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On Techniques for Detecting Circumscribed Masses
in Mammograms

SHUK-MEI LAI, XIAOBO LI, anp WALTER F. BISCHOF

Abstract—This paper presents a method for detecting one type of
breast tumor, circumscribed masses, in mammograms. It relies on a
combination of criteria used by experts including the shape, brightness
contrast, and uniform density of tumor areas. The method uses mod-
ified median filtering to enhance mammogram images and template
matching to detect breast tumors. In the template matching step, sus-
picious areas are picked by thresholding the cross-correlation values
and a percentile method is used to determine a threshold for each film.
In addition, two tests are designed to remove false alarms from the
resulting candidates. The results obtained by applying these techniques
to a set of test images are described.

[. INTRODUCTION

REAST cancer is not only a leading cause of death

among all cancers for women of middle age and older
[24], but its incidence is rising. Primary prevention is not
possible since the cause of this disease is still not under-
stood. However, current methods of treatment are very
effective against breast cancer in its early phase when the
balance between the tumor and its host is more favorable
[23]. Therefore, removal of the cancer while it is still in
its early stages is the most promising way to achieve a
significant change in the current breast cancer situation.
Of all diagnostic methods currently available for this pur-
pose, mammography is the most reliable method for the
detection of early breast cancer [24]. Hence, a mass
screening program utilizing mammography is obviously
the best weapon against breast cancer.

A major problem expected with such a screening pro-
gram would involve the interpretation of the large volume
of images produced. In addition to a shortage of trained
radiologists and the need to improve the cost benefit ratio
of such a program, it is difficult for human radiologists to
maintain interest in interpreting large numbers of images
in which only a small number show abnormalities [6].
Hence, the need to construct computer-aided systems to
diagnose breast cancer in mammograms becomes appar-
ent.

The analysis of mammograms by computer can be
roughly divided into three steps: 1) enhancement of pre-
selected features and removal of irrelevant details using
application-dependent techniques, 2) localization of sus-
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picious areas, and 3) classification of these areas into non-
tumors, benign, or malignant tumor areas. The analysis
is difficult for several reasons. First, it involves the anal-
ysis of small features of low contrast superimposed onto
nonuniform backgrounds. Second, the diagnostic infor-
mation content in mammograms is more semantic than
statistical in nature as is often the case with radiographic
images in general [9]. That is, the features essential for
diagnosing a particular disease are determined both by the
disease and the class of images. Third, the resolution re-
quired in a particular disease application may, for exam-
ple, be an order of magnitude higher than that necessary
for all general diseases using the same class of images.

A large repertoire of image processing techniques has
been developed for image enhancement, object localiza-
tion, and pattern classification. However, due to the prob-
lems of radiographic image analysis mentioned above,
most image processing techniques which have been ap-
plied to biomedical situations have been found to be very
application dependent. This phenomenon is analogous to
the fact that radiologists adopt different strategies to ana-
lyze different types of medical images. Thus, starting with
a large repertoire of techniques, one may have to combine
and modify some existing techniques to create the best
technique for a particular application.

In the past, several groups [1], [23] have demonstrated
the potential use of computers in feature-based classifi-
cation of suspicious areas. Since human assistance is
needed to locate these areas before the computer pro-
cesses the images, these systems are not fully automated.
Hand et al. [10] have developed a method for identifying
and locating abnormal areas in xeromammograms. Their
approach, which utilizes texture and shape parameters to-
gether with a left-right asymmetry analysis, shows a high
false alarm rate of over 50 suspicious areas per xeromam-
mogram. Since xeromammograms are produced using a
different recording technique from that used for mam-
mograms, the performance of Hand ef al.’s method with
mammograms cannot be directly determined.

In the present work, we are concerned with the detec-
tion and localization of one particular tumor, circum-
scribed masses. In order to design a method for detecting
areas corresponding to circumscribed masses or areas that
may correspond to circumscribed masses (suspicious
areas), the radiologists’ descriptions [21], [13] of tumor
symptoms must first be translated into computational pro-
cedures. Based on these descriptions, we define a suspi-
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cious area as an area which 1) is brighter than its sur-
rounding tissue, 2) has uniform density inside the area, 3)
has an approximately circular shape of varying size, and
4) has fuzzy edges. It must be emphasized that a suspi-
cious area is not necessarily a tumor area. It can also be
a benign tumor or an area which radiologists would choose
to examine in greater detail. The methods presented here
are concerned only with the localization of suspicious
areas and no attempt is made to further classify these
areas.

