation). Defining
corresponding positions in both breasts becomes therefore a nontrivial task.
Second, the global appearance (brightness, contrast, etc.) of the two breasts
may differ, usually due to variations in the recording procedure. Third,
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asymmetries exist not only at the tumor position but also in the appearance
of healthy breast tissue at corresponding locations in the two breasts. The
asymmetry method thus has to discriminate tumeor-related asymmetries from
naturally occurring asymmetries. Finally, the tumor in the right breast of
Plate 1 can be detected without using the asymmetry method, ie., by
analyzing the visual pattern in the right breast only. It is thus not clear what
performance one can ideally expect of a system that uses only the asymmetry
principle. The system described here should, at least partially, provide an
answer to this question.

In the following we present a detailed account of the asymmetry method. We
first present a method for mapping corresponding positions between the left and
right breasts (Section II). Then we present and discuss several asymmetry
measures (Section III). The results obtained with our method are illustrated
using the mammograms in Plate 1. In the last section we present experimental
results obtained with a set of mammograms, and we discuss the advantages and
drawbacks of our approach {Section 1V).

II. MAMMOGRAM ALIGNMENT

Before we can discuss methods for detecting asymmetries between corre-
sponding regions in the left and right breasts, we must discuss methods for
determining corresponding positions. There exist natural asymmetries, both
in shape and in anatomic structure, between the two breasts. Further shape
distortions are introduced through the mammographic recording procedure. For
these reasons, it is impossible to define an exact correspondence betwecn
positions. However, a definition of exact correspondence is not a necessary
requirement of this technique.

A simple method for aligning mammograms was proposed in (/0), where
mammograms are aligned using translations and rotations only, ignoring any
differences in size and shape. A much more elaborate alignment method is the
unwarping algorithm proposed in (/2). This method requires the manual input
of control-points distributed over the whole breast area. These points are then
used to triangulate the breast area, with separate interpolation functions being
applied in each region triangle. Although this method potentially allows a very
precise mapping of positions, the time required for entering a large number of
control-points manually precludes its use in a system intended for mass screen-
ing. It is also unclear to what extent reliable control-point extraction can be
automated.

We have opted for a method midway between the two methods just presented.
Its design was influenced by two considerations. First, we assume that the two
breast areas to be aligned differ not only in global position and orientation, but
also in shape and size. Second, we believe that no automatic alignment method
works in all cases. In cases where automatic alignment fails, the alignment
process should be controlled interactively, and user input in such cases should
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F1G. 1. Grey-level histogram of the mammogram in Plate Ta, The arrow indicates the position of
the threshold for segmenting the breast area from the background.

be minimal. The proposed method aligns the breast areas using only three
control-points on the boundary for guiding the alignment process. In the follow-
ing we discuss ali steps of this alignment process.

A. Digitization

Film mammograms were digitized with a camera at a resolution of 512 x 480
pixels and 256 grey levels. All mammograms were digitized at approximately
the same orientation. Lettering, such as patient numbers or dates, were covered
to make subsequent processing somewhat easier. No enhancement method was
applied to the digitized mammograms, apart from simple grey-level stretching.

B. Breast Area Segmentation

First, the breast area must be segmented from the darker background. The
grey-level histogram of the left mammogram in Plate 1 is shown in Fig. 1. It
shows a clear bimodal distribution, indicating that the grey-level values of the
breast area and of the background are distributed over different ranges. This
allows simple thresholding to be used for segmenting the breast area from the
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FiG. 2. Smoothed binary breast area map s, of the mammogram in Plate la.

background, with the threshold 7T set to the grey level corresponding to the
trough between the two peaks of the grey-level histogram.
The binary map m(x,y) of the breast area can then be defined as

1, Mxy)=T

mix,y) = {0, M(x,y) < T, [

where M(x,y) denotes the digitized mammogram. Because simple thresholding
produces a noisy boundary, an averaging filter is used to obtain a smooth binary
map of the breast area. Let the averaging filter a,(x,y) be defined as

2n+ D73, x| <n,lyl=n 21
0, otherwise.

aZ(ny) = {
Then the smoothed binary map #2,(x,y) of the breast area is defined as

1, axy)yEmxy) =3
my(x,y) = {0, alx,y) = m(x,y) < 1 [3]

where a * b denotes the convolution of @ and b. The smoothed binary map of
the left mammogram in Plate 1, obtained using an averaging kernel with n = 3,
is shown in Fig. 2. The binary breast area map m, is used both for mammogram
alignment and for defining the breast areas in the methods discussed in Section
I11.

