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Most shape-from-shading methods assume that surface reflectance is constant within large image regions. This assump-
tion is violated in natural scenes with objects made from different materials. We present a more general method for
recovering shape from shading, assuming that surfaces are smooth and albedo is piecewise constant, as would be the
case if a Mondrian image was painted on a smooth curved surface. Our method is based on combining Brooks and
Horn’s method for shape recovery with the recovery of albedo using stochastic relaxation.
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La plupart des méthodes de la figure dérivée de I’ombre tiennent pour acquis que le pouvoir réflecteur d’une surface
est constant a I'intérieur d’importantes surfaces d’image. Cette hypothese est contredite dans les scénes naturelles avec
des objets fabriqués de matériaux différents. Nous présentons une méthode plus générale de récupération de la figure
a partir de ’ombre, qui suppose que les surfaces sont lisses et que I’albédo est constant, comme ce serait le cas si une
image de Mondrian était peinte sur une surface courbe lisse. Cette méthode combine la méthode de récupération de
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la figure de Brooks et Horn et celle de la récupération de ’albédo a ’aide de la relaxation stochastique.
Mots clés : figure dérivée de Iombre, relaxation stochastique, image de Mondrian.
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1. Introduction

Computational vision aims at understanding how three-
dimensional representations of the world can be recon-
structed from information contained in two-dimensional
images. Recent research has produced a variety of methods
that allow the recovery of such shape information, including,
for example, shape-from-stereo, shape-from motion, shape-
from-texture, and shape-from-shading. Most of these shape
recovery problems are ill posed (Hadamard 1923; Torre and
Poggio 1986) in that existence, uniqueness, and stability of
solutions may not be guaranteed in the absence of additional
constraints. In the case of shape-from-shading, for example,
Pentland (1984) restricts the space of solution surfaces to
umbilical surfaces to enable unique recovery of surface
orientation from local variation of image irradiance. Brooks
and Horn (1985) use a weaker constraint, requiring that the
solution surface maximizes some global smoothness
measure, but constraints on surface shape have to be prop-
agated nonlocally. Both approaches are based on the image
irradiance equation

(11  EGx, y) = onlx, y) - §

where E is the image irradiance, p the surface albedo, A the
incident flux, » the surface normal, and s the illuminant
direction (sun). They require that surface reflectance, in the
imaging model {1] Lambertian reflectance, remains constant
over a large area, and all variations in image irradiance are
attributed to variations in surface orientation. Further, the
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two approaches provide no means for detecting that this
assumption may be violated, except in some pathological
cases. Such is the case, for example, with a black area in
an image with s = v, the viewing direction, where surface
orientation is computed being orthogonal to the viewing
direction over some extended area, a geometrically impos-
sible inference.

The aim of this paper is to investigate the feasibility of
shape inference under weaker constraints than those imposed
by either Pentland or Brooks and Horn. There is no way
of separating the two effects of surface orientation and sur-
face reflectance in the general case, since any change in
image irradiance can be attributed to a change in either of
the two or a combination of both. Thus a photograph can
be interpreted as a flat surface with changing reflectance or
as an image of a curved surface with or without changes
in reflectance. However, we will show that surface orienta-
tion can be successfully recovered if the surface is assumed
to be smooth (as in Brooks and Horn) and surface albedo
is piecewise constant (as opposed to globally constant in
Brooks and Horn).

Piecewise constant surface albedo can lead to disconti-
nuities in image irradiance and thus the borders of ‘‘albedo
patches’’ could be detected by either looking for disconti-
nuities in image irradiance directly (edge detection) or
looking for large errors in the predicted image irradiance
after a surface orientation fit, assuming constant albedo.
As we will show later, both these approaches lead to unsatis-
factory results, inferior to our scheme in which surface orien-
tation and surface albedo are recovered simultaneously.

Our approach is closely related, on one hand, to Brooks
and Horn (1985) for recovering surface orientation and, on
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the other hand, to Marroquin ef ¢/. (1987) and Geman and
Geman (1984) for recovering the piecewise constant albedo
map. As discussed in the next section, the two processes run
in parallel, each updating iteratively the input to the other
process.