Locating suspicious areas in mammograms is difficult
for a number of reasons. The small differences in density
between normal and tumorous tissues in human breasts
create little contrast between a tumor area and its back-
ground in the image. This contrast is further reduced in
the filming and digitization process of the mammogram
images. In addition, the presence of noise and anatomical
structures, such as ducts and glands, increases the back-
ground variations of tumor areas. The boundaries of tu-
mor areas are fuzzy, and in some instances, only partially
visible. Together with the small size of early-stage tu-
mors, this makes any attempt to segment the image by
global gray level thresholding technique very difficult.

Two examples of mammogram images are shown in
Plates 1 and 2, respectively. The positions of the suspi-
cious areas in these mammograms are indicated by mark-
ers on the edge of the plate. The suspicious area in image
1 is easier to detect than that in image 2 due to the fact
that there is less background variation near the suspicious
areas. The background variations in image 2 are due to
the presence of gland and fatty tissue in the breast.

The approach described in this paper takes this problem
into account and existing techniques are modified to im-
prove tumor detection. Section II discusses methods for
enhancing mammographic features and presents our ap-
proach which uses selective median filtering to enhance
mammograms. Section III discusses the template match-
ing technique we used for detecting suspicious areas. In
addition, since the candidate areas produced by this
matching process are not all suspicious areas, two tests
designed for removing false alarms from the resulting
candidates are presented in Section IV. Section V dis-
cusses the computational efficiency of the template
matching process, and the conclusions of this paper are
presented in Section VI.

II. IMAGE ENHANCEMENT

There are two possible approaches in enhancing mam-
mographic features. One is to increase the contrast of sus-
picious areas and the other is to remove background noise.
Some techniques for contrast enhancement of film mam-
mograms have been suggested earlier [6], [8]. Those
methods are based on adaptive neighborhood processing
with a set of contrast enhancement functions to enhance
the contrast of mammographic features. In our research,
we take the other approach and enhance the images by
removing background noise while preserving the edge in-
formation of suspicious areas in the images. We investi-

Plate 1. Mammogram image 1 with easily detectable suspicious areas.
Suspicious areas are marked by circles.

Plate 2. Mammogram image 2 with a suspicious area which is difficult to
detect. The suspicious area is marked by a circle.

gated four known selective averaging schemes and a new
method, a modification of median filtering, with respect
to their performance in enhancing mammogram images.

A. Selective Averaging

Edge-preserving noise removal can be achieved using
an averaging scheme that avoids averaging across edges.
One way to achieve this is to restrict averaging to a subset
of neighborhood pixels such that the most likely edge in
a given neighborhood does not cross this subset. Several
such methods proposed in the literature were tested in our
image enhancement stage.

Edge-Preserving Smoothing: This method [14] tries to
search for a homogeneous neighborhood in different di-
rections of a given pixel and averages in this neighbor-
hood only. The search is done by rotating a window
around a given pixel, using the variance within the win-
dow as a measure of homogeneity of an area, and select-
ing the smallest variance window for averaging.

Half-Neighborhood Method: This method [18] oper-
ates like unweighted averaging at pixels in the interior of
a region. For pixels that lie on an edge, the neighborhood
is subdivided in various ways, and the half neighborhood
whose average level differs the most from that of the other
half is chosen for averaging. It assumes that edges are
straight and are composed of consecutive neighborhood
pixels.
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The k-Nearest Neighbor Method: This method [5] is
based on the idea that pixels in the same region should
have similar gray values. Therefore, under this scheme,
the average is taken using the k neighbors within a given
neighborhood region whose gray levels are closest to that
of the given pixel. It makes no attempt to detect the pres-
ence of edges and does not require that the neighbors in-
volved in the averaging are adjacent.

Directional Smoothing: This method [16] is similar to
the half-neighborhood method in that for pixels in the in-
terior of a region, averaging is done using all neighbor-
hood pixels. If an edge is present, a directional average
is taken on those neighbors that lie in the direction along
the edge. The edge position and orientation are obtained
by convolving the image with a set of four oriented edge
detection masks.

B. Median Filtering

Median filtering has been found to be very powerful in
removing noise from two-dimensional signals without
blurring edges [3]. This makes it particularly suitable for
enhancing images.

To apply median filtering to a digital picture, we re-
place the value at a pixel by the median of the values in
a neighborhood of the pixel. Given a set of n numbers { x,

** * x, } and we define the ordered set {x - - - x¥}. The
median of the set is given then by
xk n even
median {x, - - - x,} = { */2
X(n+1)/2 n odd.

Two-dimensional median filters can be defined for ar-
bitrary sizes and shapes of filter windows W(i, j), such
as line segments, squares, circles, and crosses. The two-
dimensional median filtering operation is defined as fol-
lows. For a two-dimensional filter window W(i, j) cen-
tered at image coordinates (i, j) of a picture {x;:(0, J)
€ Z*}, the median filtering output is

£; = median {x, ;:(r, s) e N(i.j)}, (i,j) € Z*
where N (i, j ) is the area in the image covered by window
Wi, j).