C. Control-Point Extraction

The breast boundary curve can be easily extracted from the binary breast
area map m,. Let b = {(x;,¥), 0 = i < m,} be this (closed) boundary curve. On
this curve three control-points are to be located, namely the nipple-point and
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FIG. 3. Schematic outline of a breast area with three controi-points, C;, Cy, and €, used for
alignment of mammograms. Also shown are the baseline C,C; and the centerline C,,C, with an angle
8 to the baseline. The two regions A and B are transformed independently.

the two corner-points between the breast boundary and the chest wall (Fig. 3).
The control-points can be characterized as corners, i.e., as points of high
curvature, on a smooth breast boundary curve. Inspection of the binary breast
area map m, (Fig. 2) shows that the boundary curve & is too noisy for obtaining
these three control-points reliably. Therefore the curve b is further smoothed
using a large one-dimensional averaging filter. Let

w_ 12n+ D7 i = n
mli) = {0, otherwise 41

(in our implementation n = 15). Then the smooth boundary curve is defined as
by = {{xF,y#), 0 =i <m}withx} = g *xand y7 = a, =y, where a, * x denotes
the one-dimensional convolution of 4, and x.

Detection of the three corners is achieved using the method proposed in (73),
a method that approximates plane curves using B-splines and detects corners
by locating local curvature maxima. Since the corner detection method is dis-
cussed in detail in (/3) we present only the basic idea in a somewhat simplified
form. Given four adjacent pixels P, _,, P;, P,, |, P;,, on the boundary curve b,,
we approximate this curve segment using cubic B-spline interpolation, resulting
in the interpolated curve segment shown in Fig. 4. For curve segments with low
curvature the distance 8; between point P, and the interpolated point P’ is small
and the estimated curvature ¢; at P; is also small. Conversely, a point P, can be
classified as a comer-point if the following criteria are met:

1. the distance §; exceeds a threshold value T;;
2. the estimated curvature c; exceeds a threshold value 7.;
3. the estimated curvature ¢, is a local maximum.

In addition, since we are looking for three control-points only, we select the
three corners with maximum curvature c; as control-points for alignment.
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B,

E16. 4. Iltustration of the breast boundary interpolation method. Four peints £,_,, . . . , £ ;00
the boundary are interpolated using cubic B-spline interpolation, resulting in a smooth interpolation
curve. The distance §; between point P; and the interpolated point P} is used to determine corner-

points.

Inspection of the breast boundary in Fig. 2 shows that multiple corner-points
could be used to locate the nipple-point. Protrusion of the nipple, however, is
found oaly in a small fraction of all mammograms. On the other hand, it must
also be ensured that only a single corner-point is found at the nipple. This is
achieved by making the averaging kernel [4] large enough, so that the local
structure of the boundary at the nipple-point is smoothed out.

Experimental results with a large set of mammograms showed that, for a
majority of mammograms, the three extracted control-points indeed correspond
to the nipple-point and the two corner-points between breast boundary and
chest wall. In mammograms where this was not the case, one or more control-
points were entered manually.

D. Alignment

The mammogram alignment method is best explained using the illustration in
Fig. 3. Given the three control-points C,—C;, alignment of the left and right
breast areas is achieved in four steps. First, onec mammogram is rotated so that
the orientations of the baselines C,C; match. Second, both mammograms are
aligned on the point C,,, midway between C; and C;. Now let the angle between
the baselines C,C; and the centerlines C,.C, be denoted by 6; and 6y, for the
left and right breast, respectively. In the third step, one mammogram is trans-
formed to obtain §;, = 0. This is achieved by shifting the pixels in subregions
A and B of one mammogram by an appropriate amount in the direction of the
baseline C,C;. For a row of pixels at a distance 4 from the baseline C;C; the
amount of shift is given by d{cot 8 — cot fg).