2. Model

We want to recover the orientation, n(x, ¥), of a smooth
surface satisfying the image irradiance equation for
Lambertian surfaces

2] Ex, ») = plx, »nlx, y) - s

over some domain {2, where E(x, ) is the image irradiance,
olx, y) the (piecewise constant) surface albedo, n(x, y) the
unit normal of the surface, and s the (known) direction of
a distant single point source (sun) with |s| = X, the (known)
incident flux. It is obvious that we put quite strong restric-
tions into the image irradiance equation, such as the restric-
tion to Lambertian surfaces. We have done so in order to
allow a direct comparison with experiments reported in
Brooks and Horn (1985). It is clear, however, that these
restrictions have to be relaxed if our method is to be applied
to natural images and that it has to be complemented, for
example, with methods for dealing with specularities (Healey
and Binford 1986; Brelstaff and Blake 1988).

In the remainder of this section we will first discuss how
to recover the surface orientation map, n(x, ¥) (Sect. 2.1),
then how to recover the surface albedo, o(x, ») (Sect. 2.2),
and then how to combine the two methods (Sect. 2.3). It
should, however, be pointed out from the beginning that
in our implementation the two processes for recovering
orientation annd albedo are not operating independently or
sequentially, but are intertwined in such a way that in each
iteration the output of one process is used as input for the
other process.

2.1. Recovering the surface orientation map

As shown in Brooks and Horn (19835), recovering the sur-
face orientation map, n(x, ¥), from [2] can be put as a varia-
tional problem where we try to minimize [3] with respect
to n.

31 In) = (g {[E(x, ») — p(x, ¥) n(x, y) - s]?
+alni(x, ») + nix, )] + wn? — 1)} dxdy

In [3] the first term in the integral captures errors of the
predicted image irradiance, the second term captures devia-
tions from smoothness of surface orientation, with «
weighting the relative importance of this term and 7, and
n, denoting partial derivatives, and the third term con-
strains n{x, ¥) to unit vectors. In terms of regularization
theory (Tikhonov and Arsenin 1977; Torre and Poggio
1986), the second term is called the stabilizing functional
and « the regularization parameter.

The deficiencies of the smoothing term in [3] are well
known (cf. Horn and Brooks 1986; Frankot and Chellappa
1987), but as was pointed out earlier, adopting this form
allowed a comparison with the results reported in Brooks
and Horn (1985). Disadvantages of this form of the smooth-
ing term are further discussed below. The minimization for-
mulation [3] differs from that of Brooks and Horn in that
the term for surface albedo, p(x, ), is not assumed to be
(globally) constant. As will be discussed below, iterative

estimates for p(x, y) are provided by the process that recovers
the surface albedo map. The Euler-Lagrange equation
associated with [3] is

[4] (E— on- 5)ps + aVn — un = 0
where
9? 92
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is the Laplacian. Using the 9-point discrete approximation
for the Laplacian

1 4 1
5] Vi~ |4 -20 4
11 41

and solving [4] for n, we arrive at the following iterative
estimates for n:

k+1 _ o k+1 k+1
[6] nij = mU /lmlj
[71 mit! = nk + 3e? (E; — p;nt - 8)pis
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where m{j“ are the unnormalized surface normals and
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After every iteration of the surface orientation estimation,
we can obtain an estimate of the surface albedo, 5(x, ), from

[2]:
91 B, ») = E(x, ) (n(x, y) - 5) 7!

except at self-shadow boundaries where n(x, ») - 5 = 0.
In the experiments reported in Sect. 3, the surface orien-
tation, n, was initialized to the correct value at the occluding
boundary and ton = [0, 0, 1] elsewhere. Albedo p(x, y) was
initialized to a random value in the first iteration.