Median filters have several properties that make them
superior to low-pass filters [11]. If an image has impulse-
like noise, median filtering can remove it without signif-
icantly distorting the signal, and if an image contains
edges, median filtering can preserve them due to the fact
that only a small fraction of the neighborhood overlaps
the edge. Further, Bovik er al. [4] have analyzed gener-
alized filters based on linear combinations of order statis-
tics and demonstrated that among those, the median filter
is nearly optimal for suppressing impulse noise or noise
which is characterized by a large percentage of outliers.

C. Selective Median Filtering

Experiments showed that the edge preservation power
of the standard median filter is not sufficient for enhancing
mammogram images due to the fuzziness of the bounda-
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ries of suspicious areas. We introduce a modification of
the median filter, selective median filter (SMF), which is
defined as follows.

For a window W(i, j) centered at image coordinates
(i, j), the output of the selective median filter is

%; = median {xm:(r, s) e N(i, j)

and |x,, — x;| < T}, (i, j) € 22

where N(i, j ) is the area in the image covered by window
W(i, j) and T is a threshold.

In computing the median, the set of pixels is restricted
to those with a difference in gray level no greater than
some threshold 7. By adjusting the parameter 7, the
amount of edge smearing can be controlled. If T is small,
the edge-preserving power of SMF is strong, but its
smoothing effect will be small. If T is large, the SMF
behaves the other way around. This modification of the
median filter is related to selective averaging schemes de-
veloped for linear filters [16] that show good results in
improving the edge preserving power of linear low-pass
filters.

To achieve strong noise suppression, one can either use
a filter with a large window size or the filter can be applied
repeatedly [7], [15], [19]. The first approach has several
drawbacks [7], [15]. The median filter, designed to act as
a low-pass filter in homogeneous areas, will respond more
and more like a bandpass filter as window size is in-
creased. Further, increasing the window size leads to in-
creased noise suppression, but also to increased signal
distortion. On the other hand, they showed iterated me-
dian filtering reduces an original signal to an invariant sig-
nal, called roor signal, and that only piecewise constant
images are roots to the median filters, implying that edge
information is not lost by iterating the filtering process.

Stein [19] has presented a modification of the median
filter, the adaptive recursive filter, which is related to our
selective median filter. Stein’s method can be loosely de-
scribed as a ‘‘half-neighborhood’” median filter, whereas
the SMF could be described as a *‘nearest neighbor’” me-
dian filter. Although the two methods differ, we would
expect their performance to be comparable.

D. Evaluations and Comparison

In enhancing mammogram images, we require an en-
hancement technique which clears noise while preserving
edges of suspicious areas. In this section, the performance
of the neighborhood averaging methods discussed and the
proposed selective median filtering method are compared
and evaluated.

Performance comparison of the different averaging
schemes was done visually (attempts to evaluate the tech-
niques using quantitative measurements [9] proved to be
unsatisfactory since they could not adequately measure the
preservation of the image structure, such as the preser-
vation of important edges). To facilitate the evaluation of
the edge-preserving power of the various enhancement
techniques, the boundary information of the enhanced im-



380 IEEE TRANSACTIONS ON MEDICAL IMAGING. VOL. 8, NO. 4, DECEMBER 1989

ages was extracted for visual evaluation. A high-pass (La-
placian) filter was used for this purpose, the high-pass fil-
ter output being defined as

1 1
glry)=| 2 2 flx+iy+j)=9f(xy)

where f(x, y) is an enhanced image. The high-pass fil-
tered image was then converted to a binary image using a
fixed threshold.

Among the five techniques implemented, the edge pres-
ervation power of the directional smoothing method was
the worst and it tended to preserve straight edges better
than curved ones. However, the shape of suspicious areas
is approximately circular, and therefore, edges do not al-
ways lie in a straight line. In this case, no matter which
direction the average is computed, the edge pixel is al-
ways being averaged with pixels not belonging to the same
region. As a result, the edges of suspicious areas are
blurred, and as the window size increases, this effect is
more prominent.

The k-nearest neighbor method cannot preserve edges
as well as the half-neighbor or SMF method. It assumes
that the five nearest neighbors (in gray level) must belong
to the same region as the center pixel in a window. This
is not always true, and the five nearest neighbors may in-
clude pixels that lie outside the region. The half-neigh-
borhood method preserves edges better because it treats
edge pixels differently and restricts that the five neighbors
selected for averaging must be consecutive pixels. This
latter restriction reduces the chance of averaging an edge
pixel with pixels belonging to another region. Using a
threshold to select pixels from which the median is cho-
sen, the SMF achieves the same effect.