The final step of the alignment process is designed to compensate for possible
differences in size and shape. Up to this point one mammogram has been
translated (the baseline centers C,, are aligned), rotated (the orientations of the
baselines C,C, match), and skew differences have been eliminated (the orienta-
tions @; and @y of the centerlines C,,C, match). In the following description we
assume, without loss of generality, that the baselines C,C; are horizontal. The
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FrG. 5. Schematic ontline of a breast area showing a (black) row of pixels at a distance d from the
baseline and a width w(d) between center line and breast boundary. Alse indicated is %, the distance
between the baseline and the nipple-point.

subregions A, and Ag, (as well as B, and By) still can differ both in height / and
width w(d), the distance between centerline and the breast boundary, at a
distance ¢ from the baseline (see Fig. 5). Using the ratios hip/h; and wg(d)/ w (d)
all pixels of the left breast area can be mapped into the right breast. The row of
pixels indicated in black in Fig. 5 is mapped into the right breast by translating
it vertically to a position d - hg/h; away from the baseline and by scaling it
horizontally by a factor wg(d)/w(d). The transformed coordinates may not
be integers, so a pixel-by-pixel correspondence is obtained through bilinear
interpolation (/4).

This completes the process of mammogram alignment. The result of the
alignment process for the mammograms in Plate 1 are shown in Plate 2. Points
with the same coordinates in the left and right mammogram are now considered
to correspond to each other. We can now test corresponding regions in the left
and right breasts for the presence of structural asymmetries.

II1. ASYMMETRY DETECTION

Tumor detection using the asymmetry method involves the detection of
““structural asymmetries”’ between corresponding regions in the left and right
breasts. Unfortunately, the term *‘structural asymmetry’ is not defined pre-
cisely. In fact, it could be defined along a whole range of abstractions. At one
extreme of this range, one could define any grey-level difference between pixels
of corresponding regions as constituting an asymmelry. Such definition would
clearly stand at odds with the observations that corresponding regions are hardly
ever identical, either due to natural asymmetries between the two breasts or
due to variations in the mammographic recording procedure. At the other
extreme, one could attempt to identify and characterize all anatomical structures
within the breast arca and then detect asymmetries based on these descriptions.
The drawback of this approach, apart from its complexity, is that a full descrip-
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PLATE 2. Mammograms of the left and right breast afterm
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tion of anatomical structures wouid include a description of tumor-related struc-
tures. But it is exactly these structures we wish to detect using the asymmetry
approach. .

For these reasons, we use a set of measures that are somewhere between the
two extremes just discussed. On the one hand, they have to be related to the
mammographic appearance of tumors; on the other hand, no characteristics of
specific tumors are used for asymmetry detection. Finaily, it is the combination
of these measures that defines what we mean by ‘‘structural asymmetry.”’

In the following, we develop a set of increasingly complex structural measures
for describing image regions and for detecting asymmetries between correspond-
ing regions in the left and right breasts. Each measure is briefly motivated; its
implementation is described and its performance for the mammogram in Plate
1is shown. A full evaluation of their performances is, however, given only in
the last section.

A. Brightness

Cancer cells have a higher density than healthy breast tissue and thus appear
brighter in mammograms. Consequently, large grey-level differences between
corresponding regions can indicate the presence of a tumor. The simplest way
to detect grey-level differences is to subtract digitally the aligned mammograms
(10, 12). However, there are several arguments that speak against simple sub-
traction. First, there are usually global differences in brightness and contrast
between the left and right mammogram, due to variations in the mammographic
recording procedure and in mammogram digitization. These differences, in turn,
would be interpreted as asymmetries by the simple subtraction method. To
avoid this problem, mammograms are first normalized. Given a digitized mam-
mogram M(x,y), the normalized mammogram N(x,y) is defined as N(x,y) =
(M(x,y} — mp)loyy, where uy, is the mean grey-level and oy, is the standard
deviation of grey-levels of M.

Second, even if there were identical anatomic structures in corresponding
regions, inaccuracies in mammographic alignment would lead to a response in
the pixel-by-pixel digital subtraction. Furthermore, differences in brightness
are assumed to occur on a larger scale than the resolution of a single pixel.
Therefore, brightness differences are measured for local grey-level averages.
More precisely, given an averaging filter a,(x,y) as defined in Eq. [2], the
brightness difference measure B(x,v) is defined as

B(x,y) = INU(x,¥) * ay(x,y) — Nplx,y) = ax(x,y)] - (5]
= [(NL(oy) — Nglx,y) = ax(x,y),

where Ny and N denote the left and right normalized mammogram, and *
denotes convolution.