2.2. Recovering the surface albedo map

Given our assumption that albedo be piecewise constant,
we want to fit a piecewise constant albedo map, p(x, »), to
the estimates 3(x, y) obtained in [9]. That is, o{x, ¥) should
be constant except at boundaries between different regions,
and the discontinuity boundaries should be spatially con-
tinuous. This problem could again be cast in terms of a
minimization problem, but it is unlikely that the associated
minimization functional is convex and thus could be solved
using standard variational methods.

One way to overcome the problem of finding global
minima of nonconvex functions is to use simulated annealing
(Kirkpatrick ef @/. 1983), an extension of the algorithm of
Metropolis ef al. (1953) for simulating statistical mechanical
systems. In this method, randomness is introduced into the
steepest-descent path in order to avoid being trapped in local
minima. The degree of randomness is controlled by a tem-
perature parameter, which is initially high and allowed to
cool down as the system approaches the global minimum.

Simulated annealing and its relatives have been success-
fully applied to a variety of problems including the restora-
tion of noise-corrupted piecewise constant images (Geman
and Geman 1984; Marroquin ef a/. 1987). Our approach to
recovering the piecewise constant albedo map, p{x, »), from
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Fic. 1. Albedo node lattice with interstitial (horizontal and ver-
tical) line lattice for modelling discontinuity boundaries. The black
nodes indicate an ‘‘albedo node’’ with its four neighbour nodes.

the albedo estimates, 8(x, ¥), follows closely their approach.
The goal of the recovery process is to determine the ‘‘true”
albedo value at every node of a dense grid in the viewer coor-
dinate system. As a side effect, the method also produces
the albedo discontinuity boundaries which may be located
between any pair of neighbouring albedo nodes in a
4-neighbourhood system (see Fig. 1).

In the discussion of the albedo map recovery, we first
introduce the associated energy functions and then discuss
the recovery process using simulated annealing.

2.2.1. Energy functions

To model the piecewise constant albedo map, we use a
coupled node-line model (Geman and Geman 1984;
Marroquin ef /. 1987) with the node process capturing
penalties on albedo values and the line process capturing
penalties on the local geometry of discontinuity boundaries.

s Node process. At every node in the lattice the modelled
albedo, p;, should be as close as possible to the estimated
albedo, p;, obtained from [9], and the albedo value between
neighbouring nodes should not differ unless there is a dis-
continuity boundary between them. To model the former
we introduce the ‘‘albedo error’ energy, D,, and to model
the latter we introduce the ‘‘albedo variation” energy, V,.
The albedo error energy for node i is defined as
[10] D,() = lo; — A
We used the absolute error as opposed to a more usual qua-
dratic error term in [10] based upon experiments with our
method. Using a quadratic term, the albedo error tended
too often to dominate the combined energy function intro-
duced below.

The albedo variation energy is defined as follows. Let i
and j be two neighbouring nodes, /; the line element
between the two nodes, and N, the set at all neighbours (the
clique) of node i. Then the albedo variation energy, V, (1),
is defined as

(11 V,0) = X Vi, Jj, I
JeN;

o O
' JON

FIG. 2. Vertical line element (1) with six neighbours (2-7).
Energy functions are defined on the two cliques, (1, 2, 3, 4) and
(1, 5,6, 7).

where
_1 0; = pj’ llj — “Off”
{12] Vp(i’ j’ lzj) - +1 P * Pjs [U = ‘“‘off”’

(%1

0 li' = "0n
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where /; = “‘on’ or ‘“‘off”’ indicates the presence or
absence of a discontinuity between nodes / and j. The
assumption that the surface albedo is piecewise constant is
captured in the term V;. For any two neighbouring nodes,
equal albedo values within regions are favoured over equal
albedo values across boundaries. Unequal albedo values are
slightly penalized across region boundaries (/; = “‘on”),
with the effect that globally constant albedo is preferred over
piecewise constant albedo. Finally, unequal albedo values
within a region (/; = ‘‘off’’) are strongly penalized. Note
that under the assumption of piecewise constancy any dif-
ference in albedo, independent of the amount, should be
equally penalized. Finally, note that there is no coupling
between [12] and the data term [10], since the albedo varia-
tion term, [12], is defined between nodes whereas the albedo
error term, [10], is defined for a single node only. (In this
respect, [12] differs from formulations found, for example,
in Poggio et al. (1988) or Hutchinson ef al. (1988).)