In comparing the high-pass results of the various en-
hanced images, it was noted that only the edge preserving
smoothing method (Plate 3) and the SMF method (Plate
4) preserve the edges of the suspicious areas adequately.
In both plates, the edges of the suspicious areas appear as
approximately closed rings. However, the noise cleaning
power of the SMF method is better than that of the edge-
preserving smoothing method. This can be illustrated by
the fact that there are fewer noise edges in Plate 4 than in
Plate 3. Based on these observations, it was concluded
that the SMF method with a 5 X 5 window size enhances
the mammogram images better than the other methods.

E. Performance of the Proposed Method

To further evaluate the performance of the SMF, a set
of 24 mammogram films was used. They were randomly
selected from mammogram files and were diagnosed by
an expert radiologist who circled the suspicious areas in
each test case. His markings were then translated into x,
y coordinates representing the approximate center and ra-
dius measures.

The SMF has three parameters that can be adjusted to
adapt the filter to the noise characteristics of the mam-
mograms, the three parameters being the threshold 7, the
number of iterations, and the window size W. To set the

Plate 3. Laplacian of mammogram image 1 which is enhanced by the edge-
preserving smoothing method.

Plate 4. Laplacian of mammogram image | which is enhanced by the se-
lective median filtering method.

values of these three parameters, a training set of seven
mammograms is used. The other 17 mammograms were
grouped into a test set for testing the performance of the
proposed method after the values of the parameters had
been determined. Mammograms can differ quite consid-
erably in their gray level histogram due to exposure dif-
ferences in mammographic screening, and thus it can be
quite difficult to determine a single set of parameter val-
ues applicable to all mammograms. To avoid this prob-
lem, all mammograms were normalized to a gray level
range of 0-255 before filtering.

To estimate the maximum value for the parameter T,
the contrast between pixels in the suspicious areas (of the
training set images) was checked. It was noted that the
contrast ranged from 5 to 15 gray levels. Using different
threshold values within this range, the SMF was applied
to the training set. By observing the amount of noise edges
and ‘‘relevant’’ edges in the high-pass results, it was con-
cluded that although a large threshold value (e.g., 10)
removed noise more effectively, a smaller threshold value
(e.g., 5) preserved edges of all suspicious areas better.

In addition, it was noted that the performance of SMF
does not improve much after the fifth iteration if the other
two parameters (W and T) are kept constant. This is in
agreement with Gallagher and Wise’s [7] observation that
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every signal can only be reduced down to a certain point
no matter how many times the median filter is applied.

Best performance of the SMF was found for window
size W = 9 X 9, number of iterations = 5, and edge
threshold 7 = 5. Using these parameter values, the SMF
was applied to the mammogram image 1 (Plate 1) and 2
(Plate 2) and the filtered images are shown in Plates 5 and
6. Compared to the original images, the background vari-
ation is reduced in the filtered images, while the bound-
aries of all suspicious areas are preserved. The filtered
images have, however, a mottled appearance and this is
caused by the iteration of the filter. This effect is not de-
sirable and it may produce false alarms in the tumor de-
tection process. This problem can be easily overcome by
applying a false alarm test using the original unfiltered
image. This test is discussed in detail in Section IV.

In applying this SMF on the test of 17 mammogram
images, the performance of the SMF was found to be sat-
isfactory. The background variations in the filtered im-
ages is reduced and the boundaries of all suspicious areas
are preserved.

III. TumMor DETECTION

The approximately circular shape and the brightness
homogeneity of tumor areas are important characteristics
used in detecting suspicious areas. General techniques de-
veloped for object detection, such as pixel-based and re-
gion-based segmentation techniques, can make use of the
brightness homogeneity property of regions to segment
the image, but they are blind to the shape of tumors. Since
brightness homogeneity is not a unique characteristic of
tumor areas, it is very difficult to use this criterion alone
to segment the image successfully into tumor and back-
ground regions.

One way to detect the approximately circular tumors is
to extract image edges and then look for ring-like struc-
tures. However, in noisy or lightly textured images, a
large number of noisy edges is extracted and edge track-
ing becomes very difficult, if not impossible.

The other approach to using shape information in tumor
detection and the one we used in our work is based on
template matching. With this approach, the shape and ho-
mogeneity characteristics of tumor areas can be used as
the match criterion by defining them in the templates. The
location and size of detected suspicious areas can then be
obtained from the output of the matching operation. How-
ever, as will be discussed below, this approach has to be
complemented by several additional tests for good per-
formance due to the fact that the tumors to be detected
can differ quite considerably from an ‘‘ideal’’ shape.