The brightness difference for the mammogram in Plate 1, using an averaging
filter with » = 3, is shown in Plate 3a. It is clear from the result that the
brightness-difference measure responds to a variety of image phenomena and




DETECTION OF BREAST TUMORS 285

that the response to the tumor present in the mammograms is in fact very small.
However, the difference measure proved useful in many other cases, as Is
reperted in Section 1V,

B. Roughness

~ Tumors appear mammographically as brightness patterns different from
healthy tissue. That is, within local regions, brightness variations follow differ-
ent patterns for tumors and for healthy tissue. It should therefore be possible
to discriminate tumors from non-tumors using texture measures. in the past,
several groups have shown that such measures can successfully be used for
mammographic diagnosis (4, 6, 10). One problem with the use of texture mea-
sures is the difficulty in determining what specific measures are likely to be
good discriminators between tumors and non-tumors, If only certain tumors
have to be detected, one can use measures designed to respond to the specific
characteristics of that tumor, such as, for example, the ““star-likeness’ measure
used by (4). However, as the number of texture measures is increased to cover
different types of tumors, so does the probability that one or more of these
measures respond in regions of healthy tissue. Therefore we can expect an
increasing rate of false positives.

For these reasons, we have restricted the use of texture measures to a few
whose usefulness for tumor detection can be justified easily. The first one,
presented in this section, is a local variance measure to characterize roughness
of local brightness patterns. A majority of tumors can be expected to produce
alocal increase in brightness variance: Microcalcifications, for example, appear
as clusters of tiny, bright and sharp spots on a darker background. Similarly,
the structure of stellate lesions leads to a higher local vartance in brightness.
Finally, the variance measure also responds to well-defined edges thus yiclding
a strong response at edges of circumscribed masses.

Local variance measures are dominated by areas with large variations in
brightness. Their response is weak for a region with little grey-level variation,
even if its surround is homogeneous. But this is precisely a situation found with
tumors embedded, for example, in fatty tissue which has very little grey-level
variation. If the breast area also contains, for example, glandular tissue with
high grey-level variation, these tumors remain undetected. To overcome this
problem, we use a variance measure that is locally normalized within a normal-
ization window W. Given a variance window V and a (larger) normalization
window W, with variances ¢} and &%, respectively, the normalized local
variance at (x,v) is defined as

vx,y) = oilal,. (6]

Finally, the roughness difference R(x,y) between two corresponding regions in
the left and right breasts are defined as

R(}C,y) = |UL(X,Y) - UR(-‘C-Y)L [7]
where v; and vy are the normalized local variances of N and Ng, respectively.
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PLATE 3. Response of the asymmetry measures to the mammograms of Plate 2: (a) Response of the
brightness difference measure B. (b) Response of the roughness difference measure R. {c) Response
of the brightness-to-roughness difference measure Q. (d) Response of the combined asymmetry
measure A,
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TABLE 1

COMPARISON OF BRIGHTNESS AND ROUGHNESS FOR DIFFERENT TYPES OF TISSUE -

Tumor 7 Glanduiar tissue Fatty tissue
Brightness High Medium-high Low
Roughness Low ’ High ’ Low
Brightness/roughness High Low Low

The response of the roughness difference measure R(x,y) for the mammogram
in Plate 1 is shown in Plate 3b, using a variance window of size 25 x 25 pixels,
and a normalization window of size 51 x 51 pixels. Detection performance
of the roughness measure is best for relatively small tumors embedded in a
homogeneous background. It is poor for very large tumors, if the corresponding
region in the other breast is homogeneous.

C. Brightness-to-roughness

Large tumors cannot be detected by either the brightness or the roughness
measure alone if the corresponding region in the othet breast is homogeneous.
This occurs, for example, if the corresponding région contains fatty tissue or
glandular tissue. A comparison of the three types of tissue is given in Table 1.
From that description, it can be seen that the brightness-to-roughness ratio can
be a good discriminator between tumors and other tissues.