o Line process. In modelling the spatial geometry of dis-
continuity boundaries, isolated discontinuities and clustered
discontinuities should be highly penalized, whereas “‘good
continuations’’ of boundaries should be favoured.
Figure 2 shows a vertical line element (1) with six neighbour-
ing line elements (2-7), defining the neighbourhood of
element (1), and forming two cliques, (1, 2, 3, 4) and
1, 5, 6, 7). The energy functions, V;(/;), are defined for
each clique with the values of V;(/;) for all possible con-
figurations, up to rotations, given in Fig. 3. Isolated bound-
ary fragments (V) and clusters of boundary fragments (Vs
and V) are highly penalized.

Given some estimated albedo values, p;, we want to find
the interpretation, 7 = (P, L), of albedo values P = {p}
and discontinuity boundaries, L = {/;}, which minimizes
the combined energy function, U(J, L):

(131 Ud L) =B D) + Bl V() + B Vi)
iel iel leL
where 8y, 8, and 83 are weighting factors.
In the experiments reported in Sect. 3, the initial condi-
tions were set as follows: Albedo values p(x, y) were initial-
ized to a random value. Discontinuity line elements were
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initialized randomly (with probability p = 0.5)to “on”’ or
“off”’, except at the occluding boundary where they were
all set to “‘on”’.

2.2.2. Simulated annealing

Given the albedo estimates, f(x, »), we want to find the
values of p{x, y) minimizing the combined energy function
[13]. As was pointed out before, there is no guarantee that
the function [13] is convex and thus steepest-descent algo-
rithms may be trapped in local minima. There exist several
methods to overcome this problem, such as the graduated
nonconvexity algorithm (Blake and Zisserman 1987) or a
dynamic programming algorithm (Papoulias 1985). The
method we use for the minimization of [13] is based on the
Metropolis algorithm (Metropolis et a/. 1953) and on the
annealing algorithm (Kirkpatrick er a/. 1983). It can be
briefly described as follows. Instead of using a deterministic
scheme for updating albedo values, the following scheme
is used. New values of p(x, y) are chosen randomly and the
difference in energy, AU = Upew — Uyg, is computed.
A new value of p(x, ») is accepted if AU =< 0, otherwise it
is accepted with probability p = exp(AU/T) with the para-
meter 7 being called temperature. When 7 is large, energy
increasing changes are often accepted and local minima can
be escaped. As T — 0 the system ‘‘freezes’’ and an almost
deterministic updating scheme is followed. The tempera-
ture, 7, is lowered according to the schedule T =
T,/1d(1 + k/4) with k being the iteration number and 1d
being the logarithm to the base 2. Geman and Geman (1984)
show that such a schedule for lowering temperature is suf
ficient for converging to states at least close to the global
minimum.

After updating all albedo values, p, the same process is
repeated for the introduction or removal of line elements,
I (see Geman and Geman 1984). It should be noted that in
the original annealing method (Kirkpatrick er al. 1983), tem-
perature is not changed until the average energy reaches
equilibrium. We change temperature at every iteration
regardless of whether equilibrium has been reached, but
compensate for it by using a conservative cooling scheme.

2.3. Combining the recovery of surface orientation and
surface albedo

There are several approaches to combining the recovery
of surface orientation and albedo. In this section we first
present the approach we used in our implementation, simul-
taneous recovery, and then discuss two alternative approaches
involving sequential recovery.

The approach we have found most successful involves the
simultaneous recovery of surface orientation and surface
albedo. Surface orientation recovery using the Brooks and
Horn scheme is intertwined with albedo recovery using
simulated annealing. In every iteration the surface orienta-
tion process produces an estimate of surface albedo, blx, W),
which is used by the albedo process to produce an estimate
of the piecewise constant albedo map, p(x, y). The new
albedo map is then used in the next iteration of the surface
orientation process. Simultaneous recovery of surface orien-
tation and surface albedo has clear advantages over
approaches that attempt to recover the two sets of unknown
sequentially.