A. Definition of a Tumor-Like Template

A tumor-like template is defined based on three char-
acteristics of tumor areas, namely, 1) brightness contrast
(i.e., a bright object in a dark background), 2) uniform
density, and 3) approximately circular shape.

The template used to match tumors with a diameter of

Plate 5. Mammogram images 1 enhanced by the selective median filtering
method using five iterations, window size of 9, and 7' = 5. The suspicious
areas reported by the proposed tumor detection method are marked by cir-
cles.

Plate 6. Mammogram images 2 enhanced by the selective median filtering
method using five iterations, window size of 9, and T = 5. The suspicious
areas reported by the proposed tumor detection method are marked by cir-
cles.
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Fig. 1. A tumor-like template for matching with tumors of five pixels in
diameter.

five pixels is shown in Fig. 1. A circular patch of 1’s in
the center of the template represents a tumor area having
uniform density. To allow tumor shape to deviate slightly
from a perfect circle, the patch of 1’s is bounded by a ring
of 0’s. This is a ““don’t care’’ area in the match. The
background of the patch is filled with —1’s instead of 0’s
because we are looking for a light object on a dark back-
ground. The size of the ring of 0’s and the background in
each template increase in proportion to the template size.
In addition, the shape of the template is circular instead
of square so as to increase the sensitivity of the match.
By using a circular template, all the neighboring pixels
which locate evenly around the tumor are checked in the
matching process.

B. Similariry Measure

To measure the similarity between a true suspicious area
and the template, we need a similarity measure which is
not sensitive to average brightness. In addition, the mea-
sures produced by templates of different size must be
comparable. Hence, the normalized cross-correlation
measure [12] is used.

Let S be the image, an L X L array of pixels, each
taking one of K gray levels, and let W be the M X M
template with M << L. Each M X M subimage of S can
be uniquely referenced by its upper left corner coordinates
(i, j) and there are (L — M)(L — M + 1) such sub-
images. The normalized cross-correlation measure is de-
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{(Wlk,m) = w) (S + k= 1) +m = 1) = p(i)))]

2
R(l,]) = Mk:;'!m -
\/kgl Z=:| (W(k’ m) — .U-w)z 2

where pu,, is the mean of the template and p, is the mean
of the subimage centered at image point (i, j ).

As mentioned earlier, one disadvantage of using tem-
plate matching is that the orientation and size of the target
object may disturb the match. However, to the extent that
the tumor area is circular, the match is orientation in-
variant. To cope with size variations of the object, mul-
tiple templates were used, with the circle radius ranging
from 3 to 14 pixels.

C. Criteria in Selecting Suspicious Areas

The template matching operation produces 12 output
images (template radii 3-14 pixels) in which each pixel
value is the result of cross correlating the template and
the subimage centered at that point. An appropriate
method is required to interpret these values so that all sus-
picious areas are detected and nonsuspicious areas are ex-
cluded.

Due to the design of the templates, a circular dark ob-
ject on a bright background will produce a large negative
cross-correlation value. Hence, locations in the images
which have negative cross-correlation values are not con-
sidered suspicious areas.

An effective criterion for selecting suspicious areas must
be able to solve three problems. First, most suspicious
areas have the maximum cross-correlation value when
being matched with one of the 12 templates, but we have
no guarantee that this is always true. Second, we do not
have prior knowledge of the size and the number of tu-
mors in a mammogram film. Third, some mammograms
have a very rich image texture due to the presence of
glands and fatty tissue, leading to high cross-correlation
values in the template matching stage. Some of these val-
ues may even be larger than those for some suspicious
areas in other images. Consequently, a single global
threshold for the template matching stage is bound to miss
tumors in many images and to produce large numbers of
false alarms in other images.

Alternatively, one can use a percentile method [1] and
classify a fixed percentage of locations as suspicious. This
(possibly large) set of suspicious areas can then be ana-
lyzed with further tests to reduce the number of false
alarms. The fixed percentage should be chosen in such a
way as to have no misses (i.e., no tumor or suspicious
area should be rejected) and to have a reasonably small
number of false alarms so as to keep the amount of com-
putation spent on false alarm tests within reasonable lim-
its. Hence, by analyzing the normalized cross-correlation
distribution of an image, we choose a threshold value R
such that g percent of the locations in the image having a
correlation larger than R are considered as suspicious

M

X (S(i+k—1j+m—1)— (i)

k=1m=1

areas. This corresponds to mapping g percent of the lo-
cations into suspicious areas. In our implementation, we
chose g = 2.5 percent as this value leads to no misses and
a reasonably small number of false alarms. The choice of
q primarily affects the number of locations that are sub-
jected to false alarm tests and only to a minimal extent
the number of locations that are classified as suspicious
after the false alarm tests.