The brightness-to-roughness ratio could be implemented using the brightness
and variance measures presented in the previous sections. The variance measure
is, however, too general since it responds both to rough textures and to edges.
This suited our purpose for the situations described in the last section, but
here we need a measure that responds more specifically to.roughness. This is
achieved by defining roughness within a # X r -window W using the running
sum of absolute grey-level differences in both the vertical and horizontal direc-
tions. Let

pi== > (xy) + vxy), [8]
n (yyew
where
L MG Ly - Mapi= (9]
/ 0, otherwise

U, = 15 FM(ny + 1} - M(ny)| =J
I 0, otherwise,

Then roughness can be defined as
235

Tw = Z)jzpj, [10]
=
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and the brightness-to-roughness ratio for a window W centered at (x,y) is defined
as

q(x,y) = pi/(1 + oy), [11]

where uy is the average grey-level within the window W. Finally, the brightness-
to-roughness difference is defined as

O(x,y) = |g(xy) — ge(x.y)], [12]

where g; and gy are the brightness-to-roughness ratios for the left and right
breasts, respectively.

The response of this measure for the mammogram in Plate 1 is shown in Plate
3¢, and for a large tumor in Plate 4. Experiments with a large set of mammograms
showed that the brightness-to-roughness difference @ responded strongly to a
majority of large tumors.

D. Directionality

An analysis of the response patterns generated by the asymmetry measures
presented in the previous sections reveals that they respond to structures other
than tumors. Strong responses are also generated in regions with blood vessels
or with glandular tissue. These regions typically appear as highly oriented
patterns that are predominantly oriented in a direction orthogonal to the baseline
(see Fig. 3). Tumors, on the other hand, rarely appear as highly oriented pat-
terns, at least not at the level of resolution at which we are analyzing mammo-
grams. This permits the formulation of the following rule: If a region contains
a highly oriented pattern; oriented orthogonally to the base line, then it is
unlikely that a response of the asymmetry measures is due to the presence of
a tumor. Therefore, the response of these measures should be suppressed in
regions with highly oriented patterns. o

In the following description we assume that the baseline €,C5 is horizontal
(see Fig. 3). Let F(4,v) denote the discrete Fourier transform of the brightness
profile within a window W and let P(¢2,v) denote the power spectrum, i.¢., P(u,v)
= F(u,0)F*(u,v), where F*(u,v) denotes the complex conjugate of £{u,v). The
support of the power spectrum is shown in Fig. 6. All frequency components
in the shaded area have a predominantly vertical orientation. Let Py, denote the
total power in the shaded area and Py, denote the total power in the window W.
Then vertical directionality can be defined as D = Py/Py. For non-oriented
patterns D is approximately 3; for highly oriented, vertical patterns D is close
to 1, and for highly oriented, horizontal patterns D is close to 0.

Now we can reformulate the rule given before: If in a window W, D is close
to 1, then it is unlikely that a strong response of the asymmetry measures is due
to the presence of a tumor. Therefore, the directionality measure can be used
as a weighting factor for the asymmetry measures. This is described in the next
section.
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PLATE 4. Mammograms of left (a) and right (b) breast containing a very large tumor, and response
(c) of brightness-to-roughness difference measure Q. The tumor position is indicated by the two

white lines.

The main advantage of the power spectral method lies in the fact that it can,
to a certain extent, measure local directionality in a resolution-independent
way. Its major disadvantage is the large computational cost. (The asymmetry
measures introduced above can be computed very efficiently using sliding sum-
mation methods (15).) For this reason, the directionality measure was computed
on a reduced-resolution version of the digitized mammograms M(x,y), and the
power spectra were computed for a relatively small window size of 16 X 16

pixels.

E. Asymmetry Measurement

In the previous sections we introduced three measures that capture different
types of asymmetries, namely brightness (B), roughness (R), and brightness-to-
roughness (). A fourth measure, directionality (D), was introduced to suppress
the response of the other measures in regions containing highly oriented struc-
tures, such as blood vessels or glandular tissze. We now discuss how these
measures are combined into a single asymmetry measure.




292 LAU AND BISCHOF

FiG. 6. Support of the power spectrum used in computing the directionality measure D. The
frequency components in the shaded arca have a predominantly vertical orientation.