Consider first the ‘‘albedo-surface’ approach in which
albedo, or at least boundaries of patches with constant
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F1G. 3. Six possible line configurations and their associated
energies.

albedo, are recovered first. Given the model assumption of
surface smoothness, discontinuities in image irradiance can
only occur in two ways, at points with a discontinuity in
albedo and at occluding boundaries of surfaces. The latter
are assumed to be known in the model for the recovery of
surface orientation. Hence boundaries of {constant) albedo
regions could be detected using some edge detection
mechanism. If this can be done reliably, then a mechanism
for orientation recovery could be devised, which indepen-
dently estimates surface albedo in each of the regions. Such
a scheme faces several difficulties, First, the reliability of
edge detection decreases in regions near self-shadow bound-
aries where image irradiance changes rapidly, violating our
assumption that sharp changes in image irradiance must be
due to albedo changes. Second, the subsequent estimation
of albedo for each region requires that the region bounda-
ries obtained by the edge detection mechanism are closed,
a requirement that cannot be easily guaranteed. Accordingly,
our experiments using only an edge detection scheme pro-
ved not sufficient for recovering boundaries of albedo
regions reliably. However, information from the edge detec-
tion mechanism could be used, for example, for initializing
line elements in the albedo recovery mechanism.
Consider next the “‘surface-albedo’ approach in which
boundaries of albedo patches are detected after a full cycle
of surface orientation recovery with a ‘‘constant albedo”
model. Albedo boundaries can then be located using some
discontinuity detector (Terzopoulos 1985), for example, by
detecting positions where the first term in [3] has a signifi-
cantly large value. Given these boundaries and some appro-
priate albedo estimation for each region, surface orienta-
tion can then be re-estimated. One problem with this
approach is that the reliability of the discontinuity detector
is reduced by the previous smooth surface interpolation.

3. Experiments

Recovery of surface orientation and albedo was tested on
synthetic, noise-free images of size 64% and with 28 inten-
sity levels. Illuminant direction, s, was coincident with
viewing direction, v, and incident flux was kept constant,
X\ = |s| = 1. Images and results of the recovery process are
shown in Fig. 4. The first surface (Fig. 40) was a Mondrian-
like sphere with seven patches of different albedo in the
range 0.2-1.0, the second surface (Fig. 40) was an egg-
shaped Mondrian surface, and the third surface (Fig. 4¢)
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FIG. 4. Images and results for albedo and shape recovery for
(@) a sphere with piecewise constant albedo, (b) an egg-shaped
object with piecewise constant albedo, and (c) a sphere with con-
stant albedo. The images are shown in the upper left, the recovered
albedo map in the upper right, and the inferred discontinuity

0.15
0.10-
S
&
0.05 1
albedo

0.00 — , : shape

0 100 200 300 400 500 600

iteration

Fi1G. 5. Average error of estimated surface orientation,
E[Biptermed * Miuel, and average error of estimated albedo,
Epirerred — Puuel> OVET 600 iterations for egg-shaped surface with
piecewise constant albedo.

— used for control purposes — was a sphere with constant
albedo.

The images are shown in the upper left, the inferred
albedo map in the upper right, the inferred discontinuity
boundaries in the lower left, and the error of the inferred
surface orientation in the lower right of Figs. 4a-4c. The
latter is to be interpreted as follows: in grey areas the
z-components (n - §) of the inferred surface normals are
correct, in white areas too high (inferred surface orienta-
tion too flat), and in black areas too low (inferred surface
orientation too steep).

All examples were computed using the same parameter
values: o = 0.3 (see [3]), B; = 0.05, B8, = 19, and
B; = 28 (see [13]). Initial temperature was T, = 2 and was
decreased according to the formula T, = T, ld(k/4) with
k being the iteration number. All results shown in Fig. 4
were obtained after 600 iterations.