The template matching process only considers local in-
formation; therefore, it cannot adjust to the global texture
of each image. The percentile method improves the tem-
plate matching step by taking into account global image
information. In general, if many locations in an image
(with rough texture) produce large cross-correlation val-
ues, a large threshold will be selected to minimize the
number of nonsuspicious areas being considered as sus-
picious areas. In the case of an image with smooth tex-
ture, a smaller threshold is used to ensure the detection of
suspicious areas. The cross-correlation distributions for
the images in Plates 5 and 6 are shown in Figs. 2 and 3,
respectively. Note that in using a g value of 2.5 percent,
a large threshold (0.67) was selected for the image with
rough texture (Plate 6), while a smaller threshold (0.58)
was selected for the smoother image (Plate 5).

The tumor detection method is applied to mammogram
images that are prefiltered using the selective median fil-
ter, although it is possible to apply it directly to the orig-
inal images. Experiments showed, however, that direct
application leads to a significant degradation in perfor-
mance, with a higher number of misses and false alarms,
and thus that the noise reduction achieved by the prefil-
tering process is essential for the success of the subse-
quent tumor detection stage.

IV. FALSE ALARM TESTS

The percentile method produces a set of candidate
points which are not exclusively suspicious areas. We
therefore need some selection methods to remove as many
false alarms as possible. One important requirement of a
false alarm test is that they must not respond to true sus-
picious areas to avoid degrading the overall performance.
After analyzing the characteristics of the many false alarm
areas, two tests were designed. They examine a mam-
mogram image at the locations reported as suspicious by
the template matching procedure and try to discriminate
false alarms from true suspicious areas.

A. Neighborhood Test

This test is based on the observation that the template
matching typically produces a sharp cross-correlation peak
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Fig. 2. A distribution curve of normalized cross-correlation values com-
puted for mammogram image 1. Using a g value of 2.5, the threshold R
of this image is 0.58.
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Fig. 3. A distribution curve of normalized cross-correlation values com-
puted for mammogram image 2. Using a g value of 2.5, the threshold R
of this image is 0.67.

in false alarm areas whereas cross correlation drops more
gradually in the immediate neighborhood of tumors. Re-
call that the boundary of a suspicious area is fuzzy and
the shape of a suspicious area is circular. Therefore, a
high match between a template and a suspicious area will
not be confined to a single pixel centered at the suspicious
area. Instead, the pixels in the immediate neighborhood
of the center pixel will also produce high cross-correlation
value when being matched with a template having the
same size as the suspicious area. On the other hand, in
false alarm areas where a bright, homogeneous, and cir-
cular area does not exist, the cross-correlation value may
fall off quickly away from the center. This is illustrated
in Figs. 4 and 5 which show the cross-correlation values
computed around the center of a suspicious area and a
false alarm area.

As mentioned earlier, some false alarms are due to an
artificial phenomenon created by the filtering process. The
neighborhood test also aims at removing this type of false
alarm by applying the test to the original image instead of
the filtered image. This is based on the belief that when
the matching is applied to the original image, a cluster of
high cross-correlation values should not exist in these false
alarm areas because they should appear as normal tissue
in the unfiltered image.
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Fig. 4. (a) The normalized cross-correlation values computed around the
center of a suspicious area located in the image shown in Plate 5. (b)
The normalized cross-correlation values computed around the center of
a false alarm area located in the image shown in Plate 5.
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Fig. 5. Average cross correlation as a function of the distance from the
cross-correlation peak for a tumor and a false alarm.

To implement this test, the immediate neighborhood of
the center of a suspicious area is defined by a 3 X 3 cross-
shaped window. Within this window, the original image
is matched with the tumor template that produced the
largest cross-correlation value in the template matching
stage. If the cross-correlation value fall off sharply in the
immediate neighborhood of the center of the suspicious
area, the average cross-correlation value within the neigh-
borhood window will be small. Otherwise, the average
value will be large and, in fact, should be larger than the
threshold R selected by the percentile method. Therefore,
if the average cross-correlation value is less than the
threshold R, the suspicious area is discarded as a false
alarm.

B. Histogram Test

If we compute a gray-level histogram within a window
containing both a tumor and background, we should ide-
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ally obtain two peaks, with one peak corresponding to the
tumor and one corresponding to the background. There is
no reason to expect a double-peaked gray-level histogram
in other areas, and therefore all image locations that do
not show a double-peaked gray-level histogram are dis-
carded as false alarms. This is the essential idea of the
second false alarm test, based on the gray-level thresh-
olding method described in [16].