The directionality measure D should be used very conservatively in sup-
pressing responses of other measures: only where the values of D are extreme,
should suppression be noticeable. This is achieved through a non-linear transfor-
mation in the following way. A weighting factor W(x,v) is defined as

Wix,y) = max [0,1 — D (x,y)], [13]
with

D,(x,y) = D{(x,y) + DR(x,y), [14]
where Dy and Dy are the directionality measures for the left and right breasts,

both raised to the pth power. Experimental results showed that a value of p =
5 produced good results. The asymmetry measure A(x,y) is then defined as

Alx,y) = [Blx,y) + Rlx,y) + Q(x,y)] = W(x,y). [15]

The asymmetry measure A(x,y) combines all asymmetry measures in a simple,
unweighted manner. It defines what is considered as a *‘structural asymmetry”’
in our system. This concludes the definition of our asymmetry measurement.
The response of the asymmetry measure A for the mammogram in Plate 1 is
shown in Plate 3d. In the next section we present experimental results obtained
with this measure for a set of mammograms.
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IV. EXPERIMENTAL RESULTS AND DISCUSSION

The methods presented here were tested with a set of 10 mammogram pairs
that had not been used in the training phase. These mammograms contained a
total of 13 areas with either a tumor or with strong signs for the possible presence
of a tumeor (suspicious areas). The set of test cases is quite small because we
used only cases where ‘‘structural asymmetry’’ played a major role in the
radiologist’s diagnosis. The tests reported in this section should therefore not
be compared to a clinical evaluation. On the other hand, the method presented
here is not intended to be used alone for cancer diagnosis, but rather as one
in a set of methods for locating suspicious areas, as was discussed in the
Introduction.

Given a response patiern of the asymmetry measure, such as shown in Plate
3d, we must first devise a method for selecting suspicious areas. Since all regions
having a strong left—right asymmetry are considered suspicious, we could simply
diagnose all positions as suspicious where A exceeds a certain threshold. This
simple thresholding suffers from the problem that there is no prior knowledge
for selecting a reasonable threshold value.

For this reason, we use a two-stage thresholding method for selecting suspi-
cious areas from A. First, a percentile method is used to select potential tumor
sites, i.e., a fixed percentage of locations is classified as potentially suspicious.
A threshold T, is chosen siuch that g, percent of all positions in A exceed T,.
This is based on the assumption that tumors occupy an area at most g, percent
of the total breast area. The potentially suspicious positions are then further
analyzed to reduce the number of false positives.

We assume that the asymmetry measure respomds not only at the center of a
tumor but also in the immediate neighborhood of the center. Using blob coloring
(16), we identily clusters of asymmetry responses. If the area of a cluster is too
small, the clusteris eliminated. Otherwise, a circle is fitted around the cluster and
the mean response within the circle is computed. Let A, be the maximum mean
response of all potentially suspicious areas. A second threshold 7, is chosen such
that T,/A,,.. = @,. All potentially suspicious areas whose mean response does not
exceed T, are eliminated from the list of suspicious areas. All other areas are
considered suspicious and are reported by the program.

In comparing the results produced by the computer and the diagnoses given
by the radiologist, we cannot expect that the suspicious areas found are exactly
the same. Therefore, the following criterion was adopted. The radiologist drew
a circle around each suspicious area. If the intersection of this circle with the
nearest area indicated by the computer overlapped more than 50%, the suspi-
cious area was considered detected, otherwise is was considered missed.

The two parameters ¢, and ¢, were determined as follows. Parameter g, was
varied over a large range and a value of ¢, = 5% was found to produce the best
result. Similarly, parameter g, was varied, and these results are shown in Table
2. It is clear that in selecting a value for g, there is a trade-off between the
numbers of false positives and misses. A low value of ¢, produces many false
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TABLE 2

HIT RATE AND FALSE POSITIVES FOR DIFFERENT VALUES OF THRESHOLD @

Threshold Average number of false positives
(%) Hit rate (%) per mammogram
70 92 9.9
80 9 4.9
a0 69 1.6

positives, and a high value produces many misses. A good compromise was
found for ¢, = 80%.

The final results show that, for the set of mammograms analyzed, 12 out of
13 suspicious areas were detected, and that, on the average, 4.9 false positives
were generated per mammogram pair. This indicates that the asymmetry method
is indeed sensitive enough to be used in an automated tumor-detection system.
The results also show that the asymmetry method alone is not reliable enough
for clinical application. First, although the false positive rate of 4.9 compares
favorably with other methods reported in the literature (e.g., (4)), it still means
that several asymmetry positions are signaled in every mammaogram. Second,
the asymmetry method cannot provide any tumor classification. These results
are in line with the expectations formulated in the Introduction. A system for
mammographic diagnosis must rely on multiple cues for achieving reliable
detection performance. The asymmetry method can provide cues not available
to other methods and thus can improve the performance of such systems.
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