This initial solution of the surface orientation, 7, was cor-
rect at the occluding boundary, and # = [0, 0, 1] elsewhere.
Surface albedo, p{x, »), was initialized to a random value
for the first iteration and was allowed to vary in steps of
0.2. Discontinuity line elements were initialized randomly
{(with probability p = 0.5) to “‘on’” or ‘“‘off”".

As can be seen from Fig. 4, recovery of surface orienta-
tion and albedo was perfect except in a band of varying
width near the occluding boundary. This effect was present
with a large range of other parameter values. The reasons
for this will be discussed below.

Figure 5 shows average errors of the inferred surface
orientation, Elfpfered © Airuel, and average errors of the
inferred surface albedo, Elpinterred — Puuel fOr the egg-
shaped Mondrian surface over iterations. They decrease
exponentially, reaching an asymptote after about 200 itera-
tions. The final errors are due to an imperfect fit near the
occluding boundary, whereas there is virtually no error in
shape/albedo recovery in the interior of the regions.

boundaries in the lower left. The error of the z-component (7 - §)
of the recovered surface orientation is shown in the lower right.
Grey areas indicate correct recovery, in dark areas recovered sur-
face is too steep, and in white areas too flat.




126 COMPUT. INTELL. VOL. 5, 1989

4. Discussion

The results show that our proposed method is capable of
simultaneously recovering surface orientation and surface
albedo for surfaces with piecewise constant albedo using
shading information. This is achieved with a much higher
computational effort (the results presented were obtained
after 600 iterations) than other known methods (about
50 iterations for the Brooks and Horn method and a single
iteration for Pentland’s method).

It is not immediately obvious why we did not use a unified
approach both for recovering albedo and for recovering sur-
face orientation. Stochastic relaxation is computationally
feasible only if each node can assume a small, fixed number
of states, as we have assumed for albedo. Surface orienta-
tion, on the other hand, varies continuously and thus can-
not be estimated efficiently using simulated annealing.
Hybrid approaches similar to ours have also been suggested
for recovering piecewise continuous surfaces from noisy data
(Marroquin et al. 1987; Hutchinson and Koch 1986).

The poor performance in recovering surface orientation
and albedo near the occluding boundary is caused by the
smoothing term in [3]. In its discrete form it produces sur-
faces that are too flat and it does not enforce smoothness
everywhere, as can be seen from the fact that the smoothness
term alone (i.e., using @ — oo in [3]) produces a conelike
shape if the initial solution is correct at the occluding bound-
ary. In our case this leads to a consistent overestimation of
albedo, A(x, »), near the occluding boundaries, as can be
seen in Fig. 4. This deficiency of the smoothing term was
not apparent in Brooks and Horn (1985), as it was compen-
sated by the first term in [3], the irradiance prediction term.

One possible way to overcome this problem is to use a
higher-order smoothing term in [3] such as, for example,
the biharmonic operator (Terzopoulos 1984; Horn and
Brooks 1986). Although the biharmonic operator does
enforce smoothness, it leads, on the other hand, to new
problems, such as more complex boundary conditions (Horn
and Brooks 1986, p. 186f) and a much slower convergence
rate in the iterative estimation (Brandt 1977). The latter
problem can be solved by resorting to multi-grid relaxation
in the iterative estimation. Work is currently under progress
to study the feasibility of this approach.

In the section on combining the recovery of surface orien-
tation with the recovery of surface albedo (Sect. 2.3), we
discussed three different approaches to combining the two
mechanisms, eventually favouring the simultaneous recovery
approach. We argued that the albedo-surface approach in
which boundaries of ‘‘albedo patches’ are localized first
using some edge detection mechanism was not reliable
enough for identifying regions of different albedo. How-
ever, this information can be used to initialize and (or) to
constrain the introduction of discontinuity line elements in
the recovery of the albedo map. The latter can be realized
by introducing a data term similar to [10] for the line pro-
cess. We expect an increase in efficiency of the recovery pro-
cess using this information and are currently extending our
method along these lines.
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