The window has to be large enough to contain both tu-
mor and background, and its size can be determined from
the tumor radius reported by the template matching pro-
cess, more precisely, a circular window with a radius 30
percent larger than the tumor radius is used for the gray-
level histogram. The gray-level histogram for this win-
dow is then smoothed and the number of histogram peaks
is determined. All locations with single-peak histograms
are discarded as false alarm locations.

Two typical examples of smoothed histograms are
shown in Figs. 6 and 7, one for a tumor location (Fig. 6),
and one for a false alarm location (Fig. 7). The latter fails
the histogram test since it is not double-peaked, and thus
provides no evidence for the presence of a circumscribed
mass.

V. EXPERIMENTAL RESULTS

In comparing the diagnostic results produced by the
computer and the radiologist, we cannot expect that the
location and size of a suspicious area determined by the
radiologist and the computer are exactly the same, so some
relaxed criterion for determining a positive detection was
established. A suspicious area was considered detected if
the circle placed around a suspicious area by the radiol-
ogist and the nearest area mapped by the computer over-
lapped by at least 50 percent. If the overlap was less than
50 percent, it was counted as a miss. The result of this
comparison based on the training set is shown in Table 1
which lists the size and location of the suspicious area(s)
diagnosed by the radiologist along with the areas located
by computer. Also included are the total number of sus-
picious areas reported in each test case.

The result of comparing the performance of the pro-
posed method using different percentile thresholds in the
template matching stage is shown in Table II. This table
shows that as the percentile threshold ¢ increases, both
the total number of suspicious areas detected and the false
alarm rate increase. On the other hand, although the false
alarm rate is zero when a ¢ = 0.5 is used, the hit rate
drops to 54 percent. As a result, g = 2.5 was chosen for
the percentile method since it produces a hit rate of 100
percent and a moderate false alarm rate of 1.1 per mam-
mogram. In Plates 5 and 6, the suspicious areas reported
by the proposed method are circled in the mammogram
images 1 and 2.

The result of applying the proposed method to a test set
of 17 images (SMF-enhanced images) is shown in Table
III with a summary in Table IV. The hit rate in detecting
suspicious areas remains 100 percent, that is, all suspi-
cious areas detected by the radiologist were detected by
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Fig. 6. Gray-level histogram constructed in a suspicious area located in
the image shown in Plate 5.
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Fig. 7. Gray-level histogram constructed in a false alarm area located in
the image shown in Plate 5.

TABLE I
COMPARISON OF THE COMPUTER'S AND THE RADIOLOGIST'S INTERPRETATION
ON SEVEN MAMMOGRAMS IN THE TRAINING SET (¢ = 2.5)

Coordinates of suspicious areas
Radiclogist Computer*® [Total numben
of areas
case number X Y radius X Y radius detected
(mm) (mm)
136801 170 116 3 166 1186 5 2
180 176 1 181 178 10
151138 100 186 8 102 185 8 4
150 93 10 150 96 9
006356 186 208 8 184 206 6 2
200 143 4 199 149 3
63387a 34 165 4 35 165 4 1
119343 160 118 12 159 119 11 2
142322 188 192 9 187 184 8 5
89993a 134 128 8 135 128 8 3
o __192 100 . 5 194 103 4

*Coordinates of suspicious area most closely correlating with the ra-
diologist.

TABLE 11
COMPARISON OF THE PERFORMANCE OF THE PROPOSED METHOD USING
DIFFERENT g VALUES

q it-rate ‘otal number | Average number
of false alarm | of false alarm
detected per_film
0.5 54% 4] 4]
2.5 100% 8 1.1
5.0 100% 47 6.7

*In the training set, 11 suspicious areas are reported by the radiologist.
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TABLE 111
COMPARISON OF THE COMPUTER'S AND THE RADIOLOGIST'S INTERPRETATION
ON 17 MAMMOGRAMS IN THE TEST SET (g = 2.5)

Coordinates of suspiclous areas
Radlologist Computer® [Total number
of areas
case number X Y radlus X Y radius | detected
(mm) {mm)

89993b 1m 140 6 174 140 6 5

101 126 4 104 126 4
124133a 122 134 6 122 136 5 4

175 159 8 172 158 7
124133b 130 42 10 131 44 10 3

88 112 10 88 110 9
129194a 90 150 6 92 149 7 3
129194b 198 70 4 200 kAl 5 4
145079 198 208 4 196 208 5 3
40274a 200 64 3 199 64 3 S
63387b 128 194 4 124 194 4 1
40274b 38 162 3 38 164 3 1
125758 118 68 7 118 66 9 1
069591 56 22 5 55 22 5 5
152506 192 164 10 192 164 8 1
004948 - - None - - - o
004703 103 kAl 4 104 70 5 7
129194 100 44 4 100 46 5 2
012914 138 76 13 140 78 12 2
933302 125 73 7 124 Yal 6 2

*Coordinates of suspicious area most closely correlating with the ra-
diologist.

TABLE IV
SUMMARY OF EXPERIMENTAL RESULTS

Numbser of films tested =17
Total number of true suspicious areas =19
Average number of true suspicious areas per film =11
Hit-rate of the technique =100%
Average numbser of false alarms found per film =17

the proposed method and the false alarm rate increased
slightly to 1.7 per mammogram compared to the 1.1 ob-
tained with the training set.

VI. CoMPUTATION CONSIDERATION

The computational cost of our method is high: about 15
min are required to complete an analysis of one mam-
mogram on a VAX 11/780 computer. Most of the time is
spent in the template matching stage which requires
maztching a mammogram with 12 templates of size 10°-
45°.

One way to speed up the computation is to reduce the
number of locations that are fully analyzed by using a
coarse-to-fine template matching method [17], [22]. In the
first stage of this method, a reduced-resolution template
is matched with a reduced-resolution version of the im-
age. Only those locations which produce a match value
larger than a predetermined threshold are used in the sec-
ond stage where a full resolution template and image are
matched. If the coarse template matching is done at half
the resolution, its computational cost is reduced by a fac-
tor of about 16 compared to the original ‘‘one-stage’’
template matching. The cost of the second stage depends
on the threshold. If the threshold is high, the cost of the
second stage is low, but some suspicious areas may have
a correlation value smaller than the threshold, and there-
fore will not be used in the second stage matching. This
is particularly true for small-size tumors having a low
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contrast with their surroundings. They are often smeared
in low-resolution images, and thus produce correlation
values smaller than the threshold in the first stage, leading
to a higher miss rate. On the other hand, if the threshold
is small, the saving in computational time will become
insignificant.

Experiments showed a clear speed-accuracy tradeoff of
the coarse-fine template matching method. Selecting a
threshold value that saved about 30 percent in computa-
tion time produced a miss rate of 9 percent, i.e., the sus-
picious areas were not detected in two out of the 24 test
images.

VII. CoNCLUSION

This paper presents a method for breast tumor detection
in mammograms. The first step towards tumor detection
is image enhancement by noise removal. Several algo-
rithms for noise cleaning in digital images were analyzed.
Some techniques based on selective averaging were im-
plemented due to their simplicity and their promising
properties for edge preservation and noise removal. In ad-
dition, a new enhancement method, selective median fil-
tering, was developed. A training set of seven mammo-
gram images was used to adjust the parameter values used
in this method. This technique was then applied to a test
set of 17 mammograms in which suspicious areas were
identified by a radiologist. The selective median filtering
method was found to be more effective than the other
techniques implemented in enhancing mammogram im-
ages.

The second step is concerned with tumor detection. Our
method is based on template matching and is capable of
detecting suspicious areas in mammograms independent
of their size, orientation, and position. To reduce the false
alarm rate, two false alarm tests were designed to examine
the output of the template matching process. These tests
can discriminate most noise areas from true suspicious
areas. The routines were applied to 17 test mammogram
images, and the results show that the routines can cor-
rectly identify all suspicious areas while producing only
a small false alarm rate of 1.7 per mammogram image.

One disadvantage of our method is the high computa-
tional cost. A coarse-fine template matching method was
implemented, and the results show that the computational
cost of the proposed method can be reduced by such an
approach.

The results obtained with our method are quite encour-
aging. By combining three criteria, namely, the contrast,
the uniform density, and the circular shape of tumor areas,
the detection algorithm is capable of locating all tumor
areas in the test of 24 images. Nevertheless, to test the
stability of this method, more testing is required using a
larger number of cases.

As was discussed in the Introduction, expert radiolo-
gists use the following four criteria for the detection of
circumscribed masses: 1) brightness, 2) brightness ho-
mogeneity, 3) circular shape of various size, and 4) fuz-
ziness of boundaries. The first three criteria were used in
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the design of the image enhancement and tumor detection
stage; the fourth criterion was used in the design of the
neighborhood test for eliminating false alarms. Perfor-
mance of the system may be further improved by directly
analyzing the boundaries of suspicious regions with re-
spect to their fuzziness similar to the analyses proposed
in [2].

The method presented in this paper is successful in de-
tecting one type of breast cancer, circumscribed masses.
To assess its clinical utility, it has to be tested on much
larger sets of data. Furthermore, a clinically useful sys-
tem for breast cancer detection must be able to detect all
types of breast cancers, not just circumscribed masses.
Work is currently under progress on a system that will be
able to detect all major types of breast cancers.